Skip to main content
Log in

Ti/Pd/Ag Contacts to n-Type GaAs for High Current Density Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The metallization stack Ti/Pd/Ag on n-type Si has been readily used in solar cells due to its low metal/semiconductor specific contact resistance, very high sheet conductance, bondability, long-term durability, and cost-effectiveness. In this study, the use of Ti/Pd/Ag metallization on n-type GaAs is examined, targeting electronic devices that need to handle high current densities and with grid-like contacts with limited surface coverage (i.e., solar cells, lasers, or light emitting diodes). Ti/Pd/Ag (50 nm/50 nm/1000 nm) metal layers were deposited on n-type GaAs by electron beam evaporation and the contact quality was assessed for different doping levels (from 1.3 × 1018 cm−3 to 1.6 × 1019 cm−3) and annealing temperatures (from 300°C to 750°C). The metal/semiconductor specific contact resistance, metal resistivity, and the morphology of the contacts were studied. The results show that samples doped in the range of 1018 cm−3 had Schottky-like IV characteristics and only samples doped 1.6 × 1019 cm−3 exhibited ohmic behavior even before annealing. For the ohmic contacts, increasing annealing temperature causes a decrease in the specific contact resistance (ρ c,Ti/Pd/Ag ~ 5 × 10−4 Ω cm2). In regard to the metal resistivity, Ti/Pd/Ag metallization presents a very good metal conductivity for samples treated below 500°C (ρ M,Ti/Pd/Ag ~ 2.3 × 10−6 Ω cm); however, for samples treated at 750°C, metal resistivity is strongly degraded due to morphological degradation and contamination in the silver overlayer. As compared to the classic AuGe/Ni/Au metal system, the Ti/Pd/Ag system shows higher metal/semiconductor specific contact resistance and one order of magnitude lower metal resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.J. Brillson, Contacts to Semiconductors: Fundamentals and Technology (Park Ridge, New Jersey: Noyes, 1993), pp. 1–3.

    Google Scholar 

  2. D.K. Schroder and D.L. Meier, IEEE Trans. Electron. Dev. 31, 637 (1984).

    Article  Google Scholar 

  3. V.L. Rideout, Solid State Electron. 18, 541 (1975).

    Article  Google Scholar 

  4. A. Piotrowska, A. Guivarc’h, and G. Pelous, Solid State Electron. 26, 179 (1983).

    Article  Google Scholar 

  5. A. Piotrowska, Acta Phys. Pol. A 84, 491 (1993).

    Article  Google Scholar 

  6. A.G. Baca, F. Ren, J.C. Zolper, R.D. Briggs, and S.J. Pearton, Thin Solid Films 308–309, 599 (1997).

    Article  Google Scholar 

  7. D.L. Meier and D.K. Schroder, IEEE Trans. Electron. Dev. 31, 647 (1984).

    Article  Google Scholar 

  8. A.R. Burgers, Prog. Photovolt. 7, 457 (1999).

    Article  Google Scholar 

  9. M.M. Shabana, M.B. Saleh, and M.M. Soliman, Solar Cells 26, 177 (1989).

    Article  Google Scholar 

  10. N. Braslau, J.B. Gunn, and J.L. Staples, Solid State Electron. 10, 381 (1967).

    Article  Google Scholar 

  11. T.S. Kuan, P.E. Batson, T.N. Jackson, H. Rupprecht, and E.L. Wilkie, J. Appl. Phys. 54, 6952 (1983).

    Article  Google Scholar 

  12. Y.C. Shih, M. Murakami, E.L. Wilkie, and A.C. Callegari, J. Appl. Phys. 62, 582 (1987).

    Article  Google Scholar 

  13. A.G. Baca and C.I.H. Ashby, Fabrication of GaAs Devices (London: Institution of Electrical Engineers, 2005), p. 196.

    Book  Google Scholar 

  14. Y. Wang, D. Liu, G. Feng, Z. Ye, Z. Gao, and X. Wang, J. Semicond. 36, 036002 (2015).

    Article  Google Scholar 

  15. J. Zhou, G. Xia, B. Li, and W. Liu, Appl. Phys. A 76, 939 (2003).

    Article  Google Scholar 

  16. H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, Energy. Environ. Sci. 2, 174 (2009).

    Article  Google Scholar 

  17. W.K. Chong, E.F. Chor, C.H. Heng, and S.J. Chua, Inst. Phys. Conf. Ser. 156, 171 (1998).

    Google Scholar 

  18. K.C. Sahoo, C.W. Chang, Y.Y. Wong, T.L. Hsieh, E.Y. Chang, and C.T. Lee, J. Electron. Mater. 37, 901 (2008).

    Article  Google Scholar 

  19. D.G. Ivey, S. Eicher, S. Wingar, and T. Lester, J. Mater. Sci. 8, 63 (1997).

    Google Scholar 

  20. C.-H. Hsu, H.-J. Chang, H.-W. Yu, H.-Q. Nguyen, J.-S. Ma, E.Y. Chang, and I.E.E.E. Int, Conf. Semicond. Electron. (2014). doi:10.1109/SMELEC.2014.6920866.

    Google Scholar 

  21. C. Gutsche, A. Lysov, I. Regolin, A. Brodt, L. Liborius, J. Frohleiks, W. Prost, and F.-J. Tegude, J. Appl. Phys. 110, 014305 (2011).

    Article  Google Scholar 

  22. T.V. Blank and Y.A. Gol’dberg, Semiconductors 41, 1263 (2007).

    Article  Google Scholar 

  23. H. Fischer and R. Gereth, IEEE Trans. Electron. Dev. 18, 459 (1971).

    Article  Google Scholar 

  24. X. Loozen, J.B. Larsen, F. Dross, M. Aleman, T. Bearda, B.J. O’Sullivan, I. Gordon, and J. Poortmans, Energy Procedia 21, 75 (2011).

    Article  Google Scholar 

  25. A.K. Sinha, T.E. Smith, M.H. Read, and J.M. Poate, Solid State Electron. 19, 489 (1976).

    Article  Google Scholar 

  26. B.K. Sehgal, B. Bhattacharya, S. Vinayak, and R. Gulati, Thin Solid Films 330, 146 (1998).

    Article  Google Scholar 

  27. T. Göksu, N. Yıldırım, H. Korkut, A.F. özdemir, A. Turut, and A. Kökçe, Microelectron. Eng. 87, 1781 (2010).

    Article  Google Scholar 

  28. I.-H. Tan, G.L. Snider, L.D. Chang, and E.L. Hu, J. Appl. Phys. 68, 4071 (1990).

    Article  Google Scholar 

  29. E.F. Chor, D. Zhang, H. Gong, W.K. Chong, and S.Y. Ong, J. Appl. Phys. 87, 2437 (2000).

    Article  Google Scholar 

  30. K.A. Jones, M.W. Cole, W.Y. Han, D.W. Eckart, K.P. Hilton, M.A. Crouch, and B.H. Hughes, J. Appl. Phys. 82, 1723 (1997).

    Article  Google Scholar 

  31. A. Katz, C.R. Abernathy, and S.J. Pearton, Appl. Phys. Lett. 56, 1028 (1990).

    Article  Google Scholar 

  32. G.K. Reeves and H.B. Harrison, IEEE Electr. Device Lett. 3, 111 (1982).

    Article  Google Scholar 

  33. L.J. van der Pauw, Philips Res. Rep. 13, 1 (1958).

    Google Scholar 

  34. J.-L. Lee, Y.-T. Kim, J.-W. Oh, and B.-T. Lee, Jpn. J. Appl. Phys. 40, 1188 (2001).

    Article  Google Scholar 

  35. O. Wada, S. Yanagisawa, and H. Takanashi, Appl. Phys. Lett. 29, 263 (1976).

    Article  Google Scholar 

  36. M. Kniffin and C.R. Helms, J. Vac. Sci. Technol. A 5, 1511 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Rey-Stolle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, P., Rey-Stolle, I. Ti/Pd/Ag Contacts to n-Type GaAs for High Current Density Devices. J. Electron. Mater. 45, 2769–2775 (2016). https://doi.org/10.1007/s11664-016-4432-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4432-6

Keywords

Navigation