Skip to main content
Log in

Efficient Production of Polymalic Acid by a Novel Isolated Aureobasidium pullulans Using Metabolic Intermediates and Inhibitors

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Polymalic acid (PMA) is a linear anionic polyester composed of l-malic acid monomers, which have potential applications as drug carriers, surgical suture, and biodegradable plastics. In this study, a novel strain of Aureobasidium pullulans var. melanogenum GXZ-6 was isolated and identified according to the morphological observation and deoxyribonucleic acid internal-transcribed spacer sequence analysis, and the product of PMA was characterized by FT-IR, 13C-NMR, and 1H-NMR spectra. The PMA titer of GXZ-6 reached 62.56 ± 1.18 g L−1 with productivity of 0.35 g L−1 h−1 using optimized medium with addition of metabolic intermediates (citrate and malate) and inhibitor (malonate) by batch fermentation in a 10-L fermentor. Besides that the malate for PMA synthesis in GXZ-6 might mainly come from the glyoxylate cycle, based on results, citrate, malate, malonate, and maleate increased while succinate and fumarate inhibited the production of PMA, which was different from that of other A. pullulans. This study provided a potential strain and a simple metabolic control strategy for high-titer production of PMA and shared novel information on the biosynthesis pathway of PMA in A. pullulans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chi, Z., Liu, G. L., Liu, C. G., & Chi, Z. M. (2016). Poly(β-l-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings. Applied Microbiology and Biotechnology, 100(9), 3841–3851.

    Article  CAS  PubMed  Google Scholar 

  2. Ding, H., Helguera, G., Rodriguez, J. A., Markman, J., Luria-Perez, R., Gangalum, P., Portilla-Arias, J., Inoue, S., Daniels-Wells, T. R., Black, K., Holler, E., Penichet, M. L., & Ljubimova, J. Y. (2013). Polymalic acid nanobioconjugate for simultaneous immunostimulation and inhibition of tumor growth in HER2/neu-positive breast cancer. Journal of Controlled Release, 171(3), 322–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chi, Z., Wang, Z. P., Wang, G. Y., Khan, I., & Chi, Z. M. (2016). Microbial biosynthesis and secretion of l-malic acid and its applications. Critical Reviews in Biotechnology, 36(1), 99–107.

    Article  CAS  PubMed  Google Scholar 

  4. Zou, X., Zhou, Y., & Yang, S. T. (2013). Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnology and Bioengineering, 110(8), 2105–2113.

    Article  CAS  PubMed  Google Scholar 

  5. Shimada, K., Matsushima, K. i., Fukumoto, J., & Yamamoto, T. (1969). Poly-(l)-malic acid; a new protease inhibitor from Penicillium cyclopium. Biochemical and Biophysical Research Communications, 35(5), 619–624.

    Article  CAS  PubMed  Google Scholar 

  6. Fischer, H., Erdmann, S., & Holler, E. (1989). An unusual polyanion from Physarum polycephalum that inhibits homologous DNA-polymerase α in vitro. Biochemistry, 28(12), 5219–5226.

    Article  CAS  PubMed  Google Scholar 

  7. Nagata, N., Nakahara, T., & Tabuchi, T. (1993). Fermentative production of poly(β-l-malic acid), a polyelectrolytic biopolyester, by Aureobasidium sp. Bioscience, Biotechnology, and Biochemistry, 57(4), 638–642.

    Article  CAS  Google Scholar 

  8. Rathberger, K., Reisner, H., Willibald, B., Molitoris, H.-P., & Holler, E. (1999). Comparative synthesis and hydrolytic degradation of poly (l-malate) by myxomycetes and fungi. Mycological Research, 103(5), 513–520.

    Article  CAS  Google Scholar 

  9. Liu, S. J., & Steinbuchel, A. (1996). Investigation of poly ( β-l-malic acid) production by strains of Aureobasidium pullulans. Applied Microbiology and Biotechnology, 46(3), 273–278.

    Article  CAS  Google Scholar 

  10. Zhang, H., Cai, J., Dong, J., Zhang, D., Huang, L., Xu, Z., & Cen, P. (2011). High-level production of poly (β-l-malic acid) with a new isolated Aureobasidium pullulans strain. Applied Microbiology and Biotechnology, 92(2), 295–303.

    Article  CAS  PubMed  Google Scholar 

  11. Cao, W., Qi, B., Zhao, J., Qiao, C., Su, Y., & Wan, Y. (2013). Control strategy of pH, dissolved oxygen concentration and stirring speed for enhancing β-poly (malic acid) production by Aureobasidium pullulans ipe-1. Journal of Chemical Technology & Biotechnology, 88(5), 808–817.

    Article  CAS  Google Scholar 

  12. Zou, X., Yang, J., Tian, X., Guo, M., Li, Z., & Li, Y. (2016). Production of polymalic acid and malic acid from xylose and corncob hydrolysate by a novel Aureobasidium pullulans YJ 6–11 strain. Process Biochemistry, 51(1), 16–23.

    Article  CAS  Google Scholar 

  13. Wei, P., Cheng, C., Lin, M., Zhou, Y., & Yang, S. T. (2017). Production of poly(malic acid) from sugarcane juice in fermentation by Aureobasidium pullulans: kinetics and process economics. Bioresource Technology, 224, 581–589.

    Article  CAS  PubMed  Google Scholar 

  14. Liu, S. J., & Steinbuchel, A. (1997). Production of poly(malic acid) from different carbon sources and its regulation in Aureobasidium pullulans. Biotechnology Letters, 19(1), 11–14.

    Article  Google Scholar 

  15. Cao, W., Luo, J., Qi, B., Zhao, J., Qiao, C., Ding, L., Su, Y., & Wan, Y. (2014). β-Poly(l-malic acid) production by fed-batch culture of Aureobasidium pullulans ipe-1 with mixed sugars. Engineering in Life Sciences, 14(2), 180–189.

    Article  CAS  Google Scholar 

  16. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870–1874.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Y., Song, X., Zhang, Y., Wang, B., & Zou, X. (2016). Effects of nitrogen availability on polymalic acid biosynthesis in the yeast-like fungus Aureobasidium pullulans. Microbial Cell Factories, 15(1), 146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yurlova, N. A., & de Hoog, G. S. (1997). A new variety of Aureobasidium pullulans characterized by exopolysaccharide structure, nutritional physiology and molecular features. Antonie van Leeuwenhoek, 72(2), 141–147.

    Article  CAS  PubMed  Google Scholar 

  19. Zalar, P., Gostincar, C., de Hoog, G. S., Ursic, V., Sudhadham, M., & Gunde-Cimerman, N. (2008). Redefinition of Aureobasidium pullulans and its varieties. Studies in Mycology, 61, 21–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Manitchotpisit, P., Skory, C. D., Peterson, S. W., Price, N. P., Vermillion, K. E., & Leathers, T. D. (2012). Poly(β-l-malic acid) production by diverse phylogenetic clades of Aureobasidium pullulans. Journal of Industrial Microbiology & Biotechnology, 39(1), 125–132.

    Article  CAS  Google Scholar 

  21. Wang, Y. K., Chi, Z., Zhou, H. X., Liu, G. L., & Chi, Z. M. (2015). Enhanced production of Ca2+-polymalate (PMA) with high molecular mass by Aureobasidium pullulans var. pullulans MCW. Microbial Cell Factories, 14(1), 115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zan, Z., & Zou, X. (2013). Efficient production of polymalic acid from raw sweet potato hydrolysate with immobilized cells of Aureobasidium pullulans CCTCC M2012223 in aerobic fibrous bed bioreactor. Journal of Chemical Technology & Biotechnology, 88(10), 1822–1827.

    Article  CAS  Google Scholar 

  23. Cheng, C., Zhou, Y., Lin, M., Wei, P., & Yang, S. T. (2017). Polymalic acid fermentation by Aureobasidium pullulans for malic acid production from soybean hull and soy molasses: Fermentation kinetics and economic analysis. Bioresource Technology, 223, 166–174.

    Article  CAS  PubMed  Google Scholar 

  24. Chi, Z., Wang, F., Chi, Z., Yue, L., Liu, G., & Zhang, T. (2009). Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Applied Microbiology and Biotechnology, 82(5), 793–804.

    Article  CAS  PubMed  Google Scholar 

  25. Gostincar, C., Ohm, R. A., Kogej, T., Sonjak, S., Turk, M., Zajc, J., Zalar, P., Grube, M., Sun, H., Han, J., Sharma, A., Chiniquy, J., Ngan, C. Y., Lipzen, A., Barry, K., Grigoriev, I. V., & Gunde-Cimerman, N. (2014). Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics, 15(1), 549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang, H., Liu, G. L., Chi, Z., Wang, J. M., Zhang, L. L., & Chi, Z. M. (2017). Both a PKS and a PPTase are involved in melanin biosynthesis and regulation of Aureobasidium melanogenum XJ5-1 isolated from the Taklimakan desert. Gene, 602, 8–15.

    Article  CAS  PubMed  Google Scholar 

  27. Gasslmaier, B., & Holler, E. (1997). Specificity and direction of depolymerization of β-poly(l-malate) catalysed by polymalatase from Physarum polycephalum fluorescence labeling at the carboxy-terminus of β-poly(l-malate). European Journal of Biochemistry, 250(2), 308–314.

    Article  CAS  PubMed  Google Scholar 

  28. Lee, B. S., & Holler, E. (2000). β-Poly(l-malate) production by non-growing microplasmodia of Physarum polycephalum effects of metabolic intermediates and inhibitors. FEMS Microbiology Letters, 193(1), 69–74.

    CAS  PubMed  Google Scholar 

  29. Feng, J., Yang, J., Li, X., Guo, M., Wang, B., Yang, S. T., & Zou, X. (2017). Reconstruction of a genome-scale metabolic model and in silico analysis of the polymalic acid producer Aureobasidium pullulans CCTCC M2012223. Gene, 607, 1–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (21506039, 31760452, 31560448) and the Natural Science Foundation of Guangxi Province (2016GXNSFAA380140, 2015GXNSFBA139052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqun Liang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, W., Zhang, B., Chen, G. et al. Efficient Production of Polymalic Acid by a Novel Isolated Aureobasidium pullulans Using Metabolic Intermediates and Inhibitors. Appl Biochem Biotechnol 187, 612–627 (2019). https://doi.org/10.1007/s12010-018-2825-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2825-0

Keywords

Navigation