Skip to main content
Log in

Coalescence process to treat produced water: an updated overview and environmental outlook

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Produced water is the largest liquid effluent in volume generated in petroleum production. It originates from natural wells or from water that was previously injected during the exploration process. The composition of produced water is complex, containing high salt concentration, emulsified oil, suspended solids, chemical additives used in the various stages of oil production, heavy metals, and other contaminants. Several technologies can be used in the treatment of produced water in order to meet the conditions specified in local legislations and the most used are phase separators, decanters, cyclones, and filters. The separation process mechanism of oil emulsions by coalescence in fibrous media has excellent results, though it is not fully understood and is frequently based on empirical, as well as on experimental, observations. This article presents a general overview on produced water, including origin, production, composition, environmental impact, treatment techniques, disposal, and legislation, as well as an updated discussion utilizing recent literature regarding the unit operation of coalescence: general aspects, kinetics, mechanisms, and factors that influence the coalescence process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • ACS Industries (2006) Liquid-liquid coalescer design manual. Separations Technology Division 18:20

    Google Scholar 

  • Adamson AW (1990) Physical chemical of surfaces – 5a EDITION. John Wiley & Sons, Hoboken

    Google Scholar 

  • Agarwal S, Von Arnim V, Stegmaier T, Planck H, Agarwal A (2013) Effect of fibrous coalescer geometry and operating conditions on emulsion separation. Ind Eng Chem Res 52(36):13164–13170

    CAS  Google Scholar 

  • Agency, International Energy (2018) World energy balances: an overview.

  • Almeida FBPS, Meili L, Esquerre KPSOR, Ribeiro LMO, Silva C, E F (2019) Oil producedwater treatment using sugarcane solid residue as biosorbent. Rev Mex Ing Quím 18(1):27–38

    Google Scholar 

  • Amini S, Mowla D, Golkar M, Esmaeilzadeh F (2012) Mathematical modelling of a hydrocyclone for the down-hole oil-water separation (DOWS). Chem Eng Res Des 90(12):2186–2195

    CAS  Google Scholar 

  • Arthur JD, Dillon LW, Drazan DJ (2011) Management of produced water from oil and gas wells. Management of Produced Water:1–32

  • Austin DG (1979) Coalescence of secundary dispersions. University of Aston, Birmingham

    Google Scholar 

  • Bufo MJ (2006) Coalescência de Imiscíveis em Filme de Água Residuária, Universidade Estadual de Campinas. BusinessDictionary.http://www.businessdictionary.com/definition/environmental-impact.html.Accessed 14 December 2018

  • Cerqueira AA, Regina M, Russo AC (2009) Gestão das Águas de Produção: Histórico, Políticas Ambientais e Alternativa Tecnológica. Revista Uniara 12(December):21–36

    Google Scholar 

  • Clayfield, Eric J., A. Graham Dixon, Andrew W. Foulds, and R. J Lionel Miller (1985). The coalescence of secondary dispersions: II. The role of electrokinetic properties in determining coalescence performance. Journal of Colloid And Interface Science 104(2):500–511.

    CAS  Google Scholar 

  • Conama 393 (2007). Resolução CONAMA 393/2007. Diário Oficial Da União, Brazil

  • CONAMA 430 (2011). Resolução CONAMA 430/2011. Diário Oficial Da União, Brazil.

  • Crittenden JC, Suri RPS, Perram DL, Hand DW (1997) Decontamination of water using adsorption and photocatalysis. Pergamon 31(3):411–418

    CAS  Google Scholar 

  • da Motta ARP (2014) Tratamento de Água Produzida de Petróleo para Remoção de Óleo através da Integração dos Processos com Coalescedor em Leito e Microfiltração. Universidade Federal da Bahia, Salvador

    Google Scholar 

  • Dacal (2017) Remoção do Óleo da Água Produzida de Petróleo Utilizando Leitos Coalescedores de Fibra de Coco e Fibra Sintética. Universidade Federal de Alagoas

  • Daigle TP (2012) Ultra deep water discharge of produced water and/or solids at the seabed. Research Partnership to Secure Energy for America (RPSEA)

  • Danov KD, Stoyanov SD, Vitanov NK, Ivanov IB (2012) Role of surfactants on the approaching velocity of two small emulsion drops. J Colloid Interface Sci 368:342–355

    CAS  Google Scholar 

  • Dezhi S, Shik Chung J, Xiaodong D, Ding Z (1999) Demulsification of water-in-oil emulsion by wetting coalescence materials in stirred- and packed-columns. Colloids Surf A Physicochem Eng Asp 150(1–3):69–75

    Google Scholar 

  • Do Carmo S, Alves Neto TL, Oliveira GN, de Castro VD, Figueiredo KC d S (2017) Tratamento de Água Produzida de Petróleo Utilizando Microfiltração. E-Xacta 10(2):95

    Google Scholar 

  • Dores R, Hussain A, Katebah M, Adham S, Conocophillips Global, Water Sustainability (2012) Using advanced water treatment technologies to treat produced water from the petroleum industry. SPE International no. 157108

  • Duraisamy RT, Beni AH, Henni A (2013) Chapter 9: state of the art treatment of produced water. In: Water Treatment. Elshorbagy, W and Chowdhury, R. https://doi.org/10.5772/53478

    Google Scholar 

  • Fakhru’l-Razi A, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ (2009) Review of technologies for oil and gas produced water treatment. J Hazard Mater 170(2–3):530–551

    Google Scholar 

  • Fonte SSD, Simonelli G, Santos LCL (2018) A review of the main techniques to avoid the formation of hydrates. Braz J Pet Gas 12:61–73

    Google Scholar 

  • Gabardo IT (2007) Caracterização Química e Toxicológica da Água Produzida Descartada em Plataformas de Óleo e Gás na Costa Brasileira e seu Comportamento Dispersivo no Mar. Universidade Federal do Rio Grande do Norte, Tese de doutorado.

  • Govedarica DD, Sokolovic RMS, Sokolović DS, Sokolović SM (2013) A novel approach for the estimation of the efficiency of steady-state fiber bed coalescence. Sep Purif Technol 104:268–275

    CAS  Google Scholar 

  • Govedarica DD, Radmila M, Sokolovic S, Kiralj AI, Govedarica OM, Sokolovic DS, Hadnadjev-Kostic MS (2015) Separation of mineral oil droplets using polypropylene fibre bed coalescence. Hemijska Industrija 69(4):339–345

    Google Scholar 

  • Guerra K, Dahm K, Dundorf S (2011) Oil and gas produced water management and beneficial use in the Western United States. U.S. Department of the Interior Bureau of Reclamation, Managing Water in the West, no. 157, p 129

    Google Scholar 

  • Haarhoff J, Edzwald JK (2013) Adapting dissolved air Fl Otation for the Clari Fi Cation of Seawater. Desalination 311:90–94

    CAS  Google Scholar 

  • Hazlett RN (1969) Fibrous bed coalescence of water: role of a sulfonate surfactant in the coalescence process. Ind Eng Chem Fundam 8(4):633–640

    CAS  Google Scholar 

  • Igunnu ET, Chen GZ (2014) Produced water treatment technologies. Int J Low-Carbon Technol 9(3):157–177

    CAS  Google Scholar 

  • Jeffreys, G.V. and Hawksley, J.L. (1965). Coalescence of liquid droplets in two-component two-phase systems. – A.I.Ch.E Journal vol 11, n° 3.

  • Ji F, Li C, Dong X, Li Y, Wang D (2009) Separation of oil from oily wastewater by sorption and coalescence technique using ethanol grafted polyacrylonitrile. J Hazard Mater 164(2–3):1346–1351

    CAS  Google Scholar 

  • Jiménez S, Micó MM, Arnaldos M, Medina F, Contreras S (2018) State of the art of produced water treatment. Chemosphere 192:186–208

    Google Scholar 

  • Kolmetz K (2012) KLM technology group practical engineering guidelines for processing plant solutions coalescer (Engineering Design Guideline).

  • Kunert R, Luis Figueira da Silva A, Erasmo de Souza Filho J, Ramalho JBV d S, Melo M d V, Leite M d M, do Brasil NÍ (2007) Processamento Primário de Petróleo. Universidade Petrobras - Escola de Ciências e Tecnologia E&P, p 53

  • Langdon WM, Naik PP, Wasan DT (1972) Separation of oil dispersions from water by fibrous bed coalescence. Environ Sci Technol 6(10):905–910

    CAS  Google Scholar 

  • Langmuir I. (1942) OSRD report 865, Office of the Scientific Research and Development, Government Report

  • Leva M (1953) Tower packings and packed tower design – 2a edition. Stoneware Company, USA

    Google Scholar 

  • Li J, Gu Y (2005) Coalescence of oil-in-water emulsions in fibrous and granular beds. Sep Purif Technol 42(1):1–13

    Google Scholar 

  • Lu H, Yang Q, Liu S, Xie LS, Wang HL (2016a) Effect of fibrous coalescer redispersion on W/O emulsion separation. In: Separation and Purification Technology, vol 159. Elsevier B.V, Amsterdam, pp 50–56

    Google Scholar 

  • Lu H, Yang Q, Xu X, Wang HL (2016b) Effect of the mixed oleophilic fibrous coalescer geometry and the operating conditions on oily wastewater separation. Chem Eng Technol 39(2):255–262

    CAS  Google Scholar 

  • Lucchesi CF (1998) Petróleo. Estudos Avançados 12(33):17–40

    Google Scholar 

  • Ma S, Kang Y, Cui S (2014) Oil and water separation using a glass microfiber coalescing bed. J Dispers Sci Technol 35(1):103–110

    CAS  Google Scholar 

  • Madia JR, Fruh SM, Miller CA, Beerbower A (1976) Granular packed bed coalescer: influence of packing wettability on coalescence. Environ Sci Technol 10(10):1044–1046

    CAS  Google Scholar 

  • Motta A, Borges C, Esquerre K, Kiperstok A (2014) Oil produced water treatment for oil removal by an integration of coalescer bed and microfiltration membrane processes. Journal of Membrane Science 469. Elsevier, Amsterdam, pp 371–378

    Google Scholar 

  • Mouchet P, Berne F. e Puill A (1984). La coalescence sur sable: Principe du procédé et son application à la récupération des solvants en hydrométallurgie – Industrie Minérale – Les Techiques

  • Neff JM, Lee K, Deblois EM (2011) Produced water: overview of composition, fates, and effect. In: Lee K, Neff J (eds) Produced Water. Springer, New York, NY

    Google Scholar 

  • Organization of the Petroleum Exporting Countries (2018). World Oil Outlook 2040.

  • Ospar Commission (2007). Background document to support the assessment of whether the OSPAR network of marine protected areas is ecologically coherent ospar commission.

    Google Scholar 

  • Patel NM (1975) Wastewater treatment using combined techniques of sand filtration an coalescence in fibrous media. University of Texas

  • Reynolds RR, Kiker RD (2003) Produced water and associated issues — a manual for the independent operator. In: Oklahoma Geological Survey Open File Report, vol 21

    Google Scholar 

  • Sareen, S. S.; Rose, P. M.; Gudsen, R. C. e Kintner, R. C. (1966). Coalescence in fibrous beds. – A.I.Ch. E Journal – vol 12, n° 6, 1966

    CAS  Google Scholar 

  • Sharifi H, Shaw JM (1996). Secondary Drop Production in Packed-Bed Coalescers. Chem Eng Sci 51(21):4817–26

    CAS  Google Scholar 

  • Shokrollahzadeh S, Golmohammad F, Naseri N, Shokouhi H (2012) Chemical oxidation for removal of hydrocarbons from gas- field produced water. Procedia Eng 42(August):942–947

    Google Scholar 

  • Sokolovic S, Radmila M, Sokolović SM, Cross BD, Signoković D (1997) Effect of working conditions on bed coalescence of an oil-in-water emulsion using a polyurethane foam bed. Ind Eng Chem Res 36(11):4949–4953

    Google Scholar 

  • Sokolovic S, Radmila M, Vulić TJ, Sokolović SM, Nedučin RPM (2003) Effect of fibrous bed permeability on steady-state coalescence. Ind Eng Chem Res 42(13):3098–3102

    Google Scholar 

  • Sokolovic S, Radmila M, Vulić TJ, Sokolović SM (2006) Effect of fluid flow orientation on the coalescence of oil droplets in steady-state bed coalescers. Ind Eng Chem Res 45(11):3891–3895

    CAS  Google Scholar 

  • Sokolović S, Radmila SS, Šević S (2009) Oily water treatment using a new steady-state fiber-bed coalescer. J Hazard Mater 162(1):410–415

    Google Scholar 

  • Sokolovic RM, Govedarica DD, Sokolovic DS (2010) Separation of oil-in-water emulsion using two coalescers of different geometry. J Hazard Mater 175(1–3):1001–1006

    Google Scholar 

  • Sokolovic S, Radmila M, Govedarica DD (2014) Selection of filter media for steady-state bed coalescers. Ind Eng Chem Res 53(6):2484–2490

    Google Scholar 

  • Sokolović S, Radmila M, Sokolović DS, Govedarica DD (2016) Liquid–liquid separation using steady-state bed coalescer. Hemijska Industrija 70(4):367–381

    Google Scholar 

  • Spielman LA (1968) Separation of finely dispersed liquid–liquid suspensions by flow through fibrous media. University of California, Berkeley

    Google Scholar 

  • Spielman LA, Fitzpatrick JA (1974) (1974). Role of the electrical double layer in particle deposition by convective diffusion. J Colloid Interface Sci [Sl] 46(1):22–31

    Google Scholar 

  • Tadros TF (2013) Emulsion formation,stability, and rheology. In: Emulsion Formation and Stability, pp 1–76

    Google Scholar 

  • Technology, Pgt - Petroleum Geoscience (2012). Geologia do Petróleo 24. https://albertowj.files.wordpress.com/2010/03/geologia_do_petroleo.pdf.

  • Tellez GT, Nirmalakhandan N, Gardea-torresdey JL (2002) Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water. Adv Environ Res 6:455–470

    CAS  Google Scholar 

  • Thomas, E. J. (2004). Fundamentos de Engenharia de Petróleo. 2a. Interciência.

    Google Scholar 

  • Veil J (2012) U . S . Produced water volumes and management practices in 2012. Ground Water Protection Council, no. April, p 2015

  • Veil JA, Puder MG, Elcock D, Redweik RJ Jr (2004) A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. U.S. Department of Energy, Energy Technology Laboratory no. January: 87

  • Xia Y, Boufadel MC (2010) Lessons from the Exxon Valdez oil spill disaster in Alaska. In: Disaster Advances n°3 (December)

    Google Scholar 

Download references

Acknowledgments

F.B.P.S. Almeida acknowledges the financial support from the Federal Institute of Education, Science and Technology of Alagoas and Separation Systems and Process Optimization Laboratory for the determinations and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávia Bartira Pedro da Silva Almeida.

Additional information

Responsible editor: Bingcai Pan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Almeida, F.B.P., Esquerre, K.P.S.O.R., Soletti, J.I. et al. Coalescence process to treat produced water: an updated overview and environmental outlook. Environ Sci Pollut Res 26, 28668–28688 (2019). https://doi.org/10.1007/s11356-019-06016-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06016-x

Keywords

Navigation