Skip to main content

Advertisement

Log in

Physiological, Biochemical and Molecular Responses to Oxidative Stress in Saccharum spontaneum

  • Review Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

A Correction to this article was published on 07 November 2022

This article has been updated

Abstract

The oxidative stress response was studied in five different clones of Saccharum spontaneum (IMP-564, IS76-216, Pamba, SES-90 and Taiwan) by analyzing the physiological and biochemical parameters and gene expression pattern. The sixty days-old plants were sprayed with different concentrations of 30% H2O2 (300 ppm, 500 ppm and 1000 ppm) for consecutive three days in glass house. Adaptive response was recorded in terms of chlorophyll fluorescence, chlorophyll stability index (CSI), activities of peroxidase (POX) and super oxide (SOD), lipid peroxidation (LPO), protein and proline content at 48 h and 72 h of H2O2 treatment. The IMP -564 clone recorded high SOD and lower lipid peroxidation levels. Based on chlorophyll fluorescence, CSI, peroxidase, SOD and lipid peroxidation values, and the clone SES-90 recorded positive trend for stress tolerance. CSI showed significant difference between genotypes and different concentrations of H2O2. As the genotypes IMP-564 and SES-90 showed positive response to oxidative stress tolerance, the S. spontaneum genotype SES-90 was selected for comparative gene expression studies with Erianthus sp clones IJ76-389 and IK76-91. Different concentrations of H2O2 and different time intervals (control, 500 ppm and 1000 ppm for 48 h and 72 h) were used for gene expression studies. The stress responsive genes viz. Ascorbate peroxidase gene (Apx) Nam, Ataf1 and Cuc2 gene (NAC), Ethylene response factor gene (Erf), Glutathione S-transferases gene (Gst), Myeloblastosis antisense gene (Mybas) and Catalase gene (Cat) showed differential expression among the genotypes of S. spontaneum and Erianthus sp. Among the genotypes, SES 90 and IK76-91 showed better tolerance against oxidative stress and the expression levels of stress responsive genes in the genotype IK76-91 was higher than the genotype SES 90.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

Abbreviations

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

POX:

Peroxidase

LPO:

Lipid peroxidation

CF:

Chlorophyll fluorescence

Fv/Fm:

Variable fluorescence/Maximum fluorescence

CSI:

Chlorophyll stability index

TFs:

Transcription factors

qRT-PCR:

Quantitative Reverse Transcriptase—Polymerase Chain Reaction

H2O2 :

Hydrogen peroxide

References

  • Ambawat, S., P. Sharma, N.R. Yadav, and C.Y. Ram. 2013. MYB transcription factor genes as regulators for plant responses: An overview. Physiology and Molecular Biology of Plants 19 (3): 307–321. https://doi.org/10.1007/s12298-013-0179-1.

    Article  CAS  Google Scholar 

  • Arisi, A.M., G. Cornic, L. Jouanin, and C.H. Foyer. 1998. Overexpression of iron superoxide dismutase in transformed poplar modifies the regulation of photosynthesis at low CO2 partial pressures or following exposure to the prooxidantherbicide methyl viologen. Plant Physiology 117: 565–574.

    Article  CAS  Google Scholar 

  • Augustine, S.M., J.A. Narayan, D.P. Syamaladevi, C. Appunu, M. Chakravarthi, and V. Ravichandran. 2015. Erianthus arundinaceus HSP70 (EaHSP70) over expression increases drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Science 232: 23–34. https://doi.org/10.1016/j.plantsci.2014.12.012.

    Article  CAS  Google Scholar 

  • Boaretto, L.F., G. Carvalho, L. Borgo, S. Creste, M.G. Landell, and P. Mazzafera. 2014. Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiology and Biochemistry 74: 165–175. https://doi.org/10.1016/j.plaphy.2013.11.016.

    Article  CAS  Google Scholar 

  • Bowler, C., W. Van Camp, M. Van Montagu, and D. Inzé. 1994. Superoxide dismutases in plants. Critical Reviews in Plant Science 13: 199–218.

    Article  CAS  Google Scholar 

  • Cattivelli, L., F. Rizza, F.W. Badeck, E. Mazzucotelli, A.M. Mastrangelo, E. Francia, C. Mare, A. Tondelli, and A.M. Stanca. 2008. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crops Research 105: 1–14.

    Article  Google Scholar 

  • Cavalcanti, F.R., J.T.A. Oliveira, A.S. Martins-Miranda, R.A. Viégas, and J.A.G. Silveira. 2004. Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves. The New Phytologist 163 (3): 563–571.

    Article  CAS  Google Scholar 

  • Chagas, R.M., J.A.G. Silveira, R.V. Ribeiro, V.A. Vitorello, and H. Carrer. 2008. Photochemical damage and comparative performance of superoxide dismutase and ascorbate peroxidase in sugarcane leaves exposed to paraquat-induced oxidative stress. Pesticide Biochemistry and Physiology 90: 181–188.

    Article  CAS  Google Scholar 

  • Chakraborty, A., and S. Bhattacharjee. 2015. Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars. Journal of plant physiology 176: 65–77. https://doi.org/10.1016/j.jplph.2014.10.016.

    Article  CAS  Google Scholar 

  • Chen, J.H., H.W. Jiang, E.J. Hsieh, H.Y. Chen, C.T. Chien, H.L. Hsieh, et al. 2012. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiology 158: 340–351. https://doi.org/10.1104/pp.111.181875.

    Article  CAS  Google Scholar 

  • Cui, M., M. Haider, P. Chai, J. Guo, P. Du, H. Li, W. Dong, B. Huang, Z. Zheng, L. Shi, X. Zhang, and S. Han. 2021. Genome-wide identification and expression analysis of AP2/ERF transcription factor related to drought stress in cultivated peanut (Arachis hypogaea L.). Frontiers in Genetics 12: 750–761. https://doi.org/10.3389/fgene.2021.750761.

    Article  CAS  Google Scholar 

  • Deng, X.P., Y.J. Cheng, X.B. Wu, S.S. Kwak, W. Chen, and A.E. Eneji. 2012. Exogenous hydrogen peroxide positively influences root growth and metabolism in leaves of sweet potato seedlings. Australian Journal of Crop Science. 6: 1572–1578.

    CAS  Google Scholar 

  • Ding, N., A. Wang, X. Zhang, Y. Wu, R. Wang, H. Cui, et al. 2017. Identification and analysis of glutathione S-transferase gene family in sweet potato reveal divergent GST-mediated networks in aboveground and underground tissues in response to abiotic stresses. BMC Plant Biology 17: e225. https://doi.org/10.1186/s12870-017-1179-z.

    Article  CAS  Google Scholar 

  • Exposito-Rodriguez, M., P.P. Laissue, G. Yvon-Durocher, N. Smirnoff, and P.M. Mullineaux. 2017. Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nature Communications 8 (1): 49. https://doi.org/10.1038/s41467-017-00074-w.

    Article  CAS  Google Scholar 

  • Fang, Y., K. Liao, H. Du, Y. Xu, H. Song, and X. Li. 2015. A stress- responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. Journal of Experimental Botany 66: 6803. https://doi.org/10.1093/jxb/erv386.

    Article  CAS  Google Scholar 

  • Ferreira, T., M.S. Tsunada, D. Bassi, P. Araújo, L. Mattiello, and G.V. Guidelli. 2017. Sugarcane Water Stress Tolerance Mechanisms and Its Implications on Developing Biotechnology Solutions. Frontiers in Plant Science 8: 1077. https://doi.org/10.3389/fpls.2017.01077.

    Article  Google Scholar 

  • Gill, S.S., and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016.

    Article  CAS  Google Scholar 

  • Hamim, Violita, and Triadiati and Miftahudin. 2017. Oxidative stress and photosynthesis reduction of cultivated (Glycine max L.) and wild soybean (G.tomentella L.) exposed to drought and paraquat. Asian Journal of Plant Science 16: 65–77.

    Article  Google Scholar 

  • Han, C., Q. Liu, and Y. Yang. 2009. Short-term effects of experimental warming and enhanced ultraviolet-B radiation on photosynthesis and antioxidant defense of Picea asperata seedlings. Plant Growth Regulation 58: 153–162. https://doi.org/10.1007/s10725-009-9363-2.

    Article  CAS  Google Scholar 

  • Harb, A., D. Awad, and N. Samarah. 2016. Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought. Journal of Plant Interactions. 10: 109–116. https://doi.org/10.1080/17429145.2015.1033023.

    Article  CAS  Google Scholar 

  • Hirayama, T., and K. Shinozaki. 2010. Research on plant abiotic stress responses in the post-genome era: Past, present and future. Plant Journal 61: 1041–1052. https://doi.org/10.1111/j.1365-313X.2010.04124.x.

    Article  CAS  Google Scholar 

  • Hong, Y., H. Zhang, L. Huang, L. Dayong, and F. Song. 2016. Over expression of a stress-Responsive NAC transcription Factor Gene ONAC022 improves Drought and salt Tolerance in Rice. Frontiers in Plant Science 10: 3389.

    Google Scholar 

  • Hu, W.H., X.S. Song, and K. Shi. 2008. Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling. Photosynthetica 46: 581. https://doi.org/10.1007/s11099-008-0098-5.

    Article  CAS  Google Scholar 

  • Ito, Y., K. Koji, M. Kyonoshin, T. Teruaki, K. Masatomo, S. Motoaki, S. Kazuo, and Y.S. Kazuko. 2006. Functional Analysis of Rice DREB1/CBF-type Transcription Factors Involved in Cold-responsive Gene Expression in Transgenic Rice. Plant and Cell Physiology 47: 141–153.

    Article  CAS  Google Scholar 

  • Jia, B., M. Sun, X. Sun, R. Li, Z. Wang, J. Wu, et al. 2016. Overexpression of GsGSTU13 and SCMRP in Medicago sativa confers increased salt–alkaline tolerance and methionine content. Physiologia Plantarum 156: 176–189. https://doi.org/10.1111/ppl.12350.

    Article  CAS  Google Scholar 

  • Kate, M., and N.J. Giles. 2000. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany 51: 659–668. https://doi.org/10.1093/jexbot/51.345.659.

    Article  Google Scholar 

  • Kohila, S., and R. Gomathi. 2018. Adaptive physiological and biochemical response of sugarcane genotypes to high-temperature stress. Indian Journal of Plant Physiology 23 (2): 245–260.

    Article  CAS  Google Scholar 

  • Kumari, A., P. Das, A.K. Parida, and P.K. Agarwal. 2015. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science 6: 537. https://doi.org/10.3389/fpls.2015.00537.

    Article  Google Scholar 

  • Levine, A., R. Tenhaken, R. Dixon, and C. Lamb. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593. https://doi.org/10.1016/0092-8674(94)90544-4.

    Article  CAS  Google Scholar 

  • Li, J., C. Chen, J. Wei, Y. Pan, C. Su, and X. Zhang. 2019. SpPKE1, a multiple stress-responsive gene confers salt tolerance in tomato and tobacco. International Journal of Molecular Sciences 20 (10): 2478. https://doi.org/10.3390/ijms20102478.

    Article  CAS  Google Scholar 

  • Liang, X., L.U. Zhang, S.K. Natarajan, and D.F. Becker. 2013. Proline mechanism of stress survival. Antioxidants and Redox Signaling 19: 998–1011. https://doi.org/10.1089/ars.2012.5074.

    Article  CAS  Google Scholar 

  • Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2DDC(T) method. Methods 25: 402–408.

    Article  CAS  Google Scholar 

  • Maheshwari, R., and R.S. Dubey. 2009. Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regulation 59: 37–49. https://doi.org/10.1007/s10725-009-9386-8.

    Article  CAS  Google Scholar 

  • Manimekalai, R., N. Jini, M. Gokul, A. Selvi, R. Gomathi, and R. Arun kumar. 2018a. Biochemical and physiological response to oxidative stress in cultivated sugarcane and wild genera. Indian Journal of Plant Physiology 23: 1–10. https://doi.org/10.1007/s40502-018-0368-6.

    Article  CAS  Google Scholar 

  • Manimekalai, R., N. Jini, M. Gokul, A. Selvi, K. Pradheep, and R. Gomathi. 2018b. Hydrogen peroxide induced oxidative stress in sugarcane and response expression pattern of stress responsive genes through quantitative RT-PCR. Sugar Tech 20: 681–691. https://doi.org/10.1007/s12355-018-0604-4.

    Article  CAS  Google Scholar 

  • Manimekalai, R., N. Jini, M. Gokul, A. Selvi, A. Meena, R. Gomathi, and B. Ram. 2016. Genome wide analysis of NAC gene family ‘sequences’ in sugarcane and its comparative phylogenetic relationship with rice, sorghum, maize and Arabidopsis for prediction of stress associated NAC genes. Agri Gene 3: 1–11. https://doi.org/10.1016/j.aggene.2016.10.003.

    Article  Google Scholar 

  • Matysik, J., B. Bhalu. Alia, and P. Mohanty. 2002. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science 82: 525–532.

    CAS  Google Scholar 

  • Mhamdi, A., G. Queval, S. Chaouch, S. Vanderauwera, B.F. Van, and G. Noctor. 2010. Catalase function in plants: A focus on Arabidopsis mutants as stress-mimic models. Journal of Experimental Botany 61 (15): 4197–4220. https://doi.org/10.1093/jxb/erq282.

    Article  CAS  Google Scholar 

  • Mishra, S., A.B. Jha, and R.S. Dubey. 2011. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248 (3): 565–577. https://doi.org/10.1007/s00709-010-0210-0.

    Article  CAS  Google Scholar 

  • Mittler, R., S. Vanderauwera, N. Suzuki, G. Miller, V.B. Tognetti, and K. Vandepoele. 2011. ROS signaling: The new wave? Trends in Plant Science 16: 300–309. https://doi.org/10.1016/j.tplants.2011.03.007.

    Article  CAS  Google Scholar 

  • Mizoi, J., K. Shinozaki, and K. Yamaguchi-Shinozaki. 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et biophysica acta 1819 (2): 86–96. https://doi.org/10.1016/j.bbagrm.2011.08.004.

    Article  CAS  Google Scholar 

  • Mohan, M.M., S.L. Narayana, and S.M. Ibrahim. 2000. Chlorophyll Stability Index (CSI): Its impact on salt tolerance in rice. International Rice Research Notes 25: 38–39.

    Google Scholar 

  • Nakashima, K., and K. Yamaguchi-Shinozaki. 2006. Regulons in osmotic stress responsive and cold stress-responsive gene expression in plants. Physiologia Plantarum 126: 62–71.

    Article  CAS  Google Scholar 

  • Noctor, G., and C. Foyer. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Annu Reviwe of Plant Physiology 49: 249–279. https://doi.org/10.1146/annurev.arplant.49.1.249.

    Article  CAS  Google Scholar 

  • Paramjeet, K., N. Sharma, M. Kumar and S. Kaur. 2014. Changes in growth and antioxidative enzyme activities in Vicia faba L. seedlings under chromium stress. Indian Journal of Plant Physiology 19(2), 101–106

  • Pujari, D.S., and S.V. Chanda. 2002. Effect of salinity stress on growth, peroxidase and IAA oxidase activities in vigna seedlings. Acta Physiologia Plantarum 24 (4): 435–439.

    Article  CAS  Google Scholar 

  • Roy, S. 2015. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signalling and Behaviour 10: 1559–2324. https://doi.org/10.1080/15592324.2015.1117723.

    Article  CAS  Google Scholar 

  • Sanghera, G.S., and A. Kumar. 2018. Recent perspectives towards enhancing drought tolerance in sugarcane. Journal of Plant Science Researh 34 (1): 23–34.

    Article  Google Scholar 

  • Sharma, P., and R.S. Dubey. 2007. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Reports 26 (11): 2027–2038. https://doi.org/10.1007/s00299-007-0416-6.

    Article  CAS  Google Scholar 

  • Shinozaki, K., K. Yamaguchi-Shinozaki, and M. Seki. 2003. Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology 6: 410–417. https://doi.org/10.1016/s1369-5266(03)00092-x

    Article  CAS  Google Scholar 

  • Song, X., Y. Wang, and X. Lv. 2015. Responses of plant biomass, photosynthesis and lipidperoxidation to warming and precipitation change in two dominant species (Stipa grandis and Leymus chinensis) from North China Grasslands. Ecology and Evolution 6 (6): 1871–1882. https://doi.org/10.1002/ece3.1982.

    Article  Google Scholar 

  • Srivastava, S., and R.S. Dubey. 2011. Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regulation 64: 1–16. https://doi.org/10.1007/s10725-010-9526-1.

    Article  CAS  Google Scholar 

  • Tanou, G., A. Molassiotis, and G. Diamantidis. 2009. Induction of reactive oxygen species and necrotic death-like destruction in strawberry leaves by salinity. Environmental and Experimental Botany 65 (2–3): 270–281. https://doi.org/10.1016/j.envexpbot.2008.09.005.

    Article  CAS  Google Scholar 

  • Upadhyaya, H., M.H. Khan, S.K. Panda, and S.K. Dhyani. 2007. Hydrogen peroxide induces oxidative stress in detached leaves of Oryza sativa L. Plant Physiology 33 (1–2): 83–95.

    CAS  Google Scholar 

  • Van Toai, T.T., and C.S. Bolles. 1991. Post-anoxic injury in soybean (Glycine max) seedlings. Plant Physiology 9: 588–592.

    Google Scholar 

  • Vijayalakshmi, D., S. Srividhya, S. Muthulakshmi, and R. Satishraj. 2014. Induction of Oxidative Stress by Hydrogen Peroxide Treatment in Rice Genotypes to Study the Osmolyte Accumulation Pattern and Antioxidant Capacity. Journal of Stress Physiology and Biochemistry 10 (3): 37–46.

    Google Scholar 

  • Wang, X., H. Han, J. Yan, F. Chen, and W. Wei. 2015. A new AP2/ERF transcription factor from the oil plant Jatropha curcas confers salt and drought tolerance to transgenic tobacco. Applied Biochemistry and Biotechnology 176 (2): 582–597. https://doi.org/10.1007/s12010-015-1597-z.

    Article  CAS  Google Scholar 

  • Xu, W., K. Cui, A. Xu, L. Nie, J. Huang, and S. Peng. 2015. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiologiae Plantarum 37: 9. https://doi.org/10.1007/s11738-014-1760-0.

    Article  CAS  Google Scholar 

  • Xu, Z., and G.S. Zhou. 2006. Combined effects of waterstress and high temperature on photosynthesis, nitrogenmetabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224: 1080–1090.

    Article  CAS  Google Scholar 

  • Xu, Z., G.S. Zhou, and H. Shimizu. 2009. Effects of soildrought with nocturnal warming on leaf stomatal traits andmesophyll cell ultrastructure of a perennial grass. Crop Science 49: 1843–1851.

    Article  Google Scholar 

  • Xu, Z., G.S. Zhou, G. Han, and Y. Li. 2011. Photosynthetic potential and its association with lipid peroxidation inresponse to high temperature at different leaf ages in maize. Journal of Plant Growth Regulation 30: 41–50.

    Article  Google Scholar 

  • Yamaguchi-Shinozaki, K., and K. Shinozaki. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual review of plant biology 57: 781–803. https://doi.org/10.1146/annurev.arplant.57.032905.105444.

    Article  CAS  Google Scholar 

  • You, J., and Z. Chang. 2015. ROS Regulation during abiotic stress response in crop plants. Frontiers in Plant Science. 6: 1092. https://doi.org/10.3389/fpls.2015.01092.

    Article  Google Scholar 

  • Zheng, X., B. Chen, G. Lu, and B. Han. 2008. Over expression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communication 379: 985–989.

    Article  Google Scholar 

  • Zonglie, H., K. Lakkineni, Z. Zhang, and D.S. Verma. 2000. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology 122: 1129–1136. https://doi.org/10.1104/pp.122.4.1129.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RM planned and executed the work; JN conducted the experiments and prepared the MS; AS edited the MS, and AK analyzed the data.

Corresponding author

Correspondence to R. Manimekalai.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, J., Manimekalai, R., Selvi, A. et al. Physiological, Biochemical and Molecular Responses to Oxidative Stress in Saccharum spontaneum. Sugar Tech 25, 282–293 (2023). https://doi.org/10.1007/s12355-022-01189-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-022-01189-1

Keywords

Navigation