Skip to main content
Log in

Determination of chemical composition and antimicrobial, antioxidant and cytotoxic activities of lichens Parmelia conspersa and Parmelia perlata

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the chemical composition of extracts of the lichens Parmelia conspersa and Parmelia perlata and their antimicrobial, antioxidant, and anticancer activities. The phytochemical analysis of the acetone extracts of two Parmelia lichens was determined by (HPLC-UV) method. The predominant phenolic compounds in these extracts were norstictic acid and usnic acids in P. conspersa, while salazinic acid and stictic acid were the major metabolites detected in P. perlata. Besides these compounds, the tested extracts of these lichens contain atranorin and chloroatranorin. The lichen extracts showed comparable and strong antioxidant activity, exhibited higher DPPH and hydroxyl radical scavengings, chelating activity, and inhibitory activity towards lipid peroxidation. The lichen extracts demonstrated important antimicrobial activity against eight strains with MIC values from 19.53 to 312.5 µg/mL. Cytotoxic effects of lichens were tested against Hep2c, RD and L2OB cell lines using MTT method. Cytotoxic effects of P. conspersa and P. perlata extracts toward three cancer cell lines were in the range from 76.33 to 163.39 µg/mL. This is the first report of the detail chemical composition of the lichens P. conspersa and P. perlata. The present study showed that tested extracts of lichens demonstrated a important antimicrobial, antioxidant and anticancer effects. That suggests that these lichens can be used as new sources of the natural antimicrobial agents, antioxidants and anticancer compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Eisenreich, N. Knispel, A. Beck, Phytochem. Rev. 10, 445–456 (2011)

    CAS  Google Scholar 

  2. J.B. Boustie, S. Tomasi, M. Grube, Phytochem. Rev. 10, 287–307 (2011)

    CAS  Google Scholar 

  3. N. Manojlović, B. Ranković, M. Kosanić, P. Vasiljević, T. Stanojković, Phytomedicine. 19, 1166–1172 (2012)

    PubMed  Google Scholar 

  4. A. Pandey, Int. J. Theoretic. Appl. Sci. 9, 137–146 (2017)

    CAS  Google Scholar 

  5. B. Ranković, M. Kosanić, Lichens as a potential source of bioactive secondary metabolites. In Lichen Secondary Metabolites, 1st edn. (Springer, Cham, 2019), pp. 1–29

    Google Scholar 

  6. C. Fernández-Moriano, M.P. Gómez-Serranillos, A. Crespo, Pharm. Biol. 54, 1–17 (2016)

    PubMed  Google Scholar 

  7. V. Shukla, G.P. Joshi, M.S.M. Rawat, Phytochem. Rev. 9, 303–314 (2010)

    CAS  Google Scholar 

  8. S. Huneck, I. Yoshimura, Identification of Lichen Substances (Springer-Verlag, Heidelberg, Berlin, 1996), pp. 11–123

    Google Scholar 

  9. A.F. Meisurova, S.D. Khizhnyak, P.M. Pakhomov, J. Appl. Spectrosc. 76, 420–426 (2009)

    CAS  Google Scholar 

  10. P.S. Rao, K.G. Sarma, T.R. Seshadri, Proc. Indian Acad. Sci. Sect. A 66, 1–14 (1967)

    CAS  Google Scholar 

  11. N.T. Tuan, M. Van Hieu, N.Q.C. Thanh, H. Van Loi, L.H. Nghia, T.T.T. Hoa, K. Kenji, Rec. Nat. Prod. 14, 248–255 (2020)

    CAS  Google Scholar 

  12. S.D. Sarker, L. Nahar, Y. Kumarasamy, Methods. 42, 321–324 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. V. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Method. Enzymol. 299, 152–178 (1999)

    CAS  Google Scholar 

  14. P. Prieto, M. Pineda, M. Aguilar, Anal. Biochem. 269, 337–341 (1999)

    CAS  PubMed  Google Scholar 

  15. Y. Kumarasamy, M. Byres, P.J. Cox, M. Jaspars, L. Nahar, S.D. Sarker, Phytother. Res. 21, 615–621 (2007)

    PubMed  Google Scholar 

  16. C.K. Hsu, B.H. Chiang, Y.S. Chen, J.H. Yang, C.L. Liu, Food. Chem. 108, 633–641 (2008)

    CAS  PubMed  Google Scholar 

  17. I. See, G.C.L. Ee, S.H. Mah, V.Y.M. Jong, S.S. Teh, J. Herbs Spices Med. Plants. 23, 117–127 (2017)

    CAS  Google Scholar 

  18. I. Hinneburg, H.J.D. Dorman, R. Hiltunen, Food. Chem. 97, 122–129 (2006)

    CAS  Google Scholar 

  19. A. Itharat, P. Houghton, E. Eno-Amooguaye, P. Burke, J. Sampson, A. Raman, J. Ethopharmacol. 90, 33–38 (2004)

    Google Scholar 

  20. I. Yoshimura, Y. Kinoshita, Y. Yamamoto, S. Huneck, Y. Yamada, Phytochem. Anal. 5, 197–205 (1994)

    CAS  Google Scholar 

  21. K. Leela, A. Devi, Biosci. Biotechnol. Res. Asia. 14, 1413–1428 (2017)

    Google Scholar 

  22. G. Amo de Paz, J. Raggio, M.P. Gómez-Serranillos, O.M. Palomino, E. González-Burgos, M.E. Carretero, A. Crespo, J. Pharm. Biomed. Anal. 53, 165–171 (2010)

    CAS  PubMed  Google Scholar 

  23. V.B. Tatipamula, G.S. Vedula, B.B. Rathod, P.R. Shetty, A.V.S. Sastry, Invent. Rapid Planta Act. 2018, 1–6 (2018)

  24. B. Thippeswamy, N.R. Sushma, K.J. Naveenkumar, Int. Multidiscip. Res. J. 2, 01–05 (2012)

    Google Scholar 

  25. A. Vidyalakshmi, K. Kruthika, Asian Pac. J. Trop. Biomed. 2, 892–894 (2012)

    Google Scholar 

  26. M.A. Momoh, M.U. Adikwu, Afr. J. Pharm. Pharmacol. 2, 106–109 (2008)

    Google Scholar 

  27. S. Oran, S. Sahin, P. Sahinturk, S. Ozturk, C. Demir, Iran. J. Pharm. Res. 15, 527–535 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. A. Dieu, L. Mambu, Y. Champavier, V. Chaleix, V. Sol, V. Gloaguen, M. Millot, Nat. Prod. Res. 1–5 (2019)

  29. B. Ranković, M. Mišić, Biotechnol. Biotechnol. Equip. 22, 1013–1016 (2008)

    Google Scholar 

  30. J. Tomović, M. Kosanić, B. Ranković, P. Vasiljević, S. Najman, N. Manojlović, Farmacia. 67, 346–353 (2019)

    Google Scholar 

  31. C.S. Pol, S.A. Savale, R. Khare, N. Verma, B.C. Behera, J. Herb. Spices Med. Plants. 23, 142–156 (2017)

    CAS  Google Scholar 

  32. M. Gulluce, A. Aslan, M. Sokmen, F. Sahin, A. Adiguzel, G. Agar, A. Sokmen, Phytomedicine. 13, 515–521 (2006)

    CAS  PubMed  Google Scholar 

  33. N.T. Manojlovic, P.J. Vasiljevic, P.Z. Maskovic, Braz. J. Pharmacogn. 22, 291–298 (2010)

    Google Scholar 

  34. B. Ranković, M. Kosanić, D. Marić, T. Stanojković, P. Vasiljević, N. Manojlović, Int. J. Mol. Sci. 13, 14707–14722 (2012)

    PubMed  PubMed Central  Google Scholar 

  35. C. Rekha, G. Poornima, M. Manasa, V. Abhipsa, J.P. Devi, H.T.V. Kumar, T.R.P. Kekuda, Chemi. Sci. Trans. 1, 303–310 (2012)

    Google Scholar 

  36. N. Aoussar, R. Manzali, I. Nattah, N. Rhallabi, P. Vasiljevic, M. Bouksaim, F. Mellouki, J. Mater. Environ. Sci. 8, 1968–1976 (2017)

    CAS  Google Scholar 

  37. F. Odabasoglu, A. Aslan, A. Cakir, H. Suleyman, Y. Karagoz, Y. Bayir, M. Halici, Fitoter. 76, 216–219 (2005)

    CAS  Google Scholar 

  38. A. Moure, J.M. Cruz, D. Franco, J.M. Domínguez, J. Sineiro, H. Domínguez, J.C. Parajó, Food Chem. 72, 145–171 (2001)

    CAS  Google Scholar 

  39. M.R. Saha, S.M.R. Hasan, R. Akter, M.M. Hossain, M.S. Alam, M.A. Alam, M.E.H. Mazumder, Bangladesh J. Vet. Med. 6, 197–202 (2008)

    Google Scholar 

  40. Z.S. Marković, N.T. Manojlović, Monatsh. Chem. 141, 945–952 (2010)

    Google Scholar 

  41. A.S. Nugraha, D.K. Pratoko, Y.D. Damayanti, N.D. Lestari, T.A. Laksono, H.S. Addy, P. Wangchuk, J. Biol. Act. Prod. Nat. 9, 39–46 (2019)

    CAS  Google Scholar 

  42. T.T.H. Nguyen, M.H. Dinh, H.T. Chi, S.L. Wang, Q. Nguyen, T.D. Tran, A.D. Nguyen, Res. Chem. Intermed. 45, 33–49 (2019)

    CAS  Google Scholar 

  43. F. Brisdelli, M. Perilli, D. Sellitri, M. Piovano, J.A. Garbarino, M. Nicoletti, G. Celenza, Phytother. Res. 27, 431–437 (2013)

    CAS  PubMed  Google Scholar 

  44. M. Bačkorová, M. Bačkor, J. Mikeš, R. Jendželovský, P. Fedoročko, Toxicol. in Vitro. 25, 37–44 (2011)

    PubMed  Google Scholar 

  45. E.R. Correché, R.D. Enriz, M. Piovano, J. Garbarino, M.J. Gómez-Lechón, Altern. Lab. Anim. 32, 605–615 (2004)

    PubMed  Google Scholar 

  46. B. Pejin, C. Iodice, G. Bogdanović, V. Kojić, V. Tešević, Arab. J. Chem. 10, 1240–1242 (2017)

    Google Scholar 

Download references

Funding

This research was supported by Ministry of Education and Science of Serbia, Projects Number: 172015.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by JT, AR and NM. The first draft of the manuscript was written by JT and NM. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jovica Tomović.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manojlović, N.T., Rančić, A.B., Décor, R. et al. Determination of chemical composition and antimicrobial, antioxidant and cytotoxic activities of lichens Parmelia conspersa and Parmelia perlata. Food Measure 15, 686–696 (2021). https://doi.org/10.1007/s11694-020-00672-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00672-1

Keywords

Navigation