Skip to main content
Log in

A Novel Hybrid Optic Disc Detection and Fovea Localization Method Integrating Region-Based Convnet and Mathematical Approach

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Optic disc (OD), fovea, and blood vessels are major anatomical structures in a fundus image. In retinal image processing, automated detection of structural parts is crucial in analyzing image patterns and abnormalities caused by eye diseases such as glaucoma, macular edema, and diabetic retinopathy. This paper presents a robust and efficient OD detection and fovea localization method integrating region-based deep convolutional neural networks and a mathematical approach. The proposed model consists of two stages: In the first stage, we generated multiple OD region proposals and then detected the OD based on the boundary box with the highest score using Faster R-CNN. In the second stage, we calculated the localization of the fovea employing a mathematical model considering the coordinates of the predicted OD region. We used four publically available fundus image databases, ORIGA-light, DRIVE, DIARET-DB1, and MESSIDOR, to evaluate our model. The proposed hybrid model was trained with 70% images of the ORIGA-light database and tested on 30% images of ORIGA-light and all images of the other databases. To show the robustness of the model, all databases were divided into two parts, as normal and diseased samples. The presented model achieved a reliable and flexible performance in detecting the OD, with overall IoU results of 88.5, 75.5, 84.4, and 86.8% on ORIGA-light, DRIVE, DIARET-DB1, and MESSIDOR databases, respectively. Moreover, the average fovea localization results in terms of IoU were 58.1, 66.1, 71, and 73.2% on ORIGA-light, DRIVE, DIARET-DB1, and MESSIDOR databases, respectively. The experimental tests demonstrate that the proposed approach achieves promising results for both normal and diseased images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

Datasets can be accessed using [31,32,33] and [34].

Code availability

Not applicable.

References

  1. Wilkinson, C., Ferris, F. L., III., Klein, R. E., Lee, P. P., Agardh, C. D., Davis, M., Dills, D., Kampik, A., Pararajasegaram, R., & Verdaguer, J. T. (2003). Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales.Ophthalmology,110(9), 1677–1682. https://doi.org/10.1016/S0161-6420(03)00475-5

    Article  Google Scholar 

  2. Huang, C., Zong, Y., Ding, Y., Luo, X., Clawson, K., & Peng, Y. (2021). A new deep learning approach for the retinal hard exudates detection based on superpixel multi-feature extraction and patch-based cnn.Neurocomputing,452, 521–533. https://doi.org/10.1016/j.neucom.2020.07.145

    Article  Google Scholar 

  3. Zago, G. T., Andreão, R. V., Dorizzi, B., & Salles, E. O. T. (2020). Diabetic retinopathy detection using red lesion localization and convolutional neural networks.Computers in Biology and Medicine,116,103537. https://doi.org/10.1016/j.compbiomed.2019.103537.

    Article  Google Scholar 

  4. Mateen, M., Wen, J., Song, S., & Huang, Z. (2019). Fundus image classification using VGG-19 architecture with PCA and SVD.Symmetry,11(1), 1. https://doi.org/10.3390/sym11010001.

    Article  Google Scholar 

  5. Huang, Y., Zhong, Z., Yuan, J., & Tang, X. (2020). Efficient and robust optic disc detection and fovea localization using region proposal network and cascaded network.Biomedical Signal Processing and Control,60,101939. https://doi.org/10.1016/j.bspc.2020.101939.

    Article  Google Scholar 

  6. Niemeijer, M., Abràmoff, M. D., & Van Ginneken, B. (2006). Segmentation of the optic disc, macula and vascular arch in fundus photographs.IEEE Transactions on Medical Imaging,26(1), 116–127. https://doi.org/10.1109/TMI.2006.885336.

    Article  Google Scholar 

  7. Basit, A., & Fraz, M. M. (2015). Optic disc detection and boundary extraction in retinal images.Applied Optics,54(11), 3440–3447. https://doi.org/10.1364/AO.54.003440.

    Article  Google Scholar 

  8. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks.Advances in Neural Information Processing Systems,28,91–99. https://doi.org/10.48550/arXiv.1506.01497.

    Article  Google Scholar 

  9. Sinthanayothin, C., Boyce, J. F., Cook, H. L., & Williamson, T. H. (1999). Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images.British Journal of Ophthalmology,83(8), 902–910. https://doi.org/10.1136/bjo.83.8.902.

    Article  Google Scholar 

  10. Walter, T., & Klein, J.-C.: Segmentation of color fundus images of the human retina: Detection of the optic disc and the vascular tree using morphological techniques. In: International Symposium on Medical Data Analysis, pp. 282–287, Springer (2001). https://doi.org/10.1007/3-540-45497-7_43.

  11. Hoover, A., & Goldbaum, M. (2003). Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels.IEEE Transactions on Medical Imaging,22(8), 951–958. https://doi.org/10.1109/TMI.2003.815900.

    Article  Google Scholar 

  12. Foracchia, M., Grisan, E., & Ruggeri, A. (2004). Detection of optic disc in retinal images by means of a geometrical model of vessel structure.IEEE Transactions on Medical Imaging,23(10), 1189–1195. https://doi.org/10.1109/TMI.2004.829331.

    Article  Google Scholar 

  13. Youssif, A.A.-H.A.-R., Ghalwash, A. Z., & Ghoneim, A.A.S.A.-R. (2007). Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter.IEEE Transactions on Medical Imaging,27(1), 11–18. https://doi.org/10.1109/TMI.2007.900326.

    Article  Google Scholar 

  14. Pallawala, P., Hsu, W., Lee, M.L., & Eong, K.-G.A.: Automated optic disc localization and contour detection using ellipse fitting and wavelet transform. In: European Conference on Computer Vision, pp. 139–151, Springer (2004). https://doi.org/10.1007/978-3-540-24671-8_11.

  15. Stapor, K., Świtonski, A., Chrástek, R., & Michelson, G.: Segmentation of fundus eye images using methods of mathematical morphology for glaucoma diagnosis. In: International Conference on Computational Science, pp. 41–48, Springer (2004). https://doi.org/10.1007/978-3-540-25944-2_6.

  16. Lu, S. (2011). Accurate and efficient optic disc detection and segmentation by a circular transformation.IEEE Transactions on Medical Imaging,30(12), 2126–2133. https://doi.org/10.1109/TMI.2011.2164261.

    Article  Google Scholar 

  17. Pereira, C., Gonçalves, L., & Ferreira, M. (2013). Optic disc detection in color fundus images using ant colony optimization.Medical & Biological Engineering & Computing,51(3), 295–303. https://doi.org/10.1007/s11517-012-0994-5.

    Article  Google Scholar 

  18. Al-Roomi, S. A., & Al-Shayeji, M. (2016). Effective optic disc detection method based on swarm intelligence techniques and novel pre-processing steps.Applied Soft Computing,49, 146–163. https://doi.org/10.1016/j.asoc.2016.08.015

    Article  Google Scholar 

  19. Rahebi, J., & Hardalaç, F. (2016). A new approach to optic disc detection in human retinal images using the firefly algorithm.Medical & Biological Engineering & Computing,54(2–3), 453–461. https://doi.org/10.1007/s11517-015-1330-7.

    Article  Google Scholar 

  20. Abdullah, A. S., Özok, Y. E., & Rahebi, J. (2018). A novel method for retinal optic disc detection using bat meta-heuristic algorithm.Medical & Biological Engineering & Computing,56(11), 2015–2024. https://doi.org/10.1007/s11517-018-1840-1.

    Article  Google Scholar 

  21. Kaya, Y. (2020). A novel method for optic disc detection in retinal images using the cuckoo search algorithm and structural similarity index.Multimedia Tools and Applications,79(31), 23387–23400. https://doi.org/10.1007/s11042-020-09080-5

    Article  Google Scholar 

  22. Xu, P., Wan, C., Cheng, J., Niu, D., & Liu, J. (2017). Optic disc detection via deep learning in fundus images. Infant and Ophthalmic Medical Image Analysis.Fetal(pp. 134–141). Cham: Springer. https://doi.org/10.1007/978-3-319-67561-9_15.

    Chapter  Google Scholar 

  23. Yu, S., Xiao, D., Frost, S., & Kanagasingam, Y. (2019). Robust optic disc and cup segmentation with deep learning for glaucoma detection.Computerized Medical Imaging and Graphics,74, 61–71. https://doi.org/10.1016/j.compmedimag.2019.02.005

    Article  Google Scholar 

  24. Sevastopolsky, A. (2017). Optic disc and cup segmentation methods for glaucoma detection with modification of u-net convolutional neural network.Pattern Recognition and Image Analysis,27(3), 618–624. https://doi.org/10.1134/S1054661817030269

    Article  Google Scholar 

  25. Kumar, E. S., & Bindu, C. S. (2021). Two-stage framework for optic disc segmentation and estimation of cup-to-disc ratio using deep learning technique.Journal of Ambient Intelligence and Humanized Computing,11,1–13. https://doi.org/10.1007/s12652-021-02977-5.

    Article  Google Scholar 

  26. Bengani, S., & Vadivel, S. (2021). Automatic segmentation of optic disc in retinal fundus images using semi-supervised deep learning.Multimedia Tools and Applications,80(3), 3443–3468. https://doi.org/10.1007/s11042-020-09778-6

    Article  Google Scholar 

  27. Bajwa, M. N., Malik, M. I., Siddiqui, S. A., Dengel, A., Shafait, F., Neumeier, W., & Ahmed, S. (2019). Two-stage framework for optic disc localization and glaucoma classification in retinal fundus images using deep learning.BMC Medical Informatics and Decision Making,19(1), 1–16. https://doi.org/10.1186/s12911-019-0842-8.

    Article  Google Scholar 

  28. Guo, X., Wang, H., Lu, X., Hu, X., Che, S., & Lu, Y. (2020). Robust fovea localization based on symmetry measure.IEEE Journal of Biomedical and Health Informatics,24(8), 2315–2326. https://doi.org/10.1109/JBHI.2020.2971593.

    Article  Google Scholar 

  29. GeethaRamani, R., & Balasubramanian, L. (2018). Macula segmentation and fovea localization employing image processing and heuristic based clustering for automated retinal screening.Computer Methods and Programs in Biomedicine,160,153–163. https://doi.org/10.1016/j.cmpb.2018.03.020.

    Article  Google Scholar 

  30. Al-Bander, B., Al-Nuaimy, W., Williams, B. M., & Zheng, Y. (2018). Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc.Biomedical Signal Processing and Control,40, 91–101. https://doi.org/10.1016/j.bspc.2017.09.008

    Article  Google Scholar 

  31. Zhang, Z., Yin, F.S., Liu, J., Wong, W.K., Tan, N.M., Lee, B.H., Cheng, J., & Wong, T.Y.: Origa-light: An online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 3065–3068, IEEE (2010). https://doi.org/10.1109/IEMBS.2010.5626137.

  32. Staal, J. J., Abramoff, M. D., Niemeijer, M., Viergever, M. A., & van Ginneken, B. (2004). Ridge based vessel segmentation in color images of the retina.IEEE Transactions on Medical Imaging,23(4), 501–509. https://doi.org/10.1109/TMI.2004.825627

    Article  Google Scholar 

  33. Kälviäinen, R., & Uusitalo, H.: Diaretdb1 diabetic retinopathy database and evaluation protocol. In: Medical Image Understanding and Analysis, Citeseer, vol. 2007, p. 61 (2007). https://doi.org/10.5244/C.21.15.

  34. Decencière, E., Zhang, X., Cazuguel, G., Lay, B., Cochener, B., Trone, C., et al. (2014). Feedback on a publicly distributed image database: The messidor database.Image Analysis & Stereology,33(3), 231–234. https://doi.org/10.5566/ias.1155.

    Article  MATH  Google Scholar 

  35. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015). https://doi.org/10.48550/arXiv.1504.08083

  36. Zeiler, M.D., & Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833, Springer (2014). https://doi.org/10.1007/978-3-319-10590-1_53.

  37. Simonyan, K., & Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprintarXiv:1409.1556(2014). https://doi.org/10.48550/arXiv.1409.1556

  38. Nayak, J., Bhat, P. S., & Acharya, U. (2009). Automatic identification of diabetic maculopathy stages using fundus images.Journal of Medical Engineering & Technology,33(2), 119–129. https://doi.org/10.1080/03091900701349602.

    Article  Google Scholar 

  39. Al-Antari, M. A., Han, S.-M., & Kim, T.-S. (2020). Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital x-ray mammograms.Computer Methods and Programs in Biomedicine,196,105584. https://doi.org/10.1016/j.cmpb.2020.105584.

    Article  Google Scholar 

  40. Al-Antari, M. A., Al-Masni, M. A., & Kim, T.-S. (2020). Deep learning computer-aided diagnosis for breast lesion in digital mammogram.Deep Learning in Medical Image Analysis,1213,59–72. https://doi.org/10.1007/978-3-030-33128-3_4.

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasin Kaya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinç, B., Kaya, Y. A Novel Hybrid Optic Disc Detection and Fovea Localization Method Integrating Region-Based Convnet and Mathematical Approach. Wireless Pers Commun 129, 2727–2748 (2023). https://doi.org/10.1007/s11277-023-10255-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10255-0

Keywords

Navigation