Skip to main content

Advertisement

Log in

Lipodystrophy for the Diabetologist—What to Look For

  • Pathogenesis of Type 2 Diabetes and Insulin Resistance (M-E Patti, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Genetic or acquired lipodystrophies are characterized by selective loss of body fat along with predisposition towards metabolic complications of insulin resistance, such as diabetes mellitus, hypertriglyceridemia, hepatic steatosis, polycystic ovarian syndrome, and acanthosis nigricans. In this review, we discuss the various subtypes and when to suspect and how to diagnose lipodystrophy.

Recent Findings

The four major subtypes are autosomal recessive, congenital generalized lipodystrophy (CGL); acquired generalized lipodystrophy (AGL), mostly an autoimmune disorder; autosomal dominant or recessive familial partial lipodystrophy (FPLD); and acquired partial lipodystrophy (APL), an autoimmune disorder. Diagnosis of lipodystrophy is mainly based upon physical examination findings of loss of body fat and can be supported by body composition analysis by skinfold measurements, dual-energy x-ray absorptiometry, and whole-body magnetic resonance imaging. Confirmatory genetic testing is helpful in the proband and at-risk family members with suspected genetic lipodystrophies. The treatment is directed towards the specific comorbidities and metabolic complications, and there is no treatment to reverse body fat loss. Metreleptin should be considered as the first-line therapy for metabolic complications in patients with generalized lipodystrophy and for prevention of comorbidities in children. Metformin and insulin therapy are the best options for treating hyperglycemia and fibrates and/or fish oil for hypertriglyceridemia.

Summary

Lipodystrophy should be suspected in lean and muscular subjects presenting with diabetes mellitus, hypertriglyceridemia, non-alcoholic fatty liver disease, polycystic ovarian syndrome, or amenorrhea. Diabetologists should be aware of lipodystrophies and consider genetic varieties as an important subtype of monogenic diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Garg A. Acquired and inherited lipodystrophies. N Engl J Med. 2004;350(12):1220–34.

    Article  CAS  PubMed  Google Scholar 

  2. Chiquette E, et al. Estimating the prevalence of generalized and partial lipodystrophy: findings and challenges. Diabetes Metab Syndr Obes. 2017;10:375–83.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Andre P, et al. Metabolic and cardiac phenotype characterization in 37 atypical Dunnigan patients with nonfarnesylated mutated prelamin A. Am Heart J. 2015;169(4):587–93.

    Article  CAS  PubMed  Google Scholar 

  4. Gonzaga-Jauregui C, et al. Clinical and Molecular prevalence of lipodystrophy in an unascertained large clinical care cohort. Diabetes. 2020;69(2):249–58.

    Article  CAS  PubMed  Google Scholar 

  5. Udler MS, et al. Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Med. 2018;15(9):e1002654.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Patni N, Garg A. Congenital generalized lipodystrophies--new insights into metabolic dysfunction. Nat Rev Endocrinol. 2015;11(9):522–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Misra A, Garg A. Clinical features and metabolic derangements in acquired generalized lipodystrophy: case reports and review of the literature. Medicine (Baltimore). 2003;82(2):129–46.

    Article  Google Scholar 

  8. Dunnigan MG, et al. Familial lipoatrophic diabetes with dominant transmission. A new syndrome Q J Med. 1974;43(169):33–48.

    CAS  PubMed  Google Scholar 

  9. Misra A, Peethambaram A, Garg A. Clinical features and metabolic and autoimmune derangements in acquired partial lipodystrophy: report of 35 cases and review of the literature. Medicine (Baltimore). 2004;83(1):18–34.

    Article  CAS  Google Scholar 

  10. Agarwal AK, et al. AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet. 2002;31(1):21–3.

    Article  CAS  PubMed  Google Scholar 

  11. Magre J, et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet. 2001;28(4):365–70.

    Article  CAS  PubMed  Google Scholar 

  12. Kim CA, et al. Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metab. 2008;93(4):1129–34.

    Article  CAS  PubMed  Google Scholar 

  13. Hayashi YK, et al. Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J Clin Invest. 2009;119(9):2623–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Payne F, et al. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. Proc Natl Acad Sci U S A. 2014;111(24):8901–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rubio-Cabezas O, et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC. EMBO Mol Med. 2009;1(5):280–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Albert JS, et al. Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes. N Engl J Med. 2014;370(24):2307–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Farhan SM, et al. A novel LIPE nonsense mutation found using exome sequencing in siblings with late-onset familial partial lipodystrophy. Can J Cardiol. 2014;30(12):1649–54.

    Article  PubMed  Google Scholar 

  18. Donadille B, et al. Partial lipodystrophy with severe insulin resistance and adult progeria Werner syndrome. Orphanet J Rare Dis. 2013;8:106.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Herbst KL, et al. Kobberling type of familial partial lipodystrophy: an underrecognized syndrome. Diabetes Care. 2003;26(6):1819–24.

    Article  PubMed  Google Scholar 

  20. Cao H, Hegele RA. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet. 2000;9(1):109–12.

    Article  CAS  PubMed  Google Scholar 

  21. Shackleton S, et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet. 2000;24(2):153–6.

    Article  CAS  PubMed  Google Scholar 

  22. Agarwal AK, Garg A. A novel heterozygous mutation in peroxisome proliferator-activated receptor gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab. 2002;87(1):408–11.

    CAS  PubMed  Google Scholar 

  23. George S, et al. A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science. 2004;304(5675):1325–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gandotra S, et al. Perilipin deficiency and autosomal dominant partial lipodystrophy. N Engl J Med. 2011;364(8):740–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dyment DA, et al. Biallelic mutations at PPARG cause a congenital, generalized lipodystrophy similar to the Berardinelli-Seip syndrome. Eur J Med Genet. 2014;57(9):524–6.

    Article  CAS  PubMed  Google Scholar 

  26. Novelli G, et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am J Hum Genet. 2002;71(2):426–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Agarwal AK, et al. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum Mol Genet. 2003;12(16):1995–2001.

    Article  CAS  PubMed  Google Scholar 

  28. Lessel D, et al. Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nat Genet. 2014;46(11):1239–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cabanillas R, et al. Nestor-Guillermo progeria syndrome: a novel premature aging condition with early onset and chronic development caused by BANF1 mutations. Am J Med Genet A. 2011;155A(11):2617–25.

    Article  PubMed  CAS  Google Scholar 

  30. Eriksson M, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. 2003;423(6937):293–8.

    Article  CAS  PubMed  Google Scholar 

  31. De Sandre-Giovannoli A, et al. Lamin a truncation in Hutchinson-Gilford progeria. Science. 2003;300(5628):2055.

    Article  PubMed  Google Scholar 

  32. Graul-Neumann LM, et al. Marfan syndrome with neonatal progeroid syndrome-like lipodystrophy associated with a novel frameshift mutation at the 3' terminus of the FBN1-gene. Am J Med Genet A. 2010;152A(11):2749–55.

    Article  CAS  PubMed  Google Scholar 

  33. Garg A, et al. Whole exome sequencing identifies de novo heterozygous CAV1 mutations associated with a novel neonatal onset lipodystrophy syndrome. Am J Med Genet A. 2015;167A(8):1796–806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Weedon MN, et al. An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nat Genet. 2013;45(8):947–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Masotti A, et al. Keppen-Lubinsky syndrome is caused by mutations in the inwardly rectifying K+ channel encoded by KCNJ6. Am J Hum Genet. 2015;96(2):295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thauvin-Robinet C, et al. PIK3R1 mutations cause syndromic insulin resistance with lipoatrophy. Am J Hum Genet. 2013;93(1):141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Agarwal AK, et al. PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet. 2010;87(6):866–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Corvillo F, et al. Autoantibodies Against Perilipin 1 as a Cause of Acquired Generalized Lipodystrophy. Front Immunol. 2018;9:2142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Garg A. Lipodystrophies. Am J Med. 2000;108(2):143–52.

    Article  CAS  PubMed  Google Scholar 

  40. Garg A. Clinical review#: Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab. 2011;96(11):3313–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nolis T. Exploring the pathophysiology behind the more common genetic and acquired lipodystrophies. J Hum Genet. 2014;59(1):16–23.

    Article  CAS  PubMed  Google Scholar 

  42. Hussain I, Patni N, Garg A. Lipodystrophies, dyslipidaemias and atherosclerotic cardiovascular disease. Pathology. 2019;51(2):202–12.

    Article  CAS  PubMed  Google Scholar 

  43. Pardini VC, et al. Leptin levels, beta-cell function, and insulin sensitivity in families with congenital and acquired generalized lipoatrophic diabetes. J Clin Endocrinol Metab. 1998;83:503–8.

    CAS  PubMed  Google Scholar 

  44. Seip M, Trygstad O. Generalized lipodystrophy, congenital and acquired (lipoatrophy). Acta Paediatr Suppl. 1996;413:2–28.

    Article  CAS  PubMed  Google Scholar 

  45. Westvik J. Radiological features in generalized lipodystrophy. Acta Paediatr Suppl. 1996;413:44–51.

    Article  CAS  PubMed  Google Scholar 

  46. Brunzell JD, Shankle SW, Bethune JE. Congenital generalized lipodystrophy accompanied by cystic angiomatosis. Ann Intern Med. 1968;69(3):501–16.

    Article  CAS  PubMed  Google Scholar 

  47. Fleckenstein JL, et al. The skeleton in congenital, generalized lipodystrophy: evaluation using whole-body radiographic surveys, magnetic resonance imaging and technetium-99m bone scintigraphy. Skelet Radiol. 1992;21(6):381–6.

    Article  CAS  Google Scholar 

  48. Chandalia M, et al. Postmortem findings in congenital generalized lipodystrophy. J Clin Endocrinol Metab. 1995;80(10):3077–81.

    CAS  PubMed  Google Scholar 

  49. Anonymous. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 1-1975. N Engl J Med. 1975;292(1):35–41.

    Article  Google Scholar 

  50. Garg A, et al. Peculiar distribution of adipose tissue in patients with congenital generalized lipodystrophy. J Clin Endocrinol Metab. 1992;75(2):358–61.

    CAS  PubMed  Google Scholar 

  51. Haque WA, et al. Serum adiponectin and leptin levels in patients with lipodystrophies. J Clin Endocrinol Metab. 2002;87(5):2395–8.

    Article  CAS  PubMed  Google Scholar 

  52. Antuna-Puente B, et al. Higher adiponectin levels in patients with Berardinelli-Seip congenital lipodystrophy due to seipin as compared with 1-acylglycerol-3-phosphate-o-acyltransferase-2 deficiency. J Clin Endocrinol Metab. 2010;95(3):1463–8.

    Article  CAS  PubMed  Google Scholar 

  53. Van Maldergem L, et al. Genotype-phenotype relationships in Berardinelli-Seip congenital lipodystrophy. J Med Genet. 2002;39(10):722–33.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Agarwal AK, et al. Phenotypic and genetic heterogeneity in congenital generalized lipodystrophy. J Clin Endocrinol Metab. 2003;88(10):4840–7.

    Article  CAS  PubMed  Google Scholar 

  55. Upreti V, et al. An unusual cause of delayed puberty: Berardinelli- Seip syndrome. J Pediatr Endocrinol Metab. 2012;25(11-12):1157–60.

    Article  PubMed  Google Scholar 

  56. Maguire M, et al. Pregnancy in a woman with congenital generalized lipodystrophy: leptin's vital role in reproduction. Obstet Gynecol. 2012;119(2 Pt 2):452–5.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jiang M, et al. Lack of testicular seipin causes teratozoospermia syndrome in men. Proc Natl Acad Sci U S A. 2014;111(19):7054–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ebihara C, et al. Seipin is necessary for normal brain development and spermatogenesis in addition to adipogenesis. Hum Mol Genet. 2015;24(15):4238–49.

    Article  CAS  PubMed  Google Scholar 

  59. Karhan AN, et al. Biallelic CAV1 null variants induce congenital generalized lipodystrophy with achalasia. Eur J Endocrinol. 2021;185(6):841–54.

    Article  CAS  PubMed  Google Scholar 

  60. Cao H, et al. Heterozygous CAV1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis. 2008;7:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Patni N, Hegele RA, Garg A. Caveolar dysfunction and lipodystrophies. Eur J Endocrinol. 2022;186(3):C1–4.

    Article  CAS  PubMed  Google Scholar 

  62. Garg A. Gender differences in the prevalence of metabolic complications in familial partial lipodystrophy (Dunnigan variety). J Clin Endocrinol Metab. 2000;85(5):1776–82.

    CAS  PubMed  Google Scholar 

  63. Patni N, et al. Regional body fat changes and metabolic complications in children with Dunnigan lipodystrophy-causing LMNA Variants. J Clin Endocrinol Metab. 2018;104(4):1099–108.

    Article  PubMed Central  Google Scholar 

  64. Garg A, Peshock RM, Fleckenstein JL. Adipose tissue distribution pattern in patients with familial partial lipodystrophy (Dunnigan variety). J Clin Endocrinol Metab. 1999;84(1):170–4.

    CAS  PubMed  Google Scholar 

  65. Haque WA, et al. Risk factors for diabetes in familial partial lipodystrophy, Dunnigan variety. Diabetes Care. 2003;26(5):1350–5.

    Article  CAS  PubMed  Google Scholar 

  66. Hegele RA. Premature atherosclerosis associated with monogenic insulin resistance. Circulation. 2001;103(18):2225–9.

    Article  CAS  PubMed  Google Scholar 

  67. Patni N, et al. A novel syndrome of generalized lipodystrophy associated with pilocytic astrocytoma. J Clin Endocrinol Metab. 2015;100(10):3603–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Haddad N, et al. Acquired generalized lipodystrophy under immune checkpoint inhibition. Br J Dermatol. 2020;182(2):477–80.

    Article  CAS  PubMed  Google Scholar 

  69. Jehl A, et al. Acquired generalized lipodystrophy: a new cause of anti-PD-1 immune-related diabetes. Diabetes Care. 2019;42(10):2008–10.

    Article  PubMed  Google Scholar 

  70. Savage DB, et al. Complement abnormalities in acquired lipodystrophy revisited. J Clin Endocrinol Metab. 2009;94(1):10–6.

    Article  CAS  PubMed  Google Scholar 

  71. Park JY, et al. Type 1 diabetes associated with acquired generalized lipodystrophy and insulin resistance: the effect of long-term leptin therapy. J Clin Endocrinol Metab. 2008;93(1):26–31.

    Article  CAS  PubMed  Google Scholar 

  72. Kumar R, et al. Acquired generalised lipodystrophy and type 1 diabetes mellitus in a child: a rare and implacable association. BMJ Case Rep. 2018;2018:bcr-2018.

    Google Scholar 

  73. Srinivasan S, et al. A polygenic lipodystrophy genetic risk score characterizes risk independent of BMI in the diabetes prevention program. J Endocr Soc. 2019;3(9):1663–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Handelsman Y, et al. The clinical approach to the detection of lipodystrophy - an AACE consensus statement. Endocr Pract. 2013;19(1):107–16.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Brown RJ, et al. The diagnosis and management of lipodystrophy syndromes: a multi-society practice guideline. J Clin Endocrinol Metab. 2016;101(12):4500–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40(3):497–504.

    Article  CAS  PubMed  Google Scholar 

  77. Jackson AS, Pollock ML, Ward A. Generalized equations for predicting body density of women. Med Sci Sports Exerc. 1980;12(3):175–81.

    Article  CAS  PubMed  Google Scholar 

  78. Dezenberg CV, et al. Predicting body composition from anthropometry in pre-adolescent children. Int J Obes Relat Metab Disord. 1999;23(3):253–9.

    Article  CAS  PubMed  Google Scholar 

  79. Vasandani C, et al. Diagnostic value of anthropometric measurements for familial partial lipodystrophy, Dunnigan Variety. J Clin Endocrinol Metab. 2020;105(7)2132-2141.

    Article  PubMed Central  Google Scholar 

  80. Javor ED, et al. Proteinuric nephropathy in acquired and congenital generalized lipodystrophy: baseline characteristics and course during recombinant leptin therapy. J Clin Endocrinol Metab. 2004;89(7):3199–207.

    Article  CAS  PubMed  Google Scholar 

  81. Akinci B, et al. Renal complications of lipodystrophy: a closer look at the natural history of kidney disease. Clin Endocrinol. 2018;89(1):65–75.

    Article  CAS  Google Scholar 

  82. Musso C, et al. Spectrum of renal diseases associated with extreme forms of insulin resistance. Clin J Am Soc Nephrol. 2006;1(4):616–22.

    Article  CAS  PubMed  Google Scholar 

  83. Oral EA, et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med. 2002;346(8):570–8.

    Article  CAS  PubMed  Google Scholar 

  84. Beltrand J, et al. Metabolic correction induced by leptin replacement treatment in young children with Berardinelli-Seip congenital lipoatrophy. Pediatrics. 2007;120(2):e291–6.

    Article  PubMed  Google Scholar 

  85. Simha V, et al. Comparison of efficacy and safety of leptin replacement therapy in moderately and severely hypoleptinemic patients with familial partial lipodystrophy of the Dunnigan variety. J Clin Endocrinol Metab. 2012;97(3):785–92.

    Article  CAS  PubMed  Google Scholar 

  86. Diker-Cohen T, et al. Partial and generalized lipodystrophy: comparison of baseline characteristics and response to metreleptin. J Clin Endocrinol Metab. 2015;100(5):1802–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Luedtke A, et al. Thiazolidinedione response in familial lipodystrophy patients with LMNA mutations: a case series. Horm Metab Res. 2012;44(4):306–11.

    Article  CAS  PubMed  Google Scholar 

  88. Simha V, Rao S, Garg A. Prolonged thiazolidinedione therapy does not reverse fat loss in patients with familial partial lipodystrophy, Dunnigan variety. Diabetes Obes Metab. 2008;10(12):1275–6.

    Article  CAS  PubMed  Google Scholar 

  89. Banning F, et al. Insulin secretory defect in familial partial lipodystrophy Type 2 and successful long-term treatment with a glucagon-like peptide 1 receptor agonist. Diabet Med. 2017;34(12):1792–4.

    Article  CAS  PubMed  Google Scholar 

  90. Oliveira J, et al. Glucagon-like peptide-1 analogues - an efficient therapeutic option for the severe insulin resistance of lipodystrophic syndromes: two case reports. J Med Case Rep. 2017;11(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Melvin A, et al. Roux-en-Y gastric bypass surgery in the management of familial partial lipodystrophy type 1. J Clin Endocrinol Metab. 2017;102(10):3616–20.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Grundfest-Broniatowski S, et al. Successful treatment of an unusual case of FPLD2: The role of Roux-en-Y gastric bypass-case report and literature review. J Gastrointest Surg. 2017;21(4):739–43.

    Article  PubMed  Google Scholar 

  93. Kozusko K, et al. Clinical and molecular characterization of a novel PLIN1 frameshift mutation identified in patients with familial partial lipodystrophy. Diabetes. 2015;64(1):299–310.

    Article  CAS  PubMed  Google Scholar 

  94. Ciudin A, et al. Successful treatment for the Dunnigan-type familial partial lipodystrophy with Roux-en-Y gastric bypass. Clin Endocrinol. 2011;75(3):403–4.

    Article  Google Scholar 

  95. McGrath NM, Krishna G. Gastric bypass for insulin resistance due to lipodystrophy. Obes Surg. 2006;16(11):1542–4.

    Article  PubMed  Google Scholar 

  96. Utzschneider KM, Trence DL. Effectiveness of gastric bypass surgery in a patient with familial partial lipodystrophy. Diabetes Care. 2006;29(6):1380–2.

    Article  PubMed  Google Scholar 

  97. Mandel-Brehm C, et al. Autoantibodies to perilipin-1 define a subset of acquired generalized lipodystrophy. Diabetes. 2022; db211172 (online ahead of print).

Download references

Acknowledgments

We thank Tea Huseinbegovic, B.S., for help with the illustration.

Funding

A.G. and N.P are supported by the National Institutes of Health grant R01-DK105448 and A.G. is also supported by the Southwestern Medical Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhimanyu Garg.

Ethics declarations

Conflict of Interest

N.P. have no financial or non-financial interests that are directly or indirectly related to the work submitted for publication. A.G. consults for Amryt Pharma PLC and Regeneron and has received grant support from Amryt Pharma PLC, Regeneron, Quintiles, Akcea Pharmaceuticals, and Intercept Pharmaceuticals. A.G. is coholder of a patent for “use of leptin for treating human lipoatrophy and a method of determining predisposition to said treatment” but receives no financial compensation.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pathogenesis of Type 2 Diabetes and Insulin Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patni, N., Garg, A. Lipodystrophy for the Diabetologist—What to Look For. Curr Diab Rep 22, 461–470 (2022). https://doi.org/10.1007/s11892-022-01485-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-022-01485-w

Keywords

Navigation