Skip to main content
Log in

A Novel Signal Regeneration Technique for High Speed DPSK Communication Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In long haul communication systems, the signal regeneration is frequently used technique that provides the long reach for high-speed transmission and reception systems. During high speed and distance transmission signal fades below a definite level due to transmission impairments; Bit error rate (BER) increases rapidly that degrades the system performance. In this work, a novel signal regeneration technique is proposed for 60 Gb/s differential phase shift keying transceiver system that transmits and receives the high-speed signal over single mode fiber at transmission distance of 300 km. The designed system is modeled mathematically and its real time simulation are demonstrated. It is examined that novel proposed technique is significantly regenerating the signal for 300 km fiber length. The proposed technique has achieved the BER of 10−19 with eye open diagram in the presence of high amplitude noise, phase noise and dispersion per kilometer in optical fiber transmission. At the receiver, the proposed system has adequately mitigated the amplitude noise up to 88% and phase noise up to 89% from the transmitted signal. The proposed system will be helpful for system design engineer to design high-speed communication with required BER before its physical realization to provide quality performance for future generation high-speed communication system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Hui, R., & O'Sullivan, M. (2009). Fiber optic measurement techniques. Cambridge, MA: Academic Press.

    Google Scholar 

  2. Pan, Z., Yu, C., & Willner, A. E. (2010). Optical performance monitoring for the next generation optical communication networks. Optical Fiber Technology , 16(1), 20–45.

    Article  Google Scholar 

  3. Liao, L., Lim, D. R., Agarwal, A. M., Duan, X., Lee, K. K., & Kimerling, L. C. (2000). Optical transmission losses in polycrystalline silicon strip waveguides: Effects of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength. Journal of Electronic Materials , 29(12), 1380–1386.

    Article  Google Scholar 

  4. Krishnan, R. (2015). On the impact of phase noise in communication systems-performance analysis and algorithms. Dissertation, Chalmers University of Technology.

  5. Kilper, D. C., Bach, R., Blumenthal, D. J., Einstein, D., Landolsi, T., et al. (2004). Optical performance monitoring. Journal of Lightwave Technology , 22(1), 294–304.

    Article  Google Scholar 

  6. Leclerc, O., Lavigne, B., Balmefrezol, E., Brindel, P., Pierre, L., Rouvillain, D., & Seguineau, F. (2003). Optical regeneration at 40 Gb/s and beyond. Journal of Lightwave Technology , 21(11), 2779–2790.

    Article  Google Scholar 

  7. Simos, H., Bogris, A., & Syvridis, D. (2004). Investigation of a 2R all-optical regenerator based on four-wave mixing in a semiconductor optical amplifier. Journal of Lightwave Technology , 22(2), 595.

    Article  Google Scholar 

  8. Boscolo, S., Turitsyn, S. K., & Blow, K. J. (2008). Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications. Optical Fiber Technology , 14(4), 299–316.

    Article  Google Scholar 

  9. Leuthold, J., Mikkelsen, B., Behringer, R. E., Raybon, G., Joyner, C. H., & Besse, P. A. (2001). Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration. IEEE Photonics Technology Letters , 13(8), 860–862.

    Article  Google Scholar 

  10. Hansryd, J., Andrekson, P. A., Westlund, M., Li, J., & Hedekvist, P. O. (2002). Fiber-based optical parametric amplifiers and their applications. IEEE Journal of Selected Topics in Quantum Electronics , 8(3), 506–520.

    Article  Google Scholar 

  11. Sklar, B. (2001). Digital communications. Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  12. Marcuse, D. (1983). Classical derivation of the laser rate equation. IEEE Journal of Quantum Electronics , 19(8), 1228–1231.

    Article  Google Scholar 

  13. Mena, P. V., Kang, S. M., & DeTemple, T.A. (1997). Rate-equation-based laser models with a single solution regime. Journal of Lightwave Technology , 15(4), 717–730.

    Article  Google Scholar 

  14. Singh, A. (2002). Modulation formats for high-speed, long-haul fiber optic communication systems. Inphi Corporation. http://www.inphi.com/products/whitepapers/RZNRZ_final.pdf.  Accessed 10 May 2015.

  15. Huynh, T. L., Binh, L. N., Tran, D. D., & Lam, Q. (2005).  Long-haul ASK and DPSK optical fibre transmission systems: Simulink modeling and experimental demonstration test-beds. In IEEE TENCON. IEEE Region 10, IEEE, pp. 1–6.

  16. Minoli, D. (2003). Telecommunications technology handbook.  Norwood, Massachusetts: Artech House

    Google Scholar 

  17. Le Nguyen Binh. (2011). Optical fiber communications systems: Theory and practice with MATLAB® and Simulink® models. Boca Raton, FL: CRC Press.

    Google Scholar 

  18. Gloge, D. (1976). Optical fiber technology. IEEE Press.

  19. Carter, B., & Brown, T. R. (2001). Handbook of operational amplifier applications. Dallas, TX: Texas Instruments.

    Google Scholar 

  20. Graeme, J. (1995). Photodiode amplifiers: Op amp solutions. New York: McGraw-Hill, Inc.

    Google Scholar 

  21. Paasch-Colberg, T., Schiffrin, A., Karpowicz, N., Kruchinin, S., Sağlam, Ö., Keiber, S., et al. (2014). Solid-state light-phase detector. Nature Photonics , 8(3), 214–218.

    Article  Google Scholar 

  22. Jeruchim, M. (1984). Techniques for estimating the bit error rate in the simulation of digital communication systems. IEEE Journal on Selected Areas in Communications , 2(1), 153–170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagwan Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B., Abdullah, M.F. ., Chowdhry, B.S. et al. A Novel Signal Regeneration Technique for High Speed DPSK Communication Systems. Wireless Pers Commun 96, 3249–3273 (2017). https://doi.org/10.1007/s11277-017-4351-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4351-8

Keywords

Navigation