Skip to main content

Advertisement

Log in

Refocusing on the Primary Prevention of Heart Failure

  • Prevention (K Aragam, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

The burden of heart failure (HF) is a significant national and global public health problem, with prevalence rates on the rise. Given the significant morbidity, mortality, and healthcare costs attributable to HF, it is of utmost importance to utilize preventive strategies to prevent the development of HF. Therefore, we sought to address how a multi-modal risk assessment approach can be used to stratify patients for HF risk and guide implementation of therapeutic strategies to prevent HF.

Recent findings

New externally validated, multivariate prediction models for incident HF can be applied in the general population and may be used to aide clinicians in assessing individualized HF risk and screening for HF. Recent clinical trial data suggest a natriuretic peptide biomarker-based screening approach coupled with team-based cardiovascular care to focus on optimization of guideline-directed medical therapy may help prevent new-onset HF. However, widespread implementation of clinical risk scores and/or biomarkers is needed.

Summary

In addition to promoting a heart healthy lifestyle, prevention and management of modifiable risk factors, including intensive blood pressure lowering and use of sodium-glucose cotransporter-2 inhibitors, can prevent incident HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56–e528. https://doi.org/10.1161/CIR.0000000000000659.

    Article  Google Scholar 

  2. Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6(3):606–19. https://doi.org/10.1161/HHF.0b013e318291329a.

    Article  CAS  Google Scholar 

  3. Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ, Vaduganathan M, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014;63(12):1123–33. https://doi.org/10.1016/j.jacc.2013.11.053.

    Article  Google Scholar 

  4. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;70(6):776–803. https://doi.org/10.1016/j.jacc.2017.04.025.

    Article  Google Scholar 

  5. Ferreira JP, Kraus S, Mitchell S, Perel P, Pineiro D, Chioncel O, et al. World Heart Federation Roadmap for Heart Failure. Glob Heart. 2019;14(3):197–214. https://doi.org/10.1016/j.gheart.2019.07.004.

    Article  Google Scholar 

  6. Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation. 2010;121(4):586–613. https://doi.org/10.1161/CIRCULATIONAHA.109.192703.

    Article  Google Scholar 

  7. Ford ES, Li C, Zhao G, Pearson WS, Capewell S. Trends in the prevalence of low risk factor burden for cardiovascular disease among United States adults. Circulation. 2009;120(13):1181–8. https://doi.org/10.1161/CIRCULATIONAHA.108.835728.

    Article  Google Scholar 

  8. He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med. 2001;161(7):996–1002. https://doi.org/10.1001/archinte.161.7.996.

    Article  CAS  Google Scholar 

  9. Vasan RS, Beiser A, Seshadri S, Larson MG, Kannel WB, D’Agostino RB, et al. Residual lifetime risk for developing hypertension in middle-aged women and men: The Framingham Heart Study. JAMA. 2002;287(8):1003–10. https://doi.org/10.1001/jama.287.8.1003.

    Article  Google Scholar 

  10. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. 1996;275(20):1557–62.

    Article  CAS  Google Scholar 

  11. Bibbins-Domingo K, Lin F, Vittinghoff E, Barrett-Connor E, Hulley SB, Grady D, et al. Predictors of heart failure among women with coronary disease. Circulation. 2004;110(11):1424–30. https://doi.org/10.1161/01.CIR.0000141726.01302.83.

    Article  Google Scholar 

  12. Bertoni AG, Hundley WG, Massing MW, Bonds DE, Burke GL, Goff DC Jr. Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care. 2004;27(3):699–703. https://doi.org/10.2337/diacare.27.3.699.

    Article  Google Scholar 

  13. Nichols GA, Hillier TA, Erbey JR, Brown JB. Congestive heart failure in type 2 diabetes: prevalence, incidence, and risk factors. Diabetes Care. 2001;24(9):1614–9. https://doi.org/10.2337/diacare.24.9.1614.

    Article  CAS  Google Scholar 

  14. Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA. 1979;241(19):2035–8. https://doi.org/10.1001/jama.241.19.2035.

    Article  CAS  Google Scholar 

  15. Iribarren C, Karter AJ, Go AS, Ferrara A, Liu JY, Sidney S, et al. Glycemic control and heart failure among adult patients with diabetes. Circulation. 2001;103(22):2668–73. https://doi.org/10.1161/01.cir.103.22.2668.

    Article  CAS  Google Scholar 

  16. Pazin-Filho A, Kottgen A, Bertoni AG, Russell SD, Selvin E, Rosamond WD, et al. HbA 1c as a risk factor for heart failure in persons with diabetes: the Atherosclerosis Risk in Communities (ARIC) study. Diabetologia. 2008;51(12):2197–204. https://doi.org/10.1007/s00125-008-1164-z.

    Article  CAS  Google Scholar 

  17. Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–12. https://doi.org/10.1136/bmj.321.7258.405.

    Article  CAS  Google Scholar 

  18. van Melle JP, Bot M, de Jonge P, de Boer RA, van Veldhuisen DJ, Whooley MA. Diabetes, glycemic control, and new-onset heart failure in patients with stable coronary artery disease: data from the heart and soul study. Diabetes Care. 2010;33(9):2084–9. https://doi.org/10.2337/dc10-0286.

    Article  CAS  Google Scholar 

  19. Pandey A, LaMonte M, Klein L, Ayers C, Psaty BM, Eaton CB, et al. Relationship Between Physical Activity, Body Mass Index, and Risk of Heart Failure. J Am Coll Cardiol. 2017;69(9):1129–42. https://doi.org/10.1016/j.jacc.2016.11.081.

    Article  Google Scholar 

  20. Andersen K, Mariosa D, Adami HO, Held C, Ingelsson E, Lagerros YT, et al. Dose-response relationship of total and leisure time physical activity to risk of heart failure: a prospective cohort study. Circ Heart Fail. 2014;7(5):701–8. https://doi.org/10.1161/CIRCHEARTFAILURE.113.001010.

    Article  Google Scholar 

  21. Khan SS, Ning H, Wilkins JT, Allen N, Carnethon M, Berry JD, et al. Association of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of Morbidity. JAMA Cardiol. 2018;3(4):280–7. https://doi.org/10.1001/jamacardio.2018.0022.

    Article  Google Scholar 

  22. Pandey A, Garg S, Khunger M, Darden D, Ayers C, Kumbhani DJ, et al. Dose-Response Relationship Between Physical Activity and Risk of Heart Failure: A Meta-Analysis. Circulation. 2015;132(19):1786–94. https://doi.org/10.1161/CIRCULATIONAHA.115.015853.

    Article  Google Scholar 

  23. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, et al. Obesity and the risk of heart failure. N Engl J Med. 2002;347(5):305–13. https://doi.org/10.1056/NEJMoa020245.

    Article  Google Scholar 

  24. Kamimura D, Cain LR, Mentz RJ, White WB, Blaha MJ, DeFilippis AP, et al. Cigarette Smoking and Incident Heart Failure: Insights From the Jackson Heart Study. Circulation. 2018;137(24):2572–82. https://doi.org/10.1161/CIRCULATIONAHA.117.031912.

    Article  Google Scholar 

  25. Watson M, Dardari Z, Kianoush S, Hall ME, DeFilippis AP, Keith RJ, et al. Relation Between Cigarette Smoking and Heart Failure (from the Multiethnic Study of Atherosclerosis). Am J Cardiol. 2019;123(12):1972–7. https://doi.org/10.1016/j.amjcard.2019.03.015.

    Article  Google Scholar 

  26. Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC. Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series. J Am Coll Cardiol. 2017;70(2):230–51. https://doi.org/10.1016/j.jacc.2017.05.043.

    Article  CAS  Google Scholar 

  27. Morris PB, Ference BA, Jahangir E, Feldman DN, Ryan JJ, Bahrami H, et al. Cardiovascular Effects of Exposure to Cigarette Smoke and Electronic Cigarettes: Clinical Perspectives From the Prevention of Cardiovascular Disease Section Leadership Council and Early Career Councils of the American College of Cardiology. J Am Coll Cardiol. 2015;66(12):1378–91. https://doi.org/10.1016/j.jacc.2015.07.037.

    Article  CAS  Google Scholar 

  28. Ziaeian B, Fonarow GC. Epidemiology and etiology of heart failure. Nat Rev Cardiol. 2016;13(6):368–78. https://doi.org/10.1038/nrcardio.2016.25.

    Article  Google Scholar 

  29. Butler J, Kalogeropoulos A, Georgiopoulou V, Belue R, Rodondi N, Garcia M, et al. Incident heart failure prediction in the elderly: the health ABC heart failure score. Circ Heart Fail. 2008;1(2):125–33. https://doi.org/10.1161/CIRCHEARTFAILURE.108.768457.

    Article  Google Scholar 

  30. Kalogeropoulos A, Psaty BM, Vasan RS, Georgiopoulou V, Smith AL, Smith NL, et al. Validation of the health ABC heart failure model for incident heart failure risk prediction: the Cardiovascular Health Study. Circ Heart Fail. 2010;3(4):495–502. https://doi.org/10.1161/CIRCHEARTFAILURE.109.904300.

    Article  Google Scholar 

  31. Mureddu GF, Tarantini L, Agabiti N, Faggiano P, Masson S, Latini R, et al. Evaluation of different strategies for identifying asymptomatic left ventricular dysfunction and pre-clinical (stage B) heart failure in the elderly. Results from ‘PREDICTOR’, a population based-study in central Italy. Eur J Heart Fail. 2013;15(10):1102–12. https://doi.org/10.1093/eurjhf/hft098.

    Article  CAS  Google Scholar 

  32. Shepherd J, Blauw GJ, Murphy MB, Bollen EL, Buckley BM, Cobbe SM, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomized controlled trial. Lancet. 2002;360(9346):1623–30. https://doi.org/10.1016/s0140-6736(02)11600-x.

    Article  CAS  Google Scholar 

  33. Jacobs L, Efremov L, Ferreira JP, Thijs L, Yang WY, Zhang ZY, et al. Risk for Incident Heart Failure: A Subject-Level Meta-Analysis From the Heart “OMics” in Aging (HOMAGE) Study. J Am Heart Assoc. 2017;6(5). https://doi.org/10.1161/JAHA.116.005231.

  34. Echouffo-Tcheugui JB, Greene SJ, Papadimitriou L, Zannad F, Yancy CW, Gheorghiade M, et al. Population risk prediction models for incident heart failure: a systematic review. Circ Heart Fail. 2015;8(3):438–47. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001896.

    Article  Google Scholar 

  35. • Khan SS, Ning H, Shah SJ, Yancy CW, Carnethon M, Berry JD, et al. 10-Year Risk Equations for Incident Heart Failure in the General Population. J Am Coll Cardiol. 2019;73(19):2388–97. https://doi.org/10.1016/j.jacc.2019.02.057 This externally validated, pooled cohort equation is a tool to aide clinicians to estimate an individual’s 10-year risk for heart failure and helps identify those at highest risk who may benefit from more intensive prevention strategies.

  36. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. Am J Epidemiol. 1989;129(4):687–702.

  37. Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, et al. Multi-Ethnic Study of Atherosclerosis: objectives and design. Am J Epidemiol. 2002;156(9):871–81. https://doi.org/10.1093/aje/kwf113.

    Article  Google Scholar 

  38. Diercks GF, Janssen WM, van Boven AJ, Bak AA, de Jong PE, Crijns HJ, et al. Rationale, design, and baseline characteristics of a trial of prevention of cardiovascular and renal disease with fosinopril and pravastatin in nonhypertensive, nonhypercholesterolemic subjects with microalbuminuria (the Prevention of REnal and Vascular ENdstage Disease Intervention Trial [PREVEND IT]). Am J Cardiol. 2000;86(6):635–8. https://doi.org/10.1016/s0002-9149(00)01042-0.

    Article  CAS  Google Scholar 

  39. Fried LP, Borhani NO, Enright P, Furberg CD, Gardin JM, Kronmal RA, et al. The Cardiovascular Health Study: design and rationale. Ann Epidemiol. 1991;1(3):263–76.

    Article  CAS  Google Scholar 

  40. Friedman GD, Cutter GR, Donahue RP, Hughes GH, Hulley SB, Jacobs DR Jr, et al. CARDIA: study design, recruitment, and some characteristics of the examined subjects. J Clin Epidemiol. 1988;41(11):1105–16. https://doi.org/10.1016/0895-4356(88)90080-7.

    Article  CAS  Google Scholar 

  41. Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP. An investigation of coronary heart disease in families. The Framingham offspring study. Am J Epidemiol. 1979;110(3):281–90. https://doi.org/10.1093/oxfordjournals.aje.a112813.

    Article  CAS  Google Scholar 

  42. Taylor HA Jr, Wilson JG, Jones DW, Sarpong DF, Srinivasan A, Garrison RJ, et al. Toward resolution of cardiovascular health disparities in African Americans: design and methods of the Jackson Heart Study. Ethn Dis. 2005;15(4 Suppl 6):S6 –4-17.

  43. Action to Control Cardiovascular Risk in Diabetes Study G, Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59. https://doi.org/10.1056/NEJMoa0802743.

    Article  Google Scholar 

  44. Davis BR, Kostis JB, Simpson LM, Black HR, Cushman WC, Einhorn PT, et al. Heart failure with preserved and reduced left ventricular ejection fraction in the antihypertensive and lipid-lowering treatment to prevent heart attack trial. Circulation. 2008;118(22):2259–67. https://doi.org/10.1161/CIRCULATIONAHA.107.762229.

    Article  CAS  Google Scholar 

  45. • Segar MW, Vaduganathan M, Patel KV, McGuire DK, Butler J, Fonarow GC, et al. Machine Learning to Predict the Risk of Incident Heart Failure Hospitalization Among Patients With Diabetes: The WATCH-DM Risk Score. Diabetes Care. 2019. https://doi.org/10.2337/dc19-0587 This study utilized machine learning to develop the WATCH-DM Risk score, which is a tool that provides a 5-year risk assessment for incident heart failure in patients with diabetes.

  46. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317–26. https://doi.org/10.1056/NEJMoa1307684.

    Article  CAS  Google Scholar 

  47. Berg DD, Wiviott SD, Scirica BM, Gurmu Y, Mosenzon O, Murphy SA, et al. Heart Failure Risk Stratification and Efficacy of Sodium-Glucose Cotransporter-2 Inhibitors in Patients With Type 2 Diabetes Mellitus. Circulation. 2019. https://doi.org/10.1161/CIRCULATIONAHA.119.042685.

  48. • Ledwidge M, Gallagher J, Conlon C, Tallon E, O’Connell E, Dawkins I, et al. Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA. 2013;310(1):66–74. https://doi.org/10.1001/jama.2013.7588 This study created a baseline risk assessment tool for hospitalization for heart failure (HHF) among patients with DM. It demonstrated that patients derive benefit from SGLT2-inhibitors to prevent HHF regardless of their baseline risk, and that those with the highest baseline risk derived the greatest absolute reduction of HHF.

    Article  CAS  Google Scholar 

  49. Huelsmann M, Neuhold S, Resl M, Strunk G, Brath H, Francesconi C, et al. PONTIAC (NT-proBNP selected prevention of cardiac events in a population of diabetic patients without a history of cardiac disease): a prospective randomized controlled trial. J Am Coll Cardiol. 2013;62(15):1365–72. https://doi.org/10.1016/j.jacc.2013.05.069.

    Article  Google Scholar 

  50. Ilkhanoff L, Liu K, Ning H, Nazarian S, Bluemke DA, Soliman EZ, et al. Association of QRS duration with left ventricular structure and function and risk of heart failure in middle-aged and older adults: the Multi-Ethnic Study of Atherosclerosis (MESA). Eur J Heart Fail. 2012;14(11):1285–92. https://doi.org/10.1093/eurjhf/hfs112.

    Article  Google Scholar 

  51. Gencer B, Butler J, Bauer DC, Auer R, Kalogeropoulos A, Marques-Vidal P, et al. Association of electrocardiogram abnormalities and incident heart failure events. Am Heart J. 2014;167(6):869–75 e3. https://doi.org/10.1016/j.ahj.2014.03.020.

  52. Wang TJ, Levy D, Benjamin EJ, Vasan RS. The epidemiology of “asymptomatic” left ventricular systolic dysfunction: implications for screening. Ann Intern Med. 2003;138(11):907–16. https://doi.org/10.7326/0003-4819-138-11-200,306,030-00012.

    Article  Google Scholar 

  53. Lindekleiv H, Lochen ML, Mathiesen EB, Njolstad I, Wilsgaard T, Schirmer H. Echocardiographic screening of the general population and long-term survival: a randomized clinical study. JAMA Intern Med. 2013;173(17):1592–8. https://doi.org/10.1001/jamainternmed.2013.8412.

    Article  Google Scholar 

  54. Yang H, Wang Y, Nolan M, Negishi K, Okin PM, Marwick TH. Community Screening for Nonischemic Cardiomyopathy in Asymptomatic Subjects >/=65 Years With Stage B Heart Failure. Am J Cardiol. 2016;117(12):1959–65. https://doi.org/10.1016/j.amjcard.2016.03.045.

    Article  Google Scholar 

  55. Ghany R, Palacio A, Chen G, Dawkins E, Ghany A, Forbes E, et al. A screening echocardiogram to identify diastolic dysfunction leads to better outcomes. Echocardiography. 2017;34(8):1152–8. https://doi.org/10.1111/echo.13615.

    Article  Google Scholar 

  56. Fraser A, Nelson SM, Macdonald-Wallis C, Cherry L, Butler E, Sattar N, et al. Associations of pregnancy complications with calculated cardiovascular disease risk and cardiovascular risk factors in middle age: the Avon Longitudinal Study of Parents and Children. Circulation. 2012;125(11):1367–80. https://doi.org/10.1161/CIRCULATIONAHA.111.044784.

    Article  CAS  Google Scholar 

  57. Daubert MA, Douglas PS. Primary Prevention of Heart Failure in Women. JACC Heart Fail. 2019;7(3):181–91. https://doi.org/10.1016/j.jchf.2019.01.011.

    Article  Google Scholar 

  58. • Wu P, Haththotuwa R, Kwok CS, Babu A, Kotronias RA, Rushton C, et al. Preeclampsia and Future Cardiovascular Health: A Systematic Review and Meta-Analysis. Circ Cardiovasc Qual Outcomes. 2017;10(2). https://doi.org/10.1161/CIRCOUTCOMES.116.003497 This review discusses sex-specific risk factors for heart failure in women and strategies to prevent heart failure in women.

  59. Nicola PJ, Maradit-Kremers H, Roger VL, Jacobsen SJ, Crowson CS, Ballman KV, et al. The risk of congestive heart failure in rheumatoid arthritis: a population-based study over 46 years. Arthritis Rheum. 2005;52(2):412–20. https://doi.org/10.1002/art.20855.

    Article  Google Scholar 

  60. Wright K, Crowson CS, Gabriel SE. Cardiovascular comorbidity in rheumatic diseases: a focus on heart failure. Heart Fail Clin. 2014;10(2):339–52. https://doi.org/10.1016/j.hfc.2013.10.003.

    Article  Google Scholar 

  61. Mantel A, Holmqvist M, Andersson DC, Lund LH, Askling J. Association Between Rheumatoid Arthritis and Risk of Ischemic and Nonischemic Heart Failure. J Am Coll Cardiol. 2017;69(10):1275–85. https://doi.org/10.1016/j.jacc.2016.12.033.

    Article  Google Scholar 

  62. Kim CH, Al-Kindi SG, Jandali B, Askari AD, Zacharias M, Oliveira GH. Incidence and risk of heart failure in systemic lupus erythematosus. Heart. 2017;103(3):227–33. https://doi.org/10.1136/heartjnl-2016-309,561.

    Article  Google Scholar 

  63. Dhakal BP, Kim CH, Al-Kindi SG, Oliveira GH. Heart failure in systemic lupus erythematosus. Trends Cardiovasc Med. 2018;28(3):187–97. https://doi.org/10.1016/j.tcm.2017.08.015.

    Article  Google Scholar 

  64. Yen YF, Ko MC, Yen MY, Hu BS, Wang TH, Chuang PH, et al. Human Immunodeficiency Virus Increases the Risk of Incident Heart Failure. J Acquir Immune Defic Syndr. 2019;80(3):255–63. https://doi.org/10.1097/QAI.0000000000001917.

    Article  CAS  Google Scholar 

  65. Erqou S, Lodebo BT, Masri A, Altibi AM, Echouffo-Tcheugui JB, Dzudie A, et al. Cardiac Dysfunction Among People Living With HIV: A Systematic Review and Meta-Analysis. JACC Heart Fail. 2019;7(2):98–108. https://doi.org/10.1016/j.jchf.2018.10.006.

    Article  Google Scholar 

  66. Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, Abhayaratna W, et al. Incidence and mortality risk of congestive heart failure in atrial fibrillation patients: a community-based study over two decades. Eur Heart J. 2006;27(8):936–41. https://doi.org/10.1093/eurheartj/ehi694.

    Article  Google Scholar 

  67. Santhanakrishnan R, Wang N, Larson MG, Magnani JW, McManus DD, Lubitz SA, et al. Atrial Fibrillation Begets Heart Failure and Vice Versa: Temporal Associations and Differences in Preserved Versus Reduced Ejection Fraction. Circulation. 2016;133(5):484–92. https://doi.org/10.1161/CIRCULATIONAHA.115.018614.

    Article  Google Scholar 

  68. Schnabel RB, Rienstra M, Sullivan LM, Sun JX, Moser CB, Levy D, et al. Risk assessment for incident heart failure in individuals with atrial fibrillation. Eur J Heart Fail. 2013;15(8):843–9. https://doi.org/10.1093/eurjhf/hft041.

    Article  Google Scholar 

  69. Wang TJ, Larson MG, Levy D, Vasan RS, Leip EP, Wolf PA, et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart Study. Circulation. 2003;107(23):2920–5. https://doi.org/10.1161/01.CIR.0000072767.89944.6E.

    Article  Google Scholar 

  70. Pandey A, Kim S, Moore C, Thomas L, Gersh B, Allen LA, et al. Predictors and Prognostic Implications of Incident Heart Failure in Patients With Prevalent Atrial Fibrillation. JACC Heart Fail. 2017;5(1):44–52. https://doi.org/10.1016/j.jchf.2016.09.016.

    Article  Google Scholar 

  71. Suter TM, Ewer MS. Cancer drugs and the heart: importance and management. Eur Heart J. 2013;34(15):1102–11. https://doi.org/10.1093/eurheartj/ehs181.

    Article  CAS  Google Scholar 

  72. Keefe DL. Trastuzumab-associated cardiotoxicity. Cancer. 2002;95(7):1592–600. https://doi.org/10.1002/cncr.10854.

    Article  CAS  Google Scholar 

  73. Chen J, Long JB, Hurria A, Owusu C, Steingart RM, Gross CP. Incidence of heart failure or cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Coll Cardiol. 2012;60(24):2504–12. https://doi.org/10.1016/j.jacc.2012.07.068.

    Article  CAS  Google Scholar 

  74. Jaworski C, Mariani JA, Wheeler G, Kaye DM. Cardiac complications of thoracic irradiation. J Am Coll Cardiol. 2013;61(23):2319–28. https://doi.org/10.1016/j.jacc.2013.01.090.

    Article  Google Scholar 

  75. He J, Shlipak M, Anderson A, Roy JA, Feldman HI, Kallem RR, et al. Risk Factors for Heart Failure in Patients With Chronic Kidney Disease: The CRIC (Chronic Renal Insufficiency Cohort) Study. J Am Heart Assoc. 2017;6(5). https://doi.org/10.1161/JAHA.116.005336.

  76. Dhingra R, Gaziano JM, Djousse L. Chronic kidney disease and the risk of heart failure in men. Circ Heart Fail. 2011;4(2):138–44. https://doi.org/10.1161/CIRCHEARTFAILURE.109.899070.

    Article  Google Scholar 

  77. Waheed S, Matsushita K, Sang Y, Hoogeveen R, Ballantyne C, Coresh J, et al. Combined association of albuminuria and cystatin C-based estimated GFR with mortality, coronary heart disease, and heart failure outcomes: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis. 2012;60(2):207–16. https://doi.org/10.1053/j.ajkd.2012.03.011.

    Article  CAS  Google Scholar 

  78. Anstee QM, Mantovani A, Tilg H, Targher G. Risk of cardiomyopathy and cardiac arrhythmias in patients with nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2018;15(7):425–39. https://doi.org/10.1038/s41575-018-0010-0.

    Article  Google Scholar 

  79. Holt A, Bjerre J, Zareini B, Koch H, Tonnesen P, Gislason GH, et al. Sleep Apnea, the Risk of Developing Heart Failure, and Potential Benefits of Continuous Positive Airway Pressure (CPAP) Therapy. J Am Heart Assoc. 2018;7(13). https://doi.org/10.1161/JAHA.118.008684.

  80. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):1810–52. https://doi.org/10.1161/CIR.0b013e31829e8807.

    Article  Google Scholar 

  81. Hershberger RE, Cowan J, Morales A, Siegfried JD. Progress with genetic cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Heart Fail. 2009;2(3):253–61. https://doi.org/10.1161/CIRCHEARTFAILURE.108.817346.

    Article  Google Scholar 

  82. Folsom AR, Shah AM, Lutsey PL, Roetker NS, Alonso A, Avery CL, et al. American Heart Association’s Life’s Simple 7: Avoiding Heart Failure and Preserving Cardiac Structure and Function. Am J Med. 2015;128(9):970–6 e2. https://doi.org/10.1016/j.amjmed.2015.03.027.

  83. Uijl A, Koudstaal S, Vaartjes I, Boer JMA, Verschuren WMM, van der Schouw YT, et al. Risk for Heart Failure: The Opportunity for Prevention With the American Heart Association’s Life’s Simple 7. JACC Heart Fail. 2019;7(8):637–47. https://doi.org/10.1016/j.jchf.2019.03.009.

    Article  Google Scholar 

  84. Aggarwal M, Bozkurt B, Panjrath G, Aggarwal B, Ostfeld RJ, Barnard ND, et al. Lifestyle Modifications for Preventing and Treating Heart Failure. J Am Coll Cardiol. 2018;72(19):2391–405. https://doi.org/10.1016/j.jacc.2018.08.2160.

    Article  Google Scholar 

  85. • Sanches Machado d’Almeida K, Ronchi Spillere S, Zuchinali P, Correa Souza G. Mediterranean Diet and Other Dietary Patterns in Primary Prevention of Heart Failure and Changes in Cardiac Function Markers: A Systematic Review. Nutrients. 2018;10(1). https://doi.org/10.3390/nu10010058 This review highlights the evidence for lifestyle modifications to prevent heart failure including diet, physical activity, and weight management.

  86. Lara KM, Levitan EB, Gutierrez OM, Shikany JM, Safford MM, Judd SE, et al. Dietary Patterns and Incident Heart Failure in U.S. Adults Without Known Coronary Disease. J Am Coll Cardiol. 2019;73(16):2036–45. https://doi.org/10.1016/j.jacc.2019.01.067.

    Article  Google Scholar 

  87. Djousse L, Driver JA, Gaziano JM. Relation between modifiable lifestyle factors and lifetime risk of heart failure. JAMA. 2009;302(4):394–400. https://doi.org/10.1001/jama.2009.1062.

    Article  CAS  Google Scholar 

  88. Agha G, Loucks EB, Tinker LF, Waring ME, Michaud DS, Foraker RE, et al. Healthy lifestyle and decreasing risk of heart failure in women: the Women’s Health Initiative observational study. J Am Coll Cardiol. 2014;64(17):1777–85. https://doi.org/10.1016/j.jacc.2014.07.981.

    Article  Google Scholar 

  89. Nayor M, Vasan RS. Preventing heart failure: the role of physical activity. Curr Opin Cardiol. 2015;30(5):543–50. https://doi.org/10.1097/HCO.0000000000000206.

    Article  Google Scholar 

  90. LaMonte MJ, Manson JE, Chomistek AK, Larson JC, Lewis CE, Bea JW, et al. Physical Activity and Incidence of Heart Failure in Postmenopausal Women. JACC Heart Fail. 2018;6(12):983–95. https://doi.org/10.1016/j.jchf.2018.06.020.

    Article  Google Scholar 

  91. Young DR, Reynolds K, Sidell M, Brar S, Ghai NR, Sternfeld B, et al. Effects of physical activity and sedentary time on the risk of heart failure. Circ Heart Fail. 2014;7(1):21–7. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000529.

    Article  Google Scholar 

  92. Sundstrom J, Bruze G, Ottosson J, Marcus C, Naslund I, Neovius M. Weight Loss and Heart Failure: A Nationwide Study of Gastric Bypass Surgery Versus Intensive Lifestyle Treatment. Circulation. 2017;135(17):1577–85. https://doi.org/10.1161/CIRCULATIONAHA.116.025629.

    Article  Google Scholar 

  93. Tsujimoto T, Kajio H. Abdominal Obesity Is Associated With an Increased Risk of All-Cause Mortality in Patients With HFpEF. J Am Coll Cardiol. 2017;70(22):2739–49. https://doi.org/10.1016/j.jacc.2017.09.1111.

    Article  Google Scholar 

  94. Piepoli MF, Corra U, Veglia F, Bonomi A, Salvioni E, Cattadori G, et al. Exercise tolerance can explain the obesity paradox in patients with systolic heart failure: data from the MECKI Score Research Group. Eur J Heart Fail. 2016;18(5):545–53. https://doi.org/10.1002/ejhf.534.

    Article  CAS  Google Scholar 

  95. Khan SS, Carnethon MR, Lloyd-Jones DM. The Obesity Paradigm and Lifetime Risk of Cardiovascular Disease-Reply. JAMA Cardiol. 2018;3(9):896–7. https://doi.org/10.1001/jamacardio.2018.1840.

    Article  Google Scholar 

  96. Group SR, Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med. 2015;373(22):2103–16. https://doi.org/10.1056/NEJMoa1511939.

    Article  CAS  Google Scholar 

  97. Upadhya B, Rocco M, Lewis CE, Oparil S, Lovato LC, Cushman WC, et al. Effect of Intensive Blood Pressure Treatment on Heart Failure Events in the Systolic Blood Pressure Reduction Intervention Trial. Circ Heart Fail. 2017;10(4). https://doi.org/10.1161/CIRCHEARTFAILURE.116.003613.

  98. • Upadhya B, Stacey RB, Kitzman DW. Preventing Heart Failure by Treating Systolic Hypertension: What Does the SPRINT Add? Curr Hypertens Rep. 2019;21(1):9. https://doi.org/10.1007/s11906-019-0913-3 A secondary analysis of the SPRINT trial demonstrated that targeting a systolic blood pressure of less than 120 mmHg is associated with reduced incidence of HF.

    Article  Google Scholar 

  99. Molsberry RJ, Lloyd-Jones DM, Ning H, Lewis CE, Yancy CW, Shah SJ, et al. Would Risk-Stratified Intensive Blood Pressure Lowering Prevent Heart Failure More Effectively? J Card Fail. 2019;25(8):S95–S6. https://doi.org/10.1016/j.cardfail.2019.07.273.

    Article  Google Scholar 

  100. Dunlay SM, Givertz MM, Aguilar D, Allen LA, Chan M, Desai AS, et al. Type 2 Diabetes Mellitus and Heart Failure, A Scientific Statement From the American Heart Association and Heart Failure Society of America. J Card Fail. 2019;25(8):584–619. https://doi.org/10.1016/j.cardfail.2019.05.007.

    Article  Google Scholar 

  101. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117–28. https://doi.org/10.1056/NEJMoa1504720.

    Article  CAS  Google Scholar 

  102. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(7):644–57. https://doi.org/10.1056/NEJMoa1611925.

    Article  CAS  Google Scholar 

  103. Greene SJ, Butler J. Primary Prevention of Heart Failure in Patients With Type 2 Diabetes Mellitus. Circulation. 2019;139(2):152–4. https://doi.org/10.1161/CIRCULATIONAHA.118.037599.

    Article  Google Scholar 

  104. Fitchett D, Inzucchi SE, Cannon CP, McGuire DK, Scirica BM, Johansen OE, et al. Empagliflozin Reduced Mortality and Hospitalization for Heart Failure Across the Spectrum of Cardiovascular Risk in the EMPA-REG OUTCOME Trial. Circulation. 2019;139(11):1384–95. https://doi.org/10.1161/CIRCULATIONAHA.118.037778.

    Article  CAS  Google Scholar 

  105. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019. https://doi.org/10.1056/NEJMoa1911303.

  106. • Mital S, Musunuru K, Garg V, Russell MW, Lanfear DE, Gupta RM, et al. Enhancing Literacy in Cardiovascular Genetics: A Scientific Statement From the American Heart Association. Circ Cardiovasc Genet. 2016;9(5):448–67. https://doi.org/10.1161/HCG.0000000000000031 This prospective, randomized control trial of patients with systolic heart failure showed the use of an SGLT2 inhibitor reduced cardiovascular death and heart failure events in patients both with and without diabetes. This landmark trial was the first to demonstrate the benefit of SGLT2 inhibitors for cardiovascular outcomes in patients without diabetes.

    Article  CAS  Google Scholar 

  107. Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366(7):619–28. https://doi.org/10.1056/NEJMoa1110186.

    Article  CAS  Google Scholar 

  108. Ware JS, Li J, Mazaika E, Yasso CM, DeSouza T, Cappola TP, et al. Shared Genetic Predisposition in Peripartum and Dilated Cardiomyopathies. N Engl J Med. 2016;374(3):233–41. https://doi.org/10.1056/NEJMoa1505517.

    Article  CAS  Google Scholar 

  109. Ware JS, Amor-Salamanca A, Tayal U, Govind R, Serrano I, Salazar-Mendiguchia J, et al. Genetic Etiology for Alcohol-Induced Cardiac Toxicity. J Am Coll Cardiol. 2018;71(20):2293–302. https://doi.org/10.1016/j.jacc.2018.03.462.

    Article  CAS  Google Scholar 

  110. Garcia-Pavia P, Kim Y, Restrepo-Cordoba MA, Lunde IG, Wakimoto H, Smith AM, et al. Genetic Variants Associated With Cancer Therapy-Induced Cardiomyopathy. Circulation. 2019;140(1):31–41. https://doi.org/10.1161/CIRCULATIONAHA.118.037934.

    Article  CAS  Google Scholar 

  111. Pirruccello JP, Bick A, Chaffin M, Aragam KG, Choi SH, Lubitz SA, et al. Titin Truncating Variants in Adults Without Known Congestive Heart Failure. J Am Coll Cardiol. 2020;75(10):1239–41. https://doi.org/10.1016/j.jacc.2020.01.013.

    Article  Google Scholar 

  112. Ware JS, Cook SA. Role of titin in cardiomyopathy: from DNA variants to patient stratification. Nat Rev Cardiol. 2018;15(4):241–52. https://doi.org/10.1038/nrcardio.2017.190.

    Article  CAS  Google Scholar 

  113. Cresci S, Pereira NL, Ahmad F, Byku M, de Las FL, Lanfear DE, et al. Heart Failure in the Era of Precision Medicine: A Scientific Statement From the American Heart Association. Circ Genom Precis Med. 2019;12(10):458–85. https://doi.org/10.1161/HCG.0000000000000058.

    Article  CAS  Google Scholar 

  114. Heidenreich PA, Hernandez AF, Yancy CW, Liang L, Peterson ED, Fonarow GC. Get With The Guidelines program participation, process of care, and outcome for Medicare patients hospitalized with heart failure. Circ Cardiovasc Qual Outcomes. 2012;5(1):37–43. https://doi.org/10.1161/CIRCOUTCOMES.110.959122.

    Article  Google Scholar 

  115. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;74(10):1376–414. https://doi.org/10.1016/j.jacc.2019.03.009.

    Article  Google Scholar 

Download references

Funding

This work is supported by grants from the American Heart Association (no. 19TPA34890060) and the National Institutes of Health/National Heart, Lung, and Blood Institute (KL2TR001424) to Dr. Khan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadiya S. Khan MD, MSc.

Ethics declarations

Conflict of Interest

Lua A. Jafari declares that she has no conflict of interest.

Rachel M. Suen declares that she has no conflict of interest.

Sadiya S. Khan declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funding sponsor did not contribute to design and conduct of the study, collection, management, analysis, or interpretation of the data or preparation, review, or approval of the manuscript. The authors take responsibility for decision to submit the manuscript for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, L.A., Suen, R.M. & Khan, S.S. Refocusing on the Primary Prevention of Heart Failure. Curr Treat Options Cardio Med 22, 13 (2020). https://doi.org/10.1007/s11936-020-00811-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-020-00811-3

Keywords

Navigation