Skip to main content
Log in

Intraspecific genetic variability, differentiation and evolutionary relationships revealed through microsatellite loci in seven economically important Calamus species

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Population density, species richness and critical population parameters are crucial in determining the levels of gene diversity in dioecious species of the genus Calamus. The extent of intraspecific and intrageneric genetic variability in Calamus from the southern Western Ghats of India was studied using 26 microsatellite markers by sampling 227 individuals belonging to seven economically important species. The heterozygosity of microsatellite loci ranged from zero to 0.78. Average gene diversity within species was 0.13; in all species it was 0.18 and amongst species was 0.06. The Shannon Information Index was the lowest for Calamus metzianus (0.11), whereas it ranged from 0.16 to 0.26 for other species. The expected heterozygosity varied from 0.08 to 0.18. Calamus hookerianus and Calamu travancoricus showed the highest genetic differentiation (44%) revealed through Fst values, whereas the lowest (22%) was observed between Calamus gamblei and Calamu thwaitesii. Population structuring and phylogenetic analysis differentiated the seven species. Due to overexploitation and loss of rare alleles, small populations could lead to fertilization between closely related individuals, resulting in inbreeding and increasing the risk of extinction. This could be important for species such as C. metzianus where allelic polymorphism was 23%, whereas for all other species it was 38% to 46%. Genetic diversity “micro-hotspots” were identified from the protected area network of the southern and central Western Ghats with highest observed heterozygosity. Four micro-hotspots from the Agasthyamalai Biosphere Reserve and the Pushpagiri Wildlife Sanctuary may be possible for long-term conservation programs. The findings of this study lay a strong foundation for strengthening protected area networks, especially areas with intermediate levels of disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ambida RCS, Gabor CRJ, Panes VA (2012) Preliminary molecular analysis of Philippine rattan germplasm collection. Ateneo De Manila University, Manila (report)

    Google Scholar 

  • Anjali N, Dharan SS, Nadiya F, Sabu KK (2015) Development of EST-SSR markers to assess genetic diversity in Elettaria cardamomum Maton. Int J Appl Sci Biotechnol 3:188–192. https://doi.org/10.3126/ijasbt.v3i2.12380

    Article  CAS  Google Scholar 

  • Anto PV, Renuka C, Sreekumar VB (2001) Calamus shendurunii, a new species of Arecaceae from Kerala, India. Rheedea 11:37–39

    Google Scholar 

  • Arunachalam V (2011) Genomics of cultivated palms I, vol 5. Elsevier, Amsterdam, pp 61–65

    Google Scholar 

  • Bandopadhyay R, Sharma S, Rustgi S, Singh R, Kumar A, Balyan HS, Gupta PK (2004) DNA polymorphism among 18 species of Triticum-Aegilops complex using wheat EST–SSRs. Plant Sci 166:349–356. https://doi.org/10.1016/j.plantsci.2003.09.022

    Article  CAS  Google Scholar 

  • Bartish IV, Jeppsson NJ, Nybom H (1999) Population genetic structure in the dioecious pioneer plant species Hippophae rhamnoides investigated by random amplified polymorphic DNA (RAPD) markers. Mol Ecol 8:791–802. https://doi.org/10.1046/j.1365-294X.1999.00631.x

    Article  CAS  Google Scholar 

  • Benbouza H, Jacquemin JM, Baudoin JP, Mergeai G (2006) Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnol Agron Soc Environ 10:77–81

    CAS  Google Scholar 

  • Bon MC (1996) Application isozymes of a rattan species and their genetic interpretation. Electrophoresis 17:1248–1252. https://doi.org/10.1002/elps.1150170713

    Article  PubMed  CAS  Google Scholar 

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457. https://doi.org/10.1038/368455a0

    Article  PubMed  CAS  Google Scholar 

  • Bryan GJ, McNicoll J, Ramsay G, Meyer RC, De Jong WS (1999) Polymorphic simple sequence repeat markers in chloroplast genomes of Solanaceous plants. TAG Theor Appl Genet 99:859–867. https://doi.org/10.1007/s001220051306

    Article  CAS  Google Scholar 

  • Changtragoon S, Szmidt AE, Wang XR (1996) Genetic diversity of rattan in Thailand by means of RAPD analysis: preliminary results. In: IUFRO’96 conferences on diversity and adaptation in forest ecosystems in a changing World, University of British Columbia, Vancouver, Canada, 5–9 August 1996

  • Cheng YJ, Meng HJ, Guo WW, Deng XX (2006) Universal chloroplast primer pairs for simple sequence repeat analysis in diverse genera of fruit crops. J Hortic Sci Biotechnol 81:132–138. https://doi.org/10.1080/14620316.2006.11512039

    Article  Google Scholar 

  • Daniels RJR (1992) Geographical distribution patterns of amphibians in the Western Ghats of India. Geogr Distrib Patterns Amphib West Ghats India 9:521–529

    Google Scholar 

  • Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Ferguson ME, Newbury HJ, Maxted N, Brian V, Lloyd F, Robertson LD (1998) Population genetic structure in Lens taxa revealed by isozyme and RAPD analysis. Genet Resour Crop Evol 45:549–559. https://doi.org/10.1023/A:1008640201896

    Article  Google Scholar 

  • Foster MW, Sharp RR (2002) Race, ethnicity, and genomics: social classifications as proxies of biological heterogeneity. Genome Res 12:844–850. https://doi.org/10.1101/gr.99202

    Article  PubMed  CAS  Google Scholar 

  • Goudet J (2014) FSTAT ver. 2.9.3.2. 2002. UNIL, Institute of Ecology; Lausanne, Switzerland. https://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 1 Mar 2018

  • Hartl DL, Clark AG (1989) Principles of population genetics II. Sinauer Associates, Sunderland

    Google Scholar 

  • Kraft NJB, Baldwin BG, Ackerly DD (2010) Range size, taxon age and hotspots of neoendemism in the Californian flora. Divers Distrib 16:403–413

    Article  Google Scholar 

  • Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:381–398. https://doi.org/10.1007/978-1-4684-9063-3_14

    Article  Google Scholar 

  • Lopez-Lopez P, Maiorano L, Falcucci A, Barba E, Boitani L (2011) Hotspots of species richness, threat and endemism for terrestrial vertebrates in SW Europe. Acta Oecol 37:399–412

    Article  Google Scholar 

  • Mountain JL, Cavalli-Sforza LL (1997) Multilocus genotypes, a tree of individuals, and human evolutionary history. Am J Hum Genet 61:705–718. https://doi.org/10.1086/515510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murray-Smith C, Neil AB, Oliveira-Filho AT, Bachman S, Moat J, Lughadha EMN, Lucas E (2006) Plant diversity hotspots in the Atlantic Coastal Forests of Brazil. Conserv Biol 23:151–163

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nadarajah K, Choong CY, Leong SJ, Wickneswari R (2009) Functional prediction of Calamus manan inflorescence ESTs through motif detection. Biotechnology 8:329–342. https://doi.org/10.3923/biotech.2009.329.342

    Article  CAS  Google Scholar 

  • Nageswara Rao M, Ramesha BT, Ravikanth G, Ganeshaiah KN, Shankar RU (2007) Cross-species amplification of coconut micro-satellite markers in rattans. Silvae Genet 56:282

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci, USA 70:3321–3323. https://doi.org/10.1073/pnas.70.12.3321

    Article  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Perera L, Russell JR, Provan J, Powell W (1999) Identification and characterization of microsatellite loci in coconut (Cocos nucifera L.) and the analysis of coconut populations in Sri Lanka. Mol Ecol 8(2):344–346

    PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Priya K, Indira EP, Sreekumar VB, Renuka C (2016) Assessment of genetic diversity in Calamus vattayila Renuka (Arecaceae) using ISSR markers. J Bamboo Ratt 15:61–69

    Google Scholar 

  • Raes N, Roos MC, Slik JWF, Van Loon EE, Ter Steege H (2009) Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography (Cop) 32:180–192

    Article  Google Scholar 

  • Raj H, Yadav S, Bisht NS (2014) Current status, issues and conservation strategies for rattans of North-East India. Trop Plant Res 1:1–7

    Google Scholar 

  • Ramesha BT, Ravikanth G, Nageswara Rao M, Ganeshaiah KN, Shankar RU (2007) Genetic structure of the rattan Calamus thwaitesii in core, buffer and peripheral regions of three protected areas in central Western Ghats, India: do protected areas serve as refugia for genetic resources of economically important plants? J Genet 86:9–18. https://doi.org/10.1007/s12041-007-0002-2

    Article  PubMed  CAS  Google Scholar 

  • Ranade SS, Lin YC, Zuccolo A, Van de Peer Y, Garcia-Gil MR (2014) Comparative in silico analysis of EST-SSRs in angiosperm and gymnosperm tree genera. BMC Plant Biol 14:220. https://doi.org/10.1186/s12870-014-0220-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ravikanth G, Chalvaraju, Uma Shaanker R, Ganeshaiah KN (1999) Mapping rattan species diversity in South India. IPGRI Newsl Asia, Pacific Ocean 28:10

    Google Scholar 

  • Ravikanth G, Ganeshaiah KN, Uma Shaanker R, Shaanker RU (2001) Mapping genetic diversity of rattans in the Central Western Ghats: Identification of hot-spots of variability for in situ conservation. In: Uma Shaanker R, Ganeshaiah KN, Bawa KS (eds) Forest genetic resources: status, threats and conservation strategies. Science Publishers, Enfield, pp 69–83

    Google Scholar 

  • Ravikanth G, Ganeshaiah KN, Shaanker RU (2002) Identification of hot spots of species richness and genetic variability in rattans: an approach using geographical information systems (GIS) and molecular tools. Plant Genet Resour Newsl 132:17–21

    Google Scholar 

  • Sakthipriya M, Sabu KK (2016) Development and cross-genera transferability of ginger EST-SSR markers for cardamom. Curr Bioinform 11:1–5

    Article  Google Scholar 

  • Sarmah P (2005) Assessment of diversity through genetic markers and response to in vitro culture in some rattan species. Assam Agricultural University, Jorhat

    Google Scholar 

  • Sarmah P, Barua PK, Sarma RN, Sen P, Deka PC (2007) Genetic diversity among rattan genotypes from India based on RAPD-marker analysis. Genet Resour Crop Evol 54:593–600

    Article  CAS  Google Scholar 

  • Schouten MA, Barendregt A, Verweij PA, Kalkman VJ, Kleukers RMJC, Lenders HJR, Siebel HN (2010) Defining hotspots of characteristic species for multiple taxonomic groups in the Netherlands. Biodivers Conserv 19:2517–2536

    Article  Google Scholar 

  • Seeni S, Sabu KK, Padmesh P (1998) Variable Invariably: an introduction to intraspecific variations in Medicinal Plants. Amruth 2:3–8

    Google Scholar 

  • Sreekumar VB, Henderson A (2014) Nomenclatural notes on Indian Calamus (Arecaceae). Phytotaxa 166:145. https://doi.org/10.11646/phytotaxa.166.2.6

    Article  Google Scholar 

  • Sreekumar VB, Renuka C (2006) Assessment of genetic diversity in Calamus thwaitesii BECC. (Arecaceae) using RAPD markers. Biochem Syst Ecol 34:397–405. https://doi.org/10.1016/j.bse.2005.12.002

    Article  CAS  Google Scholar 

  • Sreekumar VB, Renuka C, Suma TB, Balasundaran M (2006) Taxonomic reconsideration of Calamus rivalis Thw. ex Trim. and C. metzianus Schlecht (Arecaceae) through morphometric and molecular analyses. Bot Stud 47:443–452

    CAS  Google Scholar 

  • Sudarmonowati E, Mogea JP, Hartati NS, Hong L, Rao VR (2004) Morphology and genetic variation of manau rattan (Calamus manan Miq.) in Sumatra, Indonesia. J Bamboo Ratt 3:123–137. https://doi.org/10.1163/156915904774195124

    Article  Google Scholar 

  • Swain H, Abhijita S (2015) Assessment of genetic diversity and molecular phylogeny of six species of Calamus (Arecaceae) by using ISSR markers. Weber Microbiol Res 1:25–35, Article ID wmr_104

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhl NW, Dransfield J (1987) Genera Palmarum: a classification of palms based on the work of H.E. Moore, Jr. International Palm Society and L.H. Bailey Hortorium, Lawrence

    Google Scholar 

  • Wei WL, Qi XQ, Wang LH, Zhang YX, Hua W, Li DH, Lv HX, Zhang XR (2011) Characterization of the sesame (Sesamum indicum L) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genom 12:451

    Article  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution (N Y) 38:1358–1370

    CAS  Google Scholar 

  • Wickneswari R, Siti-Salwana H, Norwati M, Nur-Supardi MN, Mn Aminuddin (2002) Genetic diversity in potential seed sources of Calamus manan Miq. in Peninsular Malaysia. Malays Appl Biol 31:49–58

    Google Scholar 

  • Yeh FC, Yang RC, Boyle T (1999) POPGENE. Microsoft Windows-based freeware for population genetic analysis. Release 1.31. University of Alberta, Edmonton

    Google Scholar 

Download references

Acknowledgements

We extend our sincere thanks to the Director, Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), for providing necessary facilities and the Kerala State Forest Department for granting permission to collect rattan leaf samples from various forest regions of Kerala (Order No. WL 10-3053/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Sabu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: The work was supported by the Department of Biotechnology, Government of India (Order No. BT/156/NE/TBP/2011) and the Kerala State Council for Science, Technology and Environment (KSCSTE), Thiruvananthapuram (Order No. 234/KBC/2012/KSCSTE).

The online version is available at http://www.springerlink.com.

Corresponding editor: Tao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurian, B., Hemanthakumar, A.S., Jacob, J. et al. Intraspecific genetic variability, differentiation and evolutionary relationships revealed through microsatellite loci in seven economically important Calamus species. J. For. Res. 31, 1899–1911 (2020). https://doi.org/10.1007/s11676-019-00984-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-019-00984-z

Keywords

Navigation