Skip to main content
Log in

New insights into the systematics and molecular phylogeny of the Malagasy snake genus Liopholidophis suggest at least one rapid reversal of extreme sexual dimorphism in tail length

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The pseudoxyrhophiine snake genus Liopholidophis Mocquard, 1904 (family Lamprophiidae) is endemic to Madagascar and according to its present definition comprises six medium-sized, terrestrial and diurnal snake species, most of which are characterised by an unusual and extreme sexual dimorphism in tail length. We performed molecular phylogenetic analyses using nucleotide sequences of three mitochondrial genes (16S rRNA, cytochrome b and cytochrome oxidase I) and one nuclear gene (c-mos) for all described and two additional species newly described herein. The two new species are very small sized (total length: 234–312.5 mm), have comparatively short tails and a reduced number of dorsal scale rows (15 at midbody), the lowest value among all non-scolecophidian snakes of Madagascar. Both species are secretive or rare, and they have a reddish belly in life that fades in preservative. In terms of colouration and morphology, they are most similar to each other and furthermore to Liopholidophis rhadinaea. Together with this species and L. dimorphus, they form a well-supported clade. Liopholidophis baderi sp. nov. from central eastern Madagascar is characterised by 149–158 ventrals and 71–77 subcaudals, whereas the similar L. oligolepis sp. nov. from the northeast has even fewer ventrals (137) and subcaudals (54). The phylogenetic tree suggests that the tail length dimorphism in the genus Liopholidophis has evolved in a complex pattern including at least one reversal. The phylogenetic position of the two new dwarf species indicates that both the absence of extreme sexual dimorphism in tail length and their body size reduction are derived and probably correlated features. Also the close phylogenetic relationships between the long-tailed L. sexlineatus and the similar but relatively short-tailed L. varius demonstrate that dimorphism in tail length can be strongly mitigated in short evolutionary time periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander, A. A., & Gans, C. (1966). The pattern of dermal-vertebral correlation in snakes and amphibians. Zoologische Mededelingen, 41, 171–190.

    Google Scholar 

  • Andreone, F., Vences, M., Vieites, D. R., Glaw, F., & Meyer, A. (2005). Recurrent ecological adaptations revealed through a molecular analysis of the secretive cophyline frogs of Madagascar. Molecular Phylogenetics and Evolution, 34, 315–322.

    Article  CAS  PubMed  Google Scholar 

  • Arnold, E. N. (1988). Caudal autotomy as a defence. In C. Gans & R. Huey (Eds.), Biology of the Reptilia (pp. 235–273). New York: Alan R. Liss.

    Google Scholar 

  • Bauchot, R. (1997). Snakes: A Natural History. New York: Sterling Publishing Company

  • Cadle, J. E. (1996a). Snakes of the genus Liopholidophis (Colubridae) from eastern Madagascar: new species, revisionary notes and estimate of phylogeny. Bulletin of the Museum of Comparative Zoology, 154, 369–464.

    Google Scholar 

  • Cadle, J. E. (1996b). Systematics of snakes of the genus Geodipsas (Colubridae) from Madagascar, with descriptions of new species and observations on natural history. Bulletin of the Museum of Comparative Zoology, 155, 33–87.

    Google Scholar 

  • Cadle, J. E. (1998). The identity of Leptophis varius Fischer, 1884, and placement of Liopholidophis pinguis Parker, 1925, in its synonymy. Journal of Herpetology, 32, 434–437.

    Article  Google Scholar 

  • Cadle, J. E. (2003). Colubridae, snakes. In S. M. Goodman & J. P. Benstead (Eds.), The Natural History of Madagascar (pp. 997–1004). Chicago and London: The University of Chicago Press. 1709 pp.

    Google Scholar 

  • Cadle, J. E. (2009). Sexual dimorphism and reproductive biology in the Malagasy snake genus Liopholidophis (Lamprophiidae: Pseudoxyrhophiinae). Proceedings of the California Academy of Sciences, 4(60), 461–502.

    Google Scholar 

  • Chiari, Y., Ravelonkasina, D. M., & Faliarisoa, E. (2006). Liopholidophis sexlineatus (NCN). Distribution. Herpetological Review, 37, 363.

    Google Scholar 

  • Clutton-Brock, T. (2007). Sexual selection in males and females. Science, 318, 1882–1885.

    Article  CAS  PubMed  Google Scholar 

  • Crottini, A., Dordel, J., Köhler, J., Glaw, F., Schmitz, A., & Vences, M. (2009). A multilocus phylogeny of Malagasy scincid lizards elucidates the relationships of the fossorial genera Androngo and Cryptoscincus. Molecular Phylogenetics and Evolution, 53, 345–350.

    Article  CAS  PubMed  Google Scholar 

  • Darwin, C. (1859). The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray, 1st edition.

  • Darwin, C. (1871). The descent of man, and selection in relation to sex (Vol. 1st edition). London: John Murray.

    Book  Google Scholar 

  • Domergue, C. A. (1988). Notes sur les serpents de la région malgache. VIII. Colubridae nouveaux. Bullettin Museum National Histoire Naturelle, 4(10), 135–146.

    Google Scholar 

  • Dowling, H. G. (1951). A proposed standard system of counting ventrals in snakes. British Journal of Herpetology, 1, 97–99.

    Google Scholar 

  • Emlen, D. J. (2008). The evolution of animal weapons. Annual Review of Ecology, Evolution, and Systematics, 39, 387–413.

    Article  Google Scholar 

  • Fisher, R. A. (1915). The evolution of sexual preference. Eugenics Review, 7, 184–192.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franzen, M., Jones, J., Raselimanana, A. P., Nagy, Z. T., D'Cruze, N., Glaw, F., et al. (2009). A new black-bellied snake (Pseudoxyrhophiinae: Liophidium) from western Madagascar, with notes on the genus Pararhadinaea. Amphibia-Reptilia, 30, 173–183.

    Article  Google Scholar 

  • Glaw, F., Köhler, J., Townsend, T. M., & Vences, M. (2012). Rivaling the world's smallest reptiles: Discovery of miniaturized and microendemic new species of leaf chameleons (Brookesia) from northern Madagascar. PLoS ONE, 7, e31314.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glaw, F., Nagy, Z. T., Franzen, M., & Vences, M. (2007). Molecular phylogeny and systematics of the pseudoxyrhophiine snake genus Liopholidophis (Reptilia, Colubridae): evolution of its exceptional sexual dimorphism and descriptions of new taxa. Zoologica Scripta, 36, 291–300.

    Article  Google Scholar 

  • Glaw, F., & Vences, M. (2007). A field guide to the amphibians and reptiles of Madagascar, third edition. Vences & Glaw Verlag, 496 pp.

  • Glaw, F., Vences, M., & Nussbaum, R. A. (2005). A new species of Heteroliodon (Reptilia: Squamata: Colubridae) from Montagne des Francais, far northern Madagascar. Herpetologica, 61, 275–280.

    Article  Google Scholar 

  • Harmon, L., Weir, J., Brock, G., Glor, R., Challenger, W., & Hunt, G. (2008). GEIGER: analysis of evolutionary diversification. R package version:, 1, 2–13.

    Google Scholar 

  • Hawlitschek, O., Nagy, Z. T., & Glaw, F. (2012). Island evolution and systematic revision of Comoran snakes: why and when subspecies still make sense. PLoS ONE, 7, e42970.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hedges, S. B. (2008). At the lower size limit in snakes: two new species of threadsnakes (Squamata: Leptotyphlopidae: Leptotyphlops) from the Lesser Antilles. Zootaxa, 1841, 1–30.

    Google Scholar 

  • Hedges, S. B., & Thomas, R. (2001). At the lower size limit in amniotes: a new diminutive lizard from the West Indies. Caribbean Journal of Science, 37, 168–173.

    Google Scholar 

  • Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 33, 511–518.

    Article  Google Scholar 

  • Katoh, K., & Toh, H. (2008). Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics, 9, 212.

    Article  PubMed Central  PubMed  Google Scholar 

  • King, R. B. (1989). Sexual dimorphism in snake tail length: sexual selection, natural selection, or morphological constraint? Biological Journal of the Linnean Society, 38, 133–154.

    Article  Google Scholar 

  • Kirkpatrick, M. (1987). Sexual selection by female choice in polygynous animals. Annual Review of Ecology and Systematics, 18, 43–70.

    Article  Google Scholar 

  • Lindell, L. E. (1994). The evolution of vertebral number and body size in snakes. Functional Ecology, 8, 708–719.

    Article  Google Scholar 

  • Maddison, W. P., & Maddison, D. R. (2009). Mesquite: A modular system for evolutionary analysis. Version 2.72. http://mesquiteproject.org.

  • Megson, S., Mitchell, P., & D’Cruze, N. (2009). Reptilia, Serpentes, Colubridae, Heteroliodon fohy: Distribution extension. Check List, 5, 692–694.

    Google Scholar 

  • Mocquard, F. (1904). Description de quelques reptiles et d'un batracien nouveaux de la collection du Muséum. Bulletin du Muséum National d'Histoire Naturelle, 10, 301–309.

    Google Scholar 

  • Nagy, Z. T., Glaw, F., Andreone, F., Wink, M., & Vences, M. (2007). Species boundaries in Malagasy snakes of the genus Madagascarophis (Serpentes: Colubridae sensu lato) assessed by nuclear and mitochondrial markers. Organisms, Diversity and Evolution, 7, 241–251.

    Article  Google Scholar 

  • Nagy, Z. T., Glaw, F., & Vences, M. (2010). Systematics of the snake genera Stenophis and Lycodryas (Squamata, Serpentes, Pseudoxyrhophiinae) from Madagascar and the Comoros. Zoologica Scripta, 39, 426–435.

    Article  Google Scholar 

  • Nagy, Z. T., Joger, U., Wink, M., Glaw, F., & Vences, M. (2003). Multiple colonization of Madagascar and Socotra by colubrid snakes: evidence from nuclear and mitochondrial gene phylogenies. Proceedings of the Royal Society London, B, 270, 2613–2621.

    Article  Google Scholar 

  • Nagy, Z. T., Sonet, G., Glaw, F., & Vences, M. (2012). First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. PLoS ONE, 7, e34506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.

    Article  CAS  PubMed  Google Scholar 

  • Petrie, M., Halliday, T., & Sanders, C. (1991). Peahens prefer peacocks with elaborate trains. Animal Behaviour, 41, 323–332.

    Article  Google Scholar 

  • Posada, D. (2008). jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/.

  • Ramanamanjato, J.-B., Jenkins, R. K. B., & Randrianantoandro, C. J. (2007). Chapter 4.5. Conservation of a rare Malagasy snake: The case of Pseudoxyrhopus kely (family Colubridae). In J. U. Ganzhorn, S. M. Goodman, & M. Vincelette (Eds.), Biodiversity, Ecology and Conservation of Littoral Ecosystems in Southeastern Madagascar, Tolagnaro (Fort Dauphin) (pp. 167–179). Washington DC, USA: Smithsonian Institution. Series editor Alfonso Alonso. SI/MAB Series #11.

    Google Scholar 

  • Rambaut, A., & Drummond, A. J. (2009). Tracer - MCMC Trace Analysis Tool, version 1.5.

  • Raxworthy, C. J., & Nussbaum, R. A. (1994). A review of the Madagascan snake genera Pseudoxyrhopus, Pararhadinaea, and Heteroliodon (Squamata: Colubridae). Miscellaneous Publications, Museum of Zoology, University of Michigan, 182, 1–37.

    Google Scholar 

  • Ritchie, M. G. (2007). Sexual selection and speciation. Annual Review of Ecology, Evolution, and Systematics, 38, 79–102.

    Article  Google Scholar 

  • Rittmeyer, E. N., Allison, A., Gruendler, M. C., Thompson, D. K., & Austin, C. C. (2012). Ecological guild evolution and the discovery of the world’s smallest vertebrate. PLoS ONE, 7, e29797.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory.

    Google Scholar 

  • Shine, R. (1978). Sexual size dimorphism and male combat in snakes. Oecologia, 33, 269–277.

    Article  Google Scholar 

  • Shine, S. (1989). Ecological causes for the evolution of sexual dimorphism: a review of the evidence. The Quarterly Review of Biology, 64(4), 419–461.

    Article  CAS  PubMed  Google Scholar 

  • Shine, R. (1994). Sexual size dimorphism in snakes revised. Copeia, 1994, 326–364.

    Article  Google Scholar 

  • Shine, R., Olsson, M. M., Moore, I. T., LeMaster, M. P., & Mason, R. T. (1999). Why do male snakes have longer tales than females? Proceedings of the Royal Society London, B, 266, 2147–2151.

    Article  Google Scholar 

  • Shine, R., & Shetty, S. (2001). The influence of natural selection and sexual selection on the tails of sea-snakes (Laticauda colubrina). Biological Journal of the Linnean Society, 74, 121–129.

    Article  Google Scholar 

  • Schmitz, A., Brandley, M. C., Mausfeld, P., Vences, M., Glaw, F., Nussbaum, R. A., et al. (2005). Opening the black box: phylogenetics and morphological evolution of the Malagasy fossorial lizards of the subfamily "Scincinae". Molecular Phylogenetics and Evolution, 34, 118–133.

    Article  CAS  PubMed  Google Scholar 

  • Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), Version 4. Sunderland, Massachusets: Sinauer Associates.

    Google Scholar 

  • Townsend, T. M., Tolley, K. A., Glaw, F., Böhme, W., & Vences, M. (2011). Eastward from Africa: palaeocurrent-mediated chameleon dispersal to the Seychelles islands. Biology Letters, 7, 225–228.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zahavi, A. (1975). Mate selection – selection for a handicap. Journal of Theoretical Biology, 53, 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Zahavi, A. (1977). The cost of honesty (Further remarks on the handicap principle). Journal of Theoretical Biology, 67, 603–605.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Philip-Sebastian Gehring, Jörn Köhler, Konrad Mebert, Maciej Pabijan, Roger-Daniel Randrianiaina and David R. Vieites for their help in the field, Rainer Dolch for sharing his knowledge of the snakes of the Andasibe region, and Wolfgang Böhme (ZFMK) and Ivan Ineich (MNHN) for the loan of snakes. Many thanks to Ruth Kühbandner (ZSM) for the excellent head drawings of the new species. We are grateful to the Madagascan authorities for research and export permits. The fieldwork was supported by the Volkswagen Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Glaw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glaw, F., Kucharzewski, C., Nagy, Z.T. et al. New insights into the systematics and molecular phylogeny of the Malagasy snake genus Liopholidophis suggest at least one rapid reversal of extreme sexual dimorphism in tail length. Org Divers Evol 14, 121–132 (2014). https://doi.org/10.1007/s13127-013-0152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-013-0152-4

Keywords

Navigation