Skip to main content

Advertisement

Log in

Taxonomic monograph of epifoliar fungi

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Epifoliar fungi are one of the significant fungal groups typically living on the surface of leaves. They are usually recorded as saprobes, obligate parasites and commensals and are widely distributed in tropical and subtropical regions. Numerous genera within this group remain inadequately understood, primarily attributed to limited taxonomic knowledge and insufficient molecular data. Furthermore, the taxonomic delineation of epifoliar fungi remained uncertain, with scattered and literature-based data often intermixed with other follicolous fungi. Herein, a comprehensive taxonomic monograph of 124 genera in (32) Asterinales, (18) Capnodiales, (15) Chaetothyriales, (8) Meliolales, (8) Micropeltidales, (10) Microthyriales, (32) Parmulariales and (1) Zeloasperisporiales was provided re-describing with illustrations and line drawings. Notes on ecological and economic importance of the families are also provided. Representatives type herbarium materials of Campoa pulcherrima, Cycloschizon brachylaenae, Ferrarisia philippina, Hysterostomella guaranitica, Palawaniella orbiculata and Pseudolembosia orbicularis of Parmulariaceae were re-examined and provided updated illustrations with descriptions. A backbone phylogenetic tree and divergence estimation analysis for epifoliar fungi based on LSU and 5.8s ITS sequence data are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Re-drawn from Dilcher (1965), Vishnu et al. (2017), Bianchinotti et al. (2020)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Redrawn from Arnaud (1918)

Fig. 9

Redrawn from Arnaud (1918)

Fig. 10

Adapted from Pem et al. (2023)

Fig. 11

Redrawn from Guatimosim et al. (2015)

Fig. 12

Adapted from Hongsanan et al. (2014a)

Fig. 13

Redrawn from Hosagoudar (2012)

Fig. 14

Redrawn from Arnaud (1918)

Fig. 15

Adapted from Hongsanan et al. (2014a)

Fig. 16

Redrawn from Hosagoudar (2012) and Arnaud (1918)

Fig. 17

Redrawn from Arnaud (1918), Hongsanan et al. (2014a)

Fig. 18

Redrawn from Farr and Pollack (1969)

Fig. 19

Redrawn from Doilom et al. (2018)

Fig. 20

Redrawn from Arnaud (1918)

Fig. 21

Redrawn from Wu et al. (2011a)

Fig. 22
Fig. 23

Adapted from Marasinghe et al. (2022b)

Fig. 24

Adapted from Tennakoon et al. (2021)

Fig. 25

Redrawn from Hosagoudar et al. (2014)

Fig. 26

Adapted from Hongsanan et al. (2014a)

Fig. 27

Redrawn from Firmino et al. (2016)

Fig. 28

Adapted from Hongsanan et al. (2014a)

Fig. 29

Redrawn from Mohamed and Thomas (2021)

Fig. 30

Redrawn from Hosagoudar (2012)

Fig. 31

Adapted from Marasinghe et al. (2021b)

Fig. 32

Redrawn from Lini et al. (2021)

Fig. 33

Redrawn from Ellis (1980) and Hongsanan et al. (2014a)

Fig. 34

Adapted from Tennakoon et al. (2021)

Fig. 35

Redrawn from Wu et al. (2011a)

Fig. 36

Redrawn from Wu et al. (2011a)

Fig. 37

Redrawn from Pereira and Filardi (2006) and Wu et al. (2011a)

Fig. 38

Redrawn from Hongsanan et al. (2016c)

Fig. 39

Redrawn from Farr (1985)

Fig. 40

Redrawn from Dai et al. (2018)

Fig. 41

Redrawn from Batista (1960)

Fig. 42

Redrawn from Hongsanan et al. (2014a)

Fig. 43

Adapted from Hongsanan et al. (2014a)

Fig. 44

Redrawn from Hosagoudar and Harish (2010)

Fig. 45

Redrawn from Dai et al. (2014)

Fig. 46
Fig. 47
Fig. 48

Redrawn from Hyde et al. (2013) and Cheewangkoon et al. (2009)

Fig. 49

Redrawn from Fraser (1935)

Fig. 50

Redrawn from Boonmee et al. (2017)

Fig. 51

Redrawn from Chomnunti et al. (2014)

Fig. 52

Redrawn from Liu et al. (2015) and Abdollahzadeh et al. (2020)

Fig. 53

Redrawn from Tennakoon et al. (2021)

Fig. 54

Redrawn from Chomnunti et al. (2014) and Abdollahzadeh et al. (2020)

Fig. 55

Redrawn from Khodaparast (2006)

Fig. 56

Redrawn from Khodaparast (2006)

Fig. 57

Redrawn from Bose et al. (2014)

Fig. 58

Redrawn from Abdollahzadeh et al. (2020)

Fig. 59

Redrawn from Abdollahzadeh et al. (2020)

Fig. 60

Redrawn from Hughes (1975)

Fig. 61

Redrawn from Spegazzini (1918)

Fig. 62

Redrawn from Chomnunti et al. (2014) and Hongsanan et al. (2020b)

Fig. 63

Adapted from Barr (1972)

Fig. 64
Fig. 65

Redrawn from Swart (1986)

Fig. 66

Redrawn from Hongsanan et al. (2014b)

Fig. 67
Fig. 68

Redrawn from Ellis (1976)

Fig. 69
Fig. 70

Redrawn from Hongsanan et al. (2020a)

Fig. 71
Fig. 72
Fig. 73

Redrawn from Tennakoon et al. (2023)

Fig. 74
Fig. 75

Redrawn from Dennis (1957)

Fig. 76

Redrawn from Arnaud (1918)

Fig. 77
Fig. 78

Redrawn from Wu et al. (2011b)

Fig. 79
Fig. 80

Redrawn from Tian et al. (2016)

Fig. 81

Redrawn from Tian et al. (2016)

Fig. 82

Redrawn from Inacio et al. (2012)

Fig. 83

Adapted from Sydow and Sydow (1914)

Fig. 84

Redrawn from Spegazzini (1921a, b)

Fig. 85
Fig. 86

Redrawn from Wu et al. (2014)

Fig. 87
Fig. 88
Fig. 89

Redrawn from Arnaud (1918)

Fig. 90

Redrawn from Swart (1988)

Fig. 91
Fig. 92
Fig. 93
Fig. 94

Redrawn from Arnaud (1918)

Fig. 95

Redrawn from Inácio and Cannon (2003)

Fig. 96

(Adapted from Pem et al. 2023)

Fig. 97

Redrawn from Hosagoudar and Riju (2013)

Fig. 98
Fig. 99

Redrawn from Arnaud (1918)

Fig. 100

Redrawn from Sivanasen (1970)

Fig. 101

Redrawn from Hongsanan et al. (2020a)

Fig. 102

Redrawn from Arnaud (1918)

Fig. 103
Fig. 104

Redrawn from Hongsanan et al. (2014a)

Fig. 105

Redrawn from Ariyawansa et al. (2014)

Fig. 106

Redrawn from Pem et al. (2023)

Fig. 107

Adapted from Pem et al. (2023)

Fig. 108

Redrawn from Batista and Vital (1960)

Fig. 109

Redrawn from Arnaud (1918)

Fig. 110
Fig. 111
Fig. 112

Redrawn from Guatimosim et al. (2014b)

Fig. 113

Redrawn from Hennings and Lindau (1897)

Fig. 114

Redrawn from Arnaud (1918)

Fig. 115
Fig. 116

Redrawn from Spegazzini (1912)

Fig. 117

Redrawn from Doilom et al. (2018)

Fig. 118

Redrawn from Swart (1975)

Fig. 119

Redrawn from Tian et al. (2016) and Inácio and Cannon (2003)

Fig. 120

Redrawn from Castañeda Ruiz et al. (1996)

Fig. 121
Fig. 122
Fig. 123

Redrawn from Tian et al. (2021)

Fig. 124

Source from Tian et al. (2021)

Fig. 125
Fig. 126

Redrawn from Pereira-Carvalho et al. (2009)

Fig. 127
Fig. 128
Fig. 129
Fig. 130
Fig. 131
Fig. 132

Redrawn from Batista et al. (1960)

Fig. 133

Redrawn from Crous et al. (2007), Tian et al. (2021)

Fig. 134

Redrawn from Batista and Ciferri (1962)

Fig. 135

Redrawn from Höhnel (1909)

Fig. 136

Redrawn from Puttemans (1904)

Fig. 137

Adapted from Hyde et al. (2020a)

Fig. 138
Fig. 139
Fig. 140
Fig. 141
Fig. 142
Fig. 143
Fig. 144
Fig. 145
Fig. 146
Fig. 147
Fig. 148
Fig. 149
Fig. 150

Redrawn from Hosagoudar and Riju (2013)

Fig. 151
Fig. 152
Fig. 153
Fig. 154

Redrawn from Hosagoudar and Riju (2013)

Fig. 155
Fig. 156
Fig. 157

Redrawn from Hughes & Pirozynski (1994)

Fig. 158

Redrawn from Hosagoudar and Riju (2013)

Fig. 159
Fig. 160

Redrawn from Hosagoudar and Riju (2013)

Fig. 161

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Abdollahzadeh J, Groenewald JZ, Coetzee M et al (2020) Evolution of lifestyles in Capnodiales. Stud Mycol 95:381–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acosta HDG (1995) El ge´nero Micropeltis Montagne (Micropeltaceae, Ascomycotina) en las Antillas Mayores. Revista Del Jardin Botanico Nacional 16:29–46

    Google Scholar 

  • Ainsworth GC, James PW, Hawksworth DL (1971) Ainsworth & bisby’s dictionary of the fungi, 6th edn. CAB, Kew

    Google Scholar 

  • Alexopoulous CJ, Mims CW, Blackwell M (1996) Introductory mycology. Wiley, New York

    Google Scholar 

  • Allen MF, Swenson W, Querejeta JI et al (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annu Rev Phytopathol 41:271–303

    Article  CAS  PubMed  Google Scholar 

  • Alvin KL, Muir MD (1970) An epiphyllous fungus from the Lower Cretaceous. Biol J Lin Soc 2:55–59

    Article  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:182–945

    Article  Google Scholar 

  • Ariyawansa HA, Thambugala KM, Kang JC et al (2014) Towards a natural classification of Dothideomycetes 2: the genera Cucurbidothis, Heterosphaeriopsis, Hyalosphaera, Navicella and Pleiostomellina (Dothideomycetes incertae sedis). Phytotaxa 176:7–17

    Article  Google Scholar 

  • Ariyawansa HA, Hyde KD, Jayasiri SC et al (2015) Fungal diversity notes 111–252 taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 75:27–274

    Article  Google Scholar 

  • Arnaud G (1918) Les Astérinées. Annales de l’école Nationale d’agriculture de Montpellier 16:1

    Google Scholar 

  • Arnaud R (1930) The second republic and napoleon III

  • Auclair JL (1963) Aphid feeding and nutrition. Annu Rev Entomol 8:439–490

    Article  Google Scholar 

  • Barr ME (1961) Northern pyrenomycetes. II. Gaspesian Park. Can J Bot 39:307–325

    Article  Google Scholar 

  • Barr ME (1972) Preliminary studies on the dothideales in temperate North America – contributions from the university of michigan herbarium 9:523–638

  • Barr ME (1976) Perspectives in the ascomycotina. Mem N Y Bot Gard 28:1–8

    Google Scholar 

  • Barr ME (1979) A classification of Loculoascomycetes. Mycologia 71:935–957

    Article  Google Scholar 

  • Barr ME (1987a) New taxa and combinations in the Louculoascomycetes. Mycotaxon 29:501–505

    Google Scholar 

  • Barr ME (1987b) Prodromus to class Loculoascomycetes. University of Massachusetts, Amherst

    Google Scholar 

  • Barr ME, Ohr HD, Murphy MK (1989) The genus Serenomyces on palms. Mycologia 81:47–51

    Article  Google Scholar 

  • Batista AC (1956) Caracteres dos ascostromas dos fungos Micropeltaceae. Anais da Sociedade de Biologia de Pernambuco 14:26–28

    Google Scholar 

  • Batista AC (1959) Monografia dos fungos Micropeltaceae. Publicações. Instituto de Micologia da Universidade do Recife 56:1–519

    Google Scholar 

  • Batista AC (1960) Lembosiellina e Parasterinopsis, dois novos gêneros de Asterinaceae. Atas do Instituto de Micologia da Universidade Federal de Pernambuco 1:327

    Google Scholar 

  • Batista AC, Vital AF (1960) Novas consideracoes soˆbre o geˆnero Viegasia Bat. Atas do Instituto de Micologia 1:305–321

  • Batista AC, Bezerra JL (1964) Polystomellaceae: novas entidades Brasileiras. Portugaliae Acta Biologica 7:361–382

    Google Scholar 

  • Batista AC, Ciferri R (1962) The Chaetothyriales. Sydowia Beihefte 3:1–129

    Google Scholar 

  • Batista AC, Ciferri R (1963a) Capnodiales. Saccardoa 2:1–298

    Google Scholar 

  • Batista AC, Ciferri R (1963b) The sooty-molds of the family Asbolisiaceae. Quaderno. Laboratorio Crittogamico, Istituto Botanico Della Università Di Pavia 31:23–229

    Google Scholar 

  • Batista AC, Costa CA (1959) Estudo analítico e iconográfico de espécies de Microthyrium Desm. Anais da Sociedade de Biologia de Pernambuco 16:69–78

    Google Scholar 

  • Batista AC, Maia H (1956) New and unusual species of Balansiopsis. Atti dell’istituto Botanico della Università e Laboratorio Crittogamico di Pavia 14:1–10

    Google Scholar 

  • Batista AC, Maia H (1960) Cirsosia Arnaud e Cirsosina Bat.—novas espécies. Revista de Biologia Lisboa 2:115–136

    Google Scholar 

  • Batista AC, Nascimento ML (1957) Alguns novos fungos imperfeitos do complex de fumagina. Anais da Sociedade de Biologia de Pernambuco 15:345–353

    Google Scholar 

  • Batista AC, Costa AA, Ciferri R (1957) Orgânogênese e sistemática dos fungos Trichopeltinaceae (Theiss.) emend. Nobis. Atti dell’Istituto Botanico della Università e Laboratorio Crittogamico di Pavia 15(Ser. 5):35–56

  • Batista AC, Bezerra JL, Maia H (1960) Vonarxia n.gen. e outros imperfecti fungi. Publicações. Instituto de Micologia da Universidade do Recife 283:1–32

    Google Scholar 

  • Batista AC, Maia AC, Bezerra JL (1963) Morqueria n. gen. e alguns Asterinaceae. Publicações. Instituto de Micologia da Universidade do Recife 229:21

  • Batista AC, Silva AAAS, Bezerra JL (1965) Balladynocallia n.gen. e outros Meliolaceae. Atas do Instituto de Micologia da Universidade Federal de Pernambuco 2:225

  • Batista AC, Bezerra JL, Barros TT et al (1969) Sôbre um novo gênero de Microthyriaceae da Nova Caledônia. Publicações. Instituto de Micologia da Universidade Federal de Pernambuco 637:1–11

    Google Scholar 

  • Batzer JC, Gleason ML, Harrington TC et al (2005) Expansion of the sooty blotch and flyspeck complex on apples based on analysis of ribosomal DNA gene sequences and morphology. Mycologia 97:1268–1286

    Article  CAS  PubMed  Google Scholar 

  • Batzer JC, Arias MMD, Harrington TC et al (2008) Four species of Zygophiala (Schizothyriaceae, Capnodiales) are associated with the sooty blotch and flyspeck complex on apple. Mycologia 100:246–258

    Article  CAS  PubMed  Google Scholar 

  • Beeli M (1920) Note sur le genre Meliola Fr. Espèces et variétés nouvelles récoltées au Congo. Bulletin du Jardin Botanique de l’etat a Bruxelles 7:89–160

    Article  Google Scholar 

  • Bera M, Khan MA, Bera S (2019) A new foliicolous melioloid fungus from the Pliocene of eastern Himalaya. Mycol Prog 18:921–931

    Article  Google Scholar 

  • Bera M, Khan MA, Hazra T et al (2022) A novel fossil-species of Meliolinites Selkirk (fossil Meliolaceae) and its life cycle stages associated with an angiosperm fossil leaf from the Siwalik (Mio-Pliocene) of Bhutan sub-Himalaya. Fungal Biol 126:576–586

    Article  CAS  PubMed  Google Scholar 

  • Bermúdez-Cova MA, Cruz-Laufer AJ, Piepenbring M (2022) Hyperparasitic fungi on Black Mildews (Meliolales, Ascomycota): hidden fungal diversity in the tropics. Front Fungal Biol 3:88527923

    Article  Google Scholar 

  • Berry EW (1916) Remarkable fossil fungi. Mycologia 8:73–79

    Article  Google Scholar 

  • Bewley RJ (1980) Effects of heavy metal pollution on oak leaf microorganisms. Appl Environ Microbiol 40:1053–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezerra JL (2004) Taxonomia de ascomicetos: revisão da ordem Asterinales. Revisão Annual de Patologia de Plantas 12:91–115

    Google Scholar 

  • Bezerra JL, Cavalcante WA (1967) Batistamnus Bezerra & Cavalcanti n. gen. eoutros Trichopeltinaceae. Atas Instituto de Micologia, Universidade do Recife 5:253–270

    Google Scholar 

  • Bhunjun CS, Niskanen T, Suwannarach N et al (2022) The numbers of fungi: are the most speciose genera truly diverse? Fungal Divers 11:387–462

    Article  Google Scholar 

  • Bianchinotti MV, Martínez MA, Cornou ME (2020) The utility of Desmidiospora: a paradigm shift based on Paleogene fungal remains from the Ñirihuau Basin, Argentina. Palynology 44:587–596

    Article  Google Scholar 

  • Bills GF (1996) Isolation and analysis of endophytic fungal communities from woody plants. Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution 31–65

  • Bolsinger M, Flückiger W (1989) Ambient air pollution induced changes in amino acid pattern of phloem sap in host plants—relevance to aphid infestation. Environ Pollut 56:209–216

    Article  CAS  PubMed  Google Scholar 

  • Boonmee S, Phookamsak R, Hongsanan S (2017) Mycosphere notes 51–101. Revision of genera in Perisporiopsidaceae and Pseudoperisporiaceae and other Ascomycota genera incertae sedis. Mycosphere 8:1695–1801

    Article  Google Scholar 

  • Bose SK, Muller E (1964) Central Himalayan Fungi-1. Indian Phytopathol 17:3–22

  • Bose T, Reynolds DR, Berbee ML (2014) Common, unsightly and until now undescribed: Fumiglobus pieridicola sp. nov., a sooty mold infesting Pieris japonica from western North America. Mycologia 106:746–756

    Article  PubMed  Google Scholar 

  • Brown RW (1944) Temperate species in the Eocene flora of the southeastern United States. J Wash Acad Sci 34:349–351

    Google Scholar 

  • Bushnell WR, Bergquist SE (1975) Aggregation of host cytoplasm and the formation of papillae and haustoria in powdery mildew of barley. Phytopathology 65:0–318

  • Butin H, Speer EO (1978) Über einige parasitische Ascomyceten auf Nadeln der Brasilianischen Araukarie. Sydowia 31:9–26

    Google Scholar 

  • Cannon PF, Paul MK (2007) eds. Fungal families of the world. Cabi

  • Castañeda Ruiz RF, Fabré DE, Parra MP et al (1996) Some airborne conidial fungi from Cuba. Mycotaxon 60:283–290

    Google Scholar 

  • Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaiwan N, Gomdola D, Wang S et al (2021) an online database providing updated information of microfungi in the Greater Mekong Subregion. Mycosphere 12:1513–1526

    Article  Google Scholar 

  • Chardón CE, Toro RA (1934) Mycological explorations of Venezuela. Monographs Univ Puerto Rico Ser B 2:1–351

    Google Scholar 

  • Cheewangkoon R, Groenewald JZ, Summerell BA et al (2009) Myrtaceae, a cache of fungal biodiversity. Persoonia-Mol Phylogeny Evol Fungi 23:55–85

    Article  CAS  Google Scholar 

  • Chen K-H, Miadlikowska J, Molnár K et al (2015) Phylogenetic analyses of eurotiomycetous endophytes reveal their close affinities to Chaetothyriales, Eurotiales, and a new order—Phaeomoniellales. Mol Phylogenet Evol 85:117–130

    Article  CAS  PubMed  Google Scholar 

  • Chomnunti P, Schoch CL, Aguirre-Hudson B et al (2011) Capnodiaceae. Fungal Divers 51:103–134

    Article  PubMed  PubMed Central  Google Scholar 

  • Chomnunti P, Bhat DJ, Jones EB (2012a) Trichomeriaceae, a new sooty mould family of Chaetothyriales. Fungal Divers 56:63–76

    Article  Google Scholar 

  • Chomnunti P, Koko TW, Chukeatirote E et al (2012b) Phylogeny of Chaetothyriaceae in northern Thailand including three new species. Mycologia 104:382–395

    Article  PubMed  Google Scholar 

  • Chomnunti P, Hongsanan S, Aguirre-Hudson B et al (2014) The sooty moulds. Fungal Divers 66:1–36

    Article  Google Scholar 

  • Ciferri R (1954) Meliolae of Santo Domingo (WI). Mycopathologia et Mycologia Applicate 7:81–211

    Article  CAS  Google Scholar 

  • Ciferri R (1955) Observations on meliolicolous hyphales from Santo Domingo. Sydowia 9:296–335

    Google Scholar 

  • Ciferri R (1962) Schedae mycologicae. XXXV–XCVIII. Atti dell’Istituto Botanico della Università e Laboratorio Crittogamico di Pavia Ser. 5 19:85–139

  • Clements FE, Shear CL (1931a) Genera of fungi, edn 2. i–vii, 58 plates. H.W. Wilson Company, New York, p 496

  • Clements FE, Shear CL (1931b) The genera of fungi. 496 p., 58 pl. H. W. Wilson Co., New York

  • Conran JG, Bannister JM, Reichgelt T (2016) Epiphyllous fungi and leaf physiognomy indicate an ever-wet humid mesothermal (subtropical) climate in the late Eocene of southern New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol 452:1–10

    Article  Google Scholar 

  • Cookson IC (1947) Fossil fungi from Tertiary de- posits in the Southern Hemisphere. Proc Linnean Soc New South Wales 72:207–214

    Google Scholar 

  • Cooley DR, Lerner SM, Tuttle AF (2004) Flyspeck epidemics I: measuring ascospore maturation of the causal fungus. Fruit Notes 69:5–11

    Google Scholar 

  • Crous PW, Schubert K, Braun U et al (2007) Opportunistic, human-pathogenic species in the Herpotrichiellaceae are phenotypically similar to saprobic or phytopathogenic species in the Venturiaceae. Stud Mycol 64:123–133

    Google Scholar 

  • Crous PW, Schoch CL, Hyde KD et al (2009) Phylogenetic lineages in the Capnodiales. Stud Mycol 64:17–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Wingfield MJ, Le Roux JJ et al (2015) Fungal Planet Description Sheets: 371–399. Persoonia 35:264–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daghlian CP (1978) A new melioloid fungus from the Early Eocene of Texas. Palaeontology 21:71–176

    Google Scholar 

  • Dai DQ, Bahkali AH, Bhat DJ et al (2014) Towards a natural classification of Dothideomycetes 3: the genera Muellerites, Trematosphaeriopsis, Vizellopsis and Yoshinagella (Dothideomycetes incertae sedis). Phytotaxa 176:18–27

    Article  Google Scholar 

  • Dai DQ, Tang LZ, Liu C et al (2018) Studies on Parmulariaceae I. A phylogeny based on available sequence data; introducing Parmulariales ord. nov., and Hemigraphaceae, Melaspileellaceae and Stictographaceae fam. nov. Phytotaxa 369:63–79

    Article  Google Scholar 

  • Dai DQ, Wijayawardene NN, Tang LZ et al (2020) Studies on Parmulariaceae II. re-examination of Hysterostomella, Mintera, Rhipidocarpon and Viegasella. Phytotaxa 458:231–241

    Article  Google Scholar 

  • Dar RA, Rai AN (2017) Phylogeny of Meliola mangiferae causing black mildews of Populas alba. Med Mycol 3:27

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R et al (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debbab A, Aly AH, Proksch P (2011) Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers 49:1–12

    Article  Google Scholar 

  • Debbab A, Aly AH, Proksch P (2012) Endophytes and associated marine derived fungi—ecological and chemical perspectives. Fungal Divers 57:45–83

    Article  Google Scholar 

  • Debbab A, Aly AH, Proksch P (2013) Mangrove derived fungal endophytes—a chemical and biological perception. Fungal Divers 61:1–27

    Article  Google Scholar 

  • Defossez E, Dubois MP, Mondolot L et al (2009) Ant-plants and fungi: a new three-way symbiosis. New Phytol 1978:942–949

    Article  Google Scholar 

  • Dennis RW (1957) New British Fungi. Kew Bull 12:399–404

    Article  Google Scholar 

  • Diederich P, Ertz D, Lawrey JD et al (2013) Molecular data place the hyphomycetous lichenicolous genus Sclerococcum close to Dactylospora (Eurotiomycetes) and S. parmeliae in Cladophialophora (Chaetothyriales). Fungal Divers 58:61–72

    Article  Google Scholar 

  • Dilcher DL (1963) Eocene epiphyllous fungi. Science 142:667–669

    Article  CAS  PubMed  Google Scholar 

  • Dilcher DL (1965) Epiphyllous fungi from Eocene deposits in western Tennessee, USA. Palaeontogr Abt B 116:1–54

    Google Scholar 

  • Dohmen GP (1988) Indirect effects of air pollutants: changes in plant/parasite interactions. Environ Pollut 53:197–207

    Article  CAS  PubMed  Google Scholar 

  • Doidge EM (1920) South African Microthyriaceae. Trans R Soc S Afr 8:235–282

    Article  Google Scholar 

  • Doidge EM (1921) South African ascomycetes in the National Herbarium. Part I. Bothalia 1:5–32

    Google Scholar 

  • Doidge EM (1942) A revision of South African Microthyriaceae. Bothalia 4:273–420

    Google Scholar 

  • Doilom M, Hyde KD, Phookamsak R et al (2018) Mycosphere Notes 225–274: types and other specimens of some genera of Ascomycota. Mycosphere 9:647–754

    Article  Google Scholar 

  • Dörfelt H, Schmidt AR, Wunderlich J (2000) Rosaria succina spec. nov.—a fossil cyanobacterium from Tertiary amber. J Basic Microbiol 40:327–332

    Article  PubMed  Google Scholar 

  • Doubinger J, Pons D (1975) Les champignons épiphylles de la formation Guaduas (Maestrichtien, bassin de Boyecá, Colombie). 95e Congrès National des Société Savantes, Reims. Bibliothèque Nationale, Paris 145–162

  • Edwards VN (1922) An Eocene microthyriaceous fungus from Mull, Scotland. Trans Br Mycol Soc 8:66–72

    Article  Google Scholar 

  • Eichmann R, Hückelhoven R (2008) Accommodation of powdery mildew fungi in intact plant cells. J Plant Physiol 165:5–18

    Article  CAS  PubMed  Google Scholar 

  • Ellis JP (1976) British Microthyrium species and similar fungi. Trans Br Mycol Soc 67:381–394

    Article  Google Scholar 

  • Ellis JP (1977) The genera Trichothyrina and Actinopeltis in Britain. Trans Br Mycol Soc 68:145–155

    Article  Google Scholar 

  • Ellis JP (1980) The genus Morenoina in Britain. Trans Br Mycol Soc 74:297–307

    Article  Google Scholar 

  • Elsik WC (1978) Classification and geologic history of the microthyriaceous fungi. In: IVth 920 International Palynological Conference (1976–77), Lucknow, India

  • Elsik WC, Dilcher DL (1974) Palynology and age of clays exposed in Lawrence clay 922 pits, Henry County, Tennessee. Palaeontographica Abteilung B 65–87

  • Eriksson OE (1981) The families of bitunicate Ascomycetes. Nord J Bot 1:800

    Article  Google Scholar 

  • Eriksson OE (1982) Revision of outline of the Ascomycetes. Syst Ascom 1:1–16

    Google Scholar 

  • Eriksson OE, Winka K (1997) Supraordinal taxa of Ascomycota. Myconet 1:1–16

    Google Scholar 

  • Farr ML (1982) A third species of Platypeltella (Microthyriaceae). Mycotaxon 15:448–452

    Google Scholar 

  • Farr ML (1984) The didymosporous dimeriaceous fungi reported on leaves of Rubiaceae. Mycologia 76:793–803

    Article  Google Scholar 

  • Farr ML (1985) John Albert Stevenson, 1890–1979. Mycologia 77:841–847

  • Farr ML (1986) Amazonian foliicolous fungi. II. Deuteromycotina. Mycologia 78:269

  • Farr ML (1987) Amazonian foliicolous fungi. IV. Some new and critical taxa in ascomycotina and associated anamorphs. Mycologia 79:97–116

  • Farr ML, Pollack FG (1969) A new species of Platypeltella from Mexico. Mycologia 61:191–195

    Article  Google Scholar 

  • Faull JL, Olejnik I, Ingrouille M et al (2002) A reassessment of the taxonomy of some tropical sooty moulds. Trop Mycol 2:33–40

    Google Scholar 

  • Firmino AL, Pereira OL (2021) A simple method for the cultivation of the “unculturable” asterinaceous fungi (Asterinales/Dothideomycetes). J Microbiol Methods 187:106272

    Article  CAS  PubMed  Google Scholar 

  • Firmino AL, Inácio CA, Pereira OL et al (2016) Additions to the genera Asterolibertia and Cirsosia (Asterinaceae, Asterinales), with particular reference to species from the Brazilian Cerrado. IMA Fungus 7:9–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Flessa F, Harjes J, Cáceres ME et al (2021) Comparative analyses of sooty mould communities from Brazil and Central Europe. Mycol Prog 20:869–887

    Article  Google Scholar 

  • Fraser L (1935) An investigation of the sooty mould of New SouthWales IV The species of the Eucapnodieae. Proc Linnean Soc NSW 40:159–178

    Google Scholar 

  • Fries E (1825) Systema orbis. Vegetabilis 2:1–373

    Google Scholar 

  • Geiser DM, Gueidan C, Miadlikowska J et al (2006) Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. Mycologia 98:1053–1064

    Article  PubMed  Google Scholar 

  • Gilbert GS (2002) Evolutionary ecology of plant diseases in natural ecosystems. Annu Rev Phytopathol 40:13–43

    Article  CAS  PubMed  Google Scholar 

  • Gilbert G, Reynolds DR (2002) The ecology of foliicolous fungi. In 7th International mycological congress, Oslo, Norway, pp. 89–89

  • Gilbert G, Reynolds DR (2005) Epifoliar fungi from Queensland, Australia. Aust Syst Bot 18:265–289

    Article  Google Scholar 

  • Gilbert GS, Talaro N, Howell CA (1997) Multiple-scale spatial distribution of the fungal epiphyll Scolecopeltidium on Trichilia spp. in two lowland moist tropical forests. Can J Bot 75:2158–2164

    Article  Google Scholar 

  • Gilbert GS, Reynolds DR, Bethancourt A (2007) The patchiness of epifoliar fungi in tropical forests: host range, host abundance, and environment. Ecology 88:575–581

    Article  PubMed  Google Scholar 

  • Gleason ML, Batzer JC, Sun G et al (2011) A new view of sooty blotch and flyspeck. Plant Dis 95:368–438

    Article  PubMed  Google Scholar 

  • Goos RD, Andersons JH (1974) The Meliolaceae of Hawaii. Sydowia 26:73–80

    Google Scholar 

  • Gostincar C, Sun X, Zajc J et al (2019) On generalists and specialists among halotolerant fungi. Studia Universitatis Babes-Bolyai Biologia 1:64

    Google Scholar 

  • Graham A (1962) The role of fungal spores in palynology. J Paleontol 60–68

  • Guatimosim E, Schwartsburd PB, Barreto RW (2014a) A new Inocyclus species (Parmulariaceae) on the neotropical fern Pleopeltisastrolepis. IMA Fungus 5:51–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Guatimosim E, Pinto HJ, Barreto RW et al (2014b) Rhagadolobiopsis, a new genus of Parmulariaceae from Brazil with a description of the ontogeny of its ascomata. Mycologia 106:276–281

    Article  PubMed  Google Scholar 

  • Guatimosim E, Firmino A, Bezerra JL et al (2015) Towards a phylogenetic reappraisal of Parmulariaceae and Asterinaceae (Dothideomycetes). Persoonia 35:230–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gueidan C, Villaseñor CR, De Hoog GS et al (2008) A rock-inhabiting ancestor for mutualistic and pathogen-rich fungal lineages. Studies in Mycology 61:111–119

  • Gueidan C, Ruibal C, De Hoog GS et al (2011) Rock-inhabiting fungi originated during periods of dry climate in the late Devonian and middle Triassic. Fungal Biol 115:987–996

  • Gueidan C, Aptroot A, Cáceres MES, Badali H et al (2014) A reappraisal of orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota). Mycol Prog 13:1027–1039

    Article  Google Scholar 

  • Guerrero Y, Hofmann TA, Williams C et al (2011) Asterotexis cucurbitacearum, a poorly known pathogen of Cucurbitaceae new to Costa Rica, Grenada and Panama. Mycology 2:87–90

    Article  Google Scholar 

  • Haituk S, Withee P, Sangta J et al (2022) Production of non-volatile metabolites from sooty molds and their bio-functionalities. Processes 10:329

    Article  CAS  Google Scholar 

  • Hansford CG (1946) The foliicolous Ascomycetes, their parasites and associated fungi. Mycol Pap 15:1–240

    Google Scholar 

  • Hansford CG (1954) Australian fungi. II. New records and revisions. Proc Linnean Soc NSW 79:97–141

    Google Scholar 

  • Hansford CG (1961) The Meliolaceae a monograph. Sydowia Beih 2:1–806

    Google Scholar 

  • Hawksworth DL (1981) A survey of the fungicolous conidial fungi. Biology of Conidial Fungi 1:171–244

    Article  Google Scholar 

  • Hawksworth DL (2012) Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodivers Conserv 21:2425–2433

  • Hawksworth DL (2013) The oldest sequenced fungal specimen. Lichenologist 45:131–132

    Article  Google Scholar 

  • Hawksworth DL, Eriksson OE (1986) The names of accepted orders of Ascomycetes. Syst Ascomycetum 5:175–184

    Google Scholar 

  • Hawksworth DL, Boluda CG, Belyaeva-Chamberlain et al (2020) The enigma of Link’s Sphaeria ericophila: nomenclature, taxonomy, molecular phylogeny, and implications for the placement of Metacapnodium. J Fungal Res 18:235–45

  • He F, Lin B, Sun JZ et al (2013) Knufia aspidiotus sp. nov., a new black yeast from scale insects. Phytotaxa 153:39–50

    Article  Google Scholar 

  • Heath MC (1978) Evolution of parasitism in the fungi. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of the fungi. Cambridge University Press, Cambridge, pp. 149–160

  • Hennings PC (1893) Fungi aethiopico-arabici IG Schweinfurth legit. Bulletin de l’herbier Boissier 1:97–122

    Google Scholar 

  • Hennings PC (1902) Fungi S. Paulenses I. a cl. Puttemans Collecti. Hedwigia 41:104–118

    Google Scholar 

  • Hennings PC (1908) Fungi S. Paulenses IV. a cl. Puttemans collecti. Hedwigia 48:1–20

  • Hennings PC, Lindau (1897) Botanische Jahrbücher fur Systematik 23:287

  • Herath K, Jayasuriya H, Zink DL et al (2012) Isolation, structure elucidation, and antibacterial activity of methiosetin, a tetramic acid from a tropical sooty mold (Capnodium sp.). J Nat Prod 75:420–424

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF et al (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hofmann TA (2010) PhD thesis. The faculty of biological sciences at the J.W. Goethe-University Frankfurt am Main, Germany, p 408

  • Hofmann TA, Piepenbring M (2006) New records and host plants of flyspeck fungi from Panama. Fungal Divers 22:55–70

    Google Scholar 

  • Hofmann TA, Piepenbring M (2008) New species and records of Asterina from Panama. Mycol Prog 7:87–98

    Article  Google Scholar 

  • Höhnel FV (1909) Fragmente zur Mykologie: IX. Mitteilung (Nr. 407 bis 467). Sitzungsberichte

  • Höhnel F (1910) Fragmente zur Mykologie 10, Nr. 478. Clypeolella n.g. (Microthyriaceae) Sitzbungsberichten der kaiserlichen Akademie der Wissenschaften in Wien. Mathematischnaturwissenschaftliche Klasse 199:403–407

  • Hongsanan S, Hyde KD (2017) Phylogenetic placement of Micropeltidaceae. Mycosphere 8:1930–1942

    Article  Google Scholar 

  • Hongsanan S, Li YM, Liu JK et al (2014a) Revision of genera in Asterinales. Fungal Divers 68:1–68

    Article  Google Scholar 

  • Hongsanan S, Chomnunti P, Crous PW et al (2014b) Introducing Chaetothyriothecium, a new genus of Microthyriales. Phytotaxa 161:157–164

    Article  Google Scholar 

  • Hongsanan S, Bahkali AH, Mckenzie EH (2014c) Trichopeltinaceae (Dothideomycetes), an earlier name for Brefeldiellaceae, with a new species of Trichopeltina. Phytotaxa 176:27–082

    Article  Google Scholar 

  • Hongsanan S, Tian Q, Peršoh D, Zeng XY et al (2015a) Meliolales. Fungal Divers 74(1):91–141

    Article  Google Scholar 

  • Hongsanan S, Hyde KD, Bahkali AH et al (2015b) Fungal biodiversity profiles 11–20. Cryptogam Mycol 36:355–381

    Article  Google Scholar 

  • Hongsanan S, Tian Q, Hyde KD et al (2015c) Two new species of sooty moulds, Capnodium coffeicola and Conidiocarpus plumeriae in Capnodiaceae. Mycosphere 6:814–824

    Article  Google Scholar 

  • Hongsanan S, Tian Q, Bahkali AH et al (2015d) Zeloasperisporiales ord. nov., and two new species of Zeloasperisporium. Cryptogam Mycol 36:301–317

    Article  Google Scholar 

  • Hongsanan S, Sánchez-Ramírez S, Crous PW et al (2016a) The evolution of fungal epiphytes. Mycosphere 7:1690–1712

    Article  Google Scholar 

  • Hongsanan S, Tian Q, Hyde KD et al (2016b) The asexual morph of Trichomerium gloeosporum. Mycosphere 7:1473–1479

    Article  Google Scholar 

  • Hongsanan S, Bahkali AH, Chomnunti P et al (2016c) Discopycnothyrium palmae gen. and sp. nov. Asterinaceae. Mycotaxon 131:859–869

    Article  Google Scholar 

  • Hongsanan S, Zhao RL, Hyde KD (2017) A new species of Chaetothyrina on branches of mango, and introducing Phaeothecoidiellaceae fam. nov. Mycosphere 8:137–146

    Article  Google Scholar 

  • Hongsanan S, Hyde KD, Phookamsak R et al (2020a) Refined families of Dothideomycetes: orders and families incertae sedis in Dothideomycetes. Fungal Divers 105:17–318

    Article  Google Scholar 

  • Hongsanan S, Hyde KD, Phookamsak R et al (2020b) Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere 11(1553):2107

    Google Scholar 

  • Hosagoudar VB (2012) Asterinales of India. Mycosphere 2:617–852

    Article  Google Scholar 

  • Hosagoudar VB (2003a) Meliolaceae of Kerala, India. XVIII New species, varieties and records. Zoos' Print J 999–1002

  • Hosagoudar VB (2003b) Armatellaceae, a new family segregated from the Meliolaceae. Sydowia 55:162–167

    Google Scholar 

  • Hosagoudar VB (2010) Notes on the genera Asterolibertia and Cirsosia (Fungi: Ascomycota). J Threatened Taxa 26:1153–1157

    Article  Google Scholar 

  • Hosagoudar VB, Abraham TK (2000) A list of Asterina Lev. species based on the literature. J Econ Taxonomic Bot 24:557–587

    Google Scholar 

  • Hosagoudar VB, Archana GR (2009) Host range of meliolaceous fungi in India. J Threat Taxa 269–282

  • Hosagoudar VB, Harish M (2010) Vishnumyces, a new genus of the family Asterinaceae from India. Indian Phytopathol 63:85

    Google Scholar 

  • Hosagoudar VB (2013) Meliolales of India. J Threat Taxa 3:3993–4068

  • Hosagoudar VB, Riju MC (2013) Foliicolous fungi of Silent Valley National Park, Kerala, India. J Threatened Taxa 5:3701–3788

    Article  Google Scholar 

  • Hosagoudar VB, Balakrishnan NP et al (1996) Some Asterina species from Southern India. Mycotaxon 59:167–187

    Google Scholar 

  • Hosagoudar VB, Abraham TK, Pushpangadan P (1997) The Meliolineae a supplement. The Director TBG and RI, Pal ode, Thiruvananthapuram, 20

  • Hosagoudar VB, Abraham TK, Biju CK (2001) Re-evaluation of the family Asterinaceae. Mycopathol Res 39:61–63

    Google Scholar 

  • Hosagoudar VB, Thomas J, Agarwal DK (2011) Four new Asterinaceous members from Kerala, India. TAPROBANICA 3

  • Hosagoudar VB, Mathew SP, Babu D (2014) Foliicolous fungi of Andaman Islands, India. J Threatened Taxa 6:5447–5463

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hughes SJ (1965) New Zealand Fungi: S. Trichothallus and Plokamidomyces states of Trichopeltheca. New Zealand J Bot 3:320–332

  • Hughes SJ (1972) New Zealand fungi 17. Pleomorphism in Euantennariaceae and Metacapnodiaceae, two new families of sooty moulds. NZ J Bot 10:225–242

    Article  Google Scholar 

  • Hughes SJ (1974) New Zealand Fungi 22. Euantennaria with Antennatula and Hormisciomyces states. NZ J Bot 12:299–356

    Article  Google Scholar 

  • Hughes SJ (1975) New Zealand Fungi 24. Capnokyma corticola gen. nov., sp. nov., a hyphomycetous sooty mould. NZ J Bot 13:637–644

    Article  Google Scholar 

  • Hughes SJ (1976) Sooty moulds. Mycologia 68:693–820

    Article  Google Scholar 

  • Hughes SJ (2001) Capnokyma rossmanae, a new species of sooty molds. Mycologia 93:603–605

    Article  Google Scholar 

  • Hughes SJ, Pirozynski KA (1994) Endomeliola dingleyae, a new genus and new species of Meliolaceae. NZ J Bot 32:53–59

    Article  Google Scholar 

  • Hughes SJ, Atkinson TJ, Seifert KA (2012) New Zealand fungi 37: two new species of the sooty mould genus Metacapnodium with dictyoseptate ascospores. New Zealand J Bot 50:381–387

  • Hyde KD, Jones EBG, Liu JK et al (2013) Families of Dothideomycetes. Fungal Divers 63:1–313

    Article  Google Scholar 

  • Hyde KD, Hongsanan S, Jeewon R et al (2016) Fungal diversity notes 367–490: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 80:1–270

    Article  Google Scholar 

  • Hyde KD, Xu J, Rapior S et al (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97:1–136

  • Hyde KD, de Silva NI, Jeewon R et al (2020a) AJOM new records and collections of fungi: 1–100. Asian J Mycol 3:22–294

    Article  Google Scholar 

  • Hyde KD, Norphanphoun C, Maharachchikumbura SSN et al (2020b) Refined families of Sordariomycetes. Mycosphere 11:305–1059

    Article  Google Scholar 

  • Inácio CA, Cannon PF (2003) Viegasella and Mintera, two new genera of Parmulariaceae (Ascomycota), with notes on the species referred to Schneepia. Mycol Res 107:82–92

    Article  PubMed  Google Scholar 

  • Inácio CA, Cannon PF (2008) The genera of the Parmulariaceae. CBS biodiversity series, vol 8. CBS Fungal Biodiversity Centre, Utrecht

  • Inacio CA, Dianese JC (1998) Some foliicolous fungi on Tabebuia species. Mycol Res 102:695–708

    Article  Google Scholar 

  • Inácio CA, Minter DW (2002) IMI Descriptions of Fungi and Bacteria 145 (1445)

  • Inácio CA, Pereira-Carvalho RC, Souza ESC et al (2011) A new Dothidasteroma species on leaves of Psidium laruotteanum from the Brazilian Cerrado. Mycotaxon 116:27–32

    Article  Google Scholar 

  • Inácio CA, Araúz K, Piepenbring M (2012) A new genus of Parmulariaceae from Panama. Mycol Prog 11:1–6

    Article  Google Scholar 

  • Index Fungorum (2023) http://www.indexfungorum.org/names/. Accessed 26 June 2023

  • Jain KP, Gupta RC (1970) Some fungal remains from the Tertiary of KeralaCoast. Palaeobotanist 18:177–182

    Google Scholar 

  • Jaklitsch WM, Baral HO, Lücking R et al (2016) Ascomycota. In: Frey W (ed) Syllabus of plant families—a Engler’s syllabus der pflanzenfamilien. Borntraeger, Stuttgart, pp 1–322

    Google Scholar 

  • Jayasiri SC, Ariyawansa HA, Jones EBG et al (2016) Towards a natural classification of Dothideomycetes: 8. The genera Cocconia, Dianesea, Endococcus and Lineostroma. Phytotaxa 255:66–74

    Article  Google Scholar 

  • Jayasiri SC, Hyde KD, Jones EBG et al (2018) Seed decaying Dothideomycetes in Thailand: Zeloasperisporium pterocarpi sp. nov., (Zeloasperisporiaceae, Zeloasperisporiales) on carpel of Pterocarpus sp. (Fabaceae) seed pod. Asian J Mycol 1:106–113

    Article  Google Scholar 

  • Jayawardena RS, Hyde KD, McKenzie EHC et al (2019) One stop shop III: taxonomic update with molecular phylogeny for important phytopathogenic genera: 51–75. Fungal Divers 98:77–160

    Article  Google Scholar 

  • Jayawardena RS, Hyde KD, Chen YJ et al (2020) One stop shop IV: taxonomic update with molecular phylogeny for important phytopathogenic genera: 76–100 (2020). Fungal Divers 103:87–218

    Article  Google Scholar 

  • Jha N, Aggarwal N (2011) First find of Trichothyrites, Notothyrites and Frasnacritetrus from Permian Gondwana sediments of Godavari Graben, India. Phytomorphology 61:61–67

    Google Scholar 

  • Johnson EM, Sutton TB (2000) Response of two fungi in the apple sooty blotch complex to temperature and relative humidity. Phytopathology 90:362–367

    Article  CAS  PubMed  Google Scholar 

  • Jones EG, Suetrong S, Sakayaroj J et al (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73:1–72

    Article  Google Scholar 

  • Jones EBG, Pang KL, Abdel-Wahab MA, Scholz B et al (2019) An online resource for marine fungi. Fungal Divers 96:347–433

    Article  Google Scholar 

  • Jouraeva VA, Johnson DL, Hassett JP et al (2006) Role of sooty mold fungi in accumulation of fine-particle-associated PAHs and metals on deciduous leaves. Environ Res 102:272–282

  • Kalgutkar RM (1997) Fossil fungi from the lower Tertiary Iceberg Bay Formation, Eukeka Sound Group, Axel Heiberg Island, Northwest Territories, Canada. Rev Palaeobot Palynol 97:197–226

    Article  Google Scholar 

  • Kalgutkar RM, Jansonius J (2000) Synopsis of fossil fungal spores, mycelia and fructifications. AASP Contributions Series, Number 39. American Association of Stratigraphic Palynologists Foundation, Dallas

  • Kalgutkar RM, Braman DR (2008) Santonian to? Earliest Campanian (Late Cretaceous) fungi from the Milk River Formation, Southern Alberta. Palynology 32:39–61

    Article  Google Scholar 

  • Kar RK, Saxena RK (1976) Algal and fungal microfossils from Metanomadh Formation (Palaeocene), Kutch, India. Palaeobotanist 23:1–15

    Google Scholar 

  • Kar RK, Sharma N, Agarwal A, Kar R (2003) Occurrence of fossil wood rotters (Polyporales) from Lameta Formation (Maastrichtian), India. Curr Sci 85:37–40

    Google Scholar 

  • Kar RK, Sharma N, Kar R (2004a) Occurrence of fossil fungi in Dinosaur Dung and its implication on food habit. Curr Sci 87:1053–1056

    Google Scholar 

  • Kar RK, Sharma N, Verma UK (2004b) Plant pathogen Protocolletotrichum from the Deccan Intertrappean Bed (Maastrichtian), India. Cretac Res 25:945–950

    Article  Google Scholar 

  • Kar RK, Mandaokar BD, Kar R (2005) Mycorrhizal fossil fungi from the Miocene sediments of Mizoram, Northeast India. Curr Sci 89:257–259

    Google Scholar 

  • Kar RK, Mandaokar BD, Kar R (2006) Fossil aquatic fungi from the Miocene sediments of Mizoram, North-east India. Curr Sci 90:291–292

    Google Scholar 

  • Kar R, Mandaokar BD, Kar RK (2010) Fungal taxa from the Miocene sediments of Mizoram, northeast India. Rev Palaeobot Palynol 158:240–249

    Article  Google Scholar 

  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9:286–298

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Bera M, Bera S (2019) A new meliolaceos foliicolous fungus from the Plio-Pleistocene of Arunachal Pradesh, eastern Himalaya. Rev Palaeobot Palynol 268:55–64

    Article  Google Scholar 

  • Kharwar RN, Gond SK, Kumar A et al (2010) A comparative study of endophytic and epiphytic fungal association with leaf of Eucalyptus citriodora Hook., and their antimicrobial activity. World J Microbiol Biotechnol 26:1941–1948

    Article  Google Scholar 

  • Khodaparast SA (2006) A survey on citrus sooty mold fungi in Gilan Province, Iran. Rostaniha 7:69–86

    Google Scholar 

  • Khodaparast SA, Byrami F, Pourmoghadam MJ et al (2015) A further contribution to the knowledge of sooty mould fungi from Iran. Mycologia Iranica 2:46–58

    Google Scholar 

  • Khodaparast SA, Pourmoghaddam MJ, Amirmijani A et al (2020) Phylogenetic structure of the Iranian capnodiaceous sooty mould fungi inferred from the sequences of rDNA regions and TEF1-a. Mycol Prog 19:155–169

    Article  Google Scholar 

  • Kirk P, Cannon P, Minter D et al (2008) Dictionary of the Fungi, 10th edn. CAB International, Wallingford

    Google Scholar 

  • Kirk PM, Stalpers JA, Braun U et al (2013) A without-prejudice list of generic names of fungi for protection under the International Code of Nomenclature for algae, fungi, and plants. IMA Fungus 4:381–443

    Article  PubMed  PubMed Central  Google Scholar 

  • Krassilov VA (1967) Early Cretaceous flora of Southern Primorye and its significance for stratigraphy. Sib. Branch, Far East Geol. Inst., Acad. Sci. USSR, pp 1–364

  • Krassilov VA (1981) Changes of Mesozoic vegetation and the extinction of dinosaurs. Palaeogeogr Palaeoclimatol Palaeoecol 34:207–224

    Article  Google Scholar 

  • Lange RT (1969) The piosphere: sheep track and dung patterns. Rangeland Ecol Manag/J Range Manag Arch 22:396–400

    Google Scholar 

  • Lange RT (1976) Fossil epiphyllous ‘germlings’, their living equivalents and their paleohabitat indicator value. N Jb Geol Paläont 151:142–165

    Google Scholar 

  • Lange RT (1978) Southern Australian Tertiary epiphyllous fungi. Modern equivalents in the Australasian region, and habitat indicator value. Can J Bot 56:532–541

    Article  Google Scholar 

  • Lange RT (1981) Arnaud’s ‘enigmatic little marks’: an extension (type 6) to the manginuloid hyphae series of epiphyllous fungi. Experimentia 37:720–721

    Article  Google Scholar 

  • Lange RT, Smith PH (1971) The Maslin Bay flora, South Australia 3. Dispersed fungal spores. Neues Jahrbuch Für Geologie Und Paläontologie Monatschefte 10:663–681

    Google Scholar 

  • Léveillé JH (1845) Champignons exotiques. Ann Sci Nat Ser 3(3):38–71

    Google Scholar 

  • Li HY, Sun GY, Batzer JC et al (2011) Scleroramularia gen. nov. associated with sooty blotch and flyspeck of apple and pawpaw from the Northern Hemisphere. Fungal Divers 46:53–66

    Article  Google Scholar 

  • Lini KM, Jacob T, Neeta NN (2021) Marthomamyces gen. nov. (Asterinales, Lembosiaceae) from Southern Western Ghats, India. Asian J Mycol 4:35–41

    Google Scholar 

  • Little AEF, Currie CR (2007) Symbiotic complexity: discovery of a fifth symbiont in the attine ant-microbe symbiosis. Biol Lett 3:501–504

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu YJ, Hall BD (2004) Body plan evolution of Ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc Natl Acad Sci 101:4507–4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JK, Hyde KD, Jones EBG et al (2015) Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species. Fungal Divers 72:1–197

    Article  CAS  Google Scholar 

  • Liu JK, Hyde KD, Jeewon R et al (2017) Ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Divers 84:75–99

    Article  Google Scholar 

  • Liu L, Yang J, Zhou S et al (2023) Novelties in Microthyriaceae (Microthyriales): two new asexual genera with three new species from freshwater habitats in Guizhou Province, China. J Fungi 9:178

    Article  Google Scholar 

  • Lumbsch HT, Huhndorf SM (2010) Outline of Ascomycota 2009. Myconet 14:1–64

    Google Scholar 

  • Lumbsch HT, Lindemuth R (2001) Major lineages of Dothideomycetes (Ascomycota) inferred from SSU and LSU rDNA sequences. Mycol Res 105:901–908

    Article  CAS  Google Scholar 

  • Luttrell ES (1951) Taxonomy of the Pyrenomycetes. Univ Missouri Stud 24:1–120

    Google Scholar 

  • Luttrell ES (1973) Loculoascomycetes. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The fungi. An advanced treatise, a taxonomic review with keys: Ascomycetes and fungi imperfecti. Academic Press, New York, pp 135–219

    Google Scholar 

  • Luttrell ES (1989) Morphology of Meliola floridensis. Mycologia 81:192–204

    Article  Google Scholar 

  • Lutzoni F, Pagel M, Reeb V (2001) Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411:937–940

    Article  CAS  PubMed  Google Scholar 

  • Lutzoni F, Kauff F, Cox C et al (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  PubMed  Google Scholar 

  • Ma FJ, Sun BN, Wang QJ et al (2015) A new species of Meliolinites associated with Buxus leaves from the Oligocene of Guangxi, southern China. Mycologia 107:505–511

    Article  PubMed  Google Scholar 

  • Maharachchikumbura SSN, Hyde KD, Jones EBG et al (2015) Towards a natural classification and backbone tree for Sordariomycetes. Fungal Divers 72:199–301

    Article  Google Scholar 

  • Maharachchikumbura SSN, Hyde KD, Jones EBG et al (2016) Families of Sordariomycetes. Fungal Divers 79:1–317

    Article  Google Scholar 

  • Mandal A, Samajpati N, Bera S (2011) A new species of Meliolinites (fossil Meliolales) from the Neogene sediments of sub-Himalayan West Bengal, India. Nova Hedwigia 92:435–440

    Article  Google Scholar 

  • Marasinghe DS, Boonmee S, Hyde, KD et al (2020). Morpho-molecular analysis reveals Appendiculella viticis sp. nov. (Meliolaceae). Phytotaxa 454:45–54

  • Marasinghe DS, Hongsanan S, Boonmee S et al (2021a) Addition to Micropeltidaceae: Micropeltis goniothalamicola sp. nov. and new record of Scolecopeltidium menglaense from Chiang Rai, Thailand. Phytotaxa 487:56–64

    Article  Google Scholar 

  • Marasinghe DS, Dayarathne MC, Maharachchikumbura SS et al (2021b) Lembosia mimusopis sp. nov. from Thailand. Mycotaxon 136:635–644

    Article  Google Scholar 

  • Marasinghe DS, Hongsanan S, Zeng XY et al (2022a) Taxonomy and ecology of epifoliar fungi. Mycosphere 13:558–601

    Article  Google Scholar 

  • Marasinghe DS, Hongsanan S, Wanasinghe DN et al (2022b) Morpho-molecular characterization of Brunneofissuraceae fam. nov., Cirsosia mangiferae sp. nov., and Asterina neomangiferae nom. nov. Mycol Prog 21:279–295

    Article  Google Scholar 

  • Martin GW (1941) Outline of the fungi. Univ Iowa Stud Nat Hist 18:192–204

    Google Scholar 

  • Maslova NP, Tobias AV, Kodrul TM (2021) Recent studies of co-evolutionary relationships of fossil plants and fungi: success, problems, prospects. Paleontol J 55:1–17

    Article  Google Scholar 

  • Massalongo AB (1860) Esame comparativo di alcuni generi dei Licheni. Atti Del Reale Istituto Veneto Di Scienze Lettere Ed Arti Ser 3:247–276

    Google Scholar 

  • McAlpine D (1897) New South Wales fungi. Proc Linnean Soc NSW 22:38

    Google Scholar 

  • McLoughlin S, Nicoll RS, Crowley JL et al (2021) Age and paleoenvironmental significance of the Frazer Beach Member—a new lithostratigraphic unit overlying the end-Permian extinction horizon in the Sydney Basin, Australia. Front Earth Sci 8:600976

    Article  Google Scholar 

  • Miadlikowska J, Kauff F, Högnabba F et al (2014) A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Mol Phylogenet Evol 79:132–168

    Article  PubMed  Google Scholar 

  • Mibey RK, Cannon PF (1999) Biotrophic fungi from Kenya: ten new species and some new records of Meliolaceae. Cryptogam Mycol 20:249–282

    Article  Google Scholar 

  • Mibey RK, Hawksworth DL (1997) Meliolaceae and Asterinaceae of the Shimba Hills, Kenya. Mycol Pap 174:1–108

    Google Scholar 

  • Miller AN, Huhndorf SM (2004) A natural classification of Lasiosphaeria based on nuclear LSU rDNA sequences. Mycol Res 108:26–34

    Article  CAS  PubMed  Google Scholar 

  • Miller AN, Huhndorf SM (2005) Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospore morphology in Sordariales (Ascomycota, Fungi). Mol Phylogenet Evol 35:60–75

    Article  CAS  PubMed  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for 994 inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), New 995 Orleans, pp 1–8

  • Mohamed H, Thomas J (2021) A new species of Echidnodella (Asterinales, Lembosiaceae) from Western Ghats of Kerala State, India. Phytotaxa 496:275–280

    Article  Google Scholar 

  • Montagne JPFC (1842) Botanique. Plantes cellulaires. In: de la Sagra R (ed) Histoire Physique Politique et Naturelle de l’Ile de Cuba 2:1–549

  • Montagne C (1849) Capnodium, novum Fungorum genus. Ann Mag Nat Hist 3:520–520

    Article  Google Scholar 

  • Mukherjee D (2012) Facultative fungal remains from Miocene lignite coal of Neyveli Tamilnadu India. Int J Geol Earth Environ Sci 2:1–15

    Google Scholar 

  • Müller E, Patil BV (1973) The genus Aldona (Ascomycetes). Trans Br Mycol Soc 60:117–121

    Article  Google Scholar 

  • Müller E, von Arx JA (1962) Beitr Kryptogamenfl Schweiz 11:1–922

  • Müller E, von Arx J (1973) Pyrenomycetes: Meliolales, Coronophorales, Sphaeriales. In: Ainsworth G, Sparrow F, Sussman A (eds) The fungi IV. Academic, New York, pp 87–132

    Google Scholar 

  • Naranjo-Ortiz MA, Gabaldón T (2019) Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol Rev 94:2101–2137

    Article  PubMed  Google Scholar 

  • Narendra DV, Rao VG (1974) Some interesting Ascomycetes from India. Sydowia 28:353

    Google Scholar 

  • Nascimento MMF, Selbmann L, Sharifynia S et al (2016) Arthrocladium, an unexpected human opportunist in Trichomeriaceae (Chaetothyriales). Fungal Biol 120:207–218

    Article  PubMed  Google Scholar 

  • Navarro-de-la-Fuente L, Salinas-Castro A, Ramos A et al (2022) Chaetocapnodium zapotae sp. nov. on Manilkara zapota in central Mexico. Mycotaxon 137:179–187

    Article  Google Scholar 

  • Nelson S (2008) Sooty molds. Plant Dis 52:1–6

    Google Scholar 

  • Nepel M, Voglmayr H, Schönenberger J et al (2014) High diversity and low specificity of Chaetothyrialean fungi in carton galleries in a Neotropical ant-plant association. PLoS ONE 9:e112756

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Gorman DT, Sholberg PL, Stokes SC et al (2008) DNA sequence analysis of herbarium specimens facilitates the revival of Botrytis mali, a postharvest pathogen of apple. Mycologia 100:227–235

    Article  PubMed  Google Scholar 

  • Old KM, Wingfield MJ, Yuan ZQ (2003) A manual of diseases of eucalyptus in South-East Asia 106

  • Oliveira M, Arenas M, Lage O, Cunha M et al (2017) Epiphytic fungal community in Vitis vinifera of the Portuguese wine regions. Lett Appl Microbiol 66:93–102

  • Osono T (2006) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Canad J Microbiol 52:701–716

  • Patil BS, Ramanujam CGK (1988) Fungal flora of the carbonaceous clays from Tonakkal area, Kerala. Geol Surv India Spec Publ 11:261–270

    Google Scholar 

  • Pem D, Hongsanan S, Doilom M et al (2023) Genera of Dothideomycetes. Mycosphere (in press)

  • Pereira-Carvalho RC, Dornelo-Silva D, Inácio CA et al (2009) Chaetothyriomyes: a new genus in family Chaetothyriaceae. Mycotaxon 107:483–488

    Article  Google Scholar 

  • Pem D, Jeewon R, Bhat DJ et al (2019) Mycosphere Notes 275–324: a morpho taxonomic revision and typification of obscure Dothideomycetes genera (incertae sedis). Mycosphere 10:1115–1246

    Article  Google Scholar 

  • Pereira OL, Filardi FL (2006) Caudella bipolaris sp. nov. (Microthyriaceae) on Bredemeyera floribunda (Polygalaceae) from the Brazilian cerrado. Edinb J Bot 63:263–267

    Article  Google Scholar 

  • Pérez-Ortega S, Garrido-Benavent I, Grube M et al (2016) Hidden diversity of marine borderline lichens and a new order of fungi: Collemopsidiales (Dothideomyceta). Fungal Divers 80

  • Pereira OL, Dutra DC, Dias LAS (2009) Lasiodiplodia theobromae is the causal agent of a damaging root and collar rot disease on the biofuel plant Jatropha curcas in Brazil. Austral Plant Dis Notes 4:120–123

  • Persoon CH (1822) Mycologia Europeae. Sectio prima. CompletaOmnium Fungorum in Variis Europae Regionibus DetectorumEnumeratio. Erlangae, Impensibus I. I. Palmii, Germany

  • Petrak F (1929) Mykologische Notizen. x. Ann Mycologici 27:388–389

    Google Scholar 

  • Petrak F (1953) Die Gattung Blasdalea Sacc. et Syd. Sydowia 7:343

  • Petrak F (1954) Beitrage zur pilzflora Pakistans. Sydowia 8:162–185

    Google Scholar 

  • Phadtare NR (1989) Palaeoecologic significance of some fungi from the Miocene of Tanakpur (U.P.) India. Rev Palaeobot Palynol 59:127–131

    Article  Google Scholar 

  • Phipps CJ, Rember WC (2004) Epiphyllous fungi from the Miocene of Clarkia, Idaho: reproductive structures. Rev Palaeobot Palynol 129:67–79

    Article  Google Scholar 

  • Phookamsak R, Saranyaphat B, Norphanphoun C et al (2016) Schizothyriaceae. Mycosphere 7:154–189

  • Phookamsak R, Hyde KD, Jeewon R et al (2019) Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Divers 95:1–273

    Article  Google Scholar 

  • Phukhamsakda C, Nilsson RH, Bhunjun CS et al (2022) The numbers of fungi: contributions from traditional taxonomic studies and challenges of metabarcoding. Fungal Divers 114:327–386

    Article  Google Scholar 

  • Piepenbring M, Hofmann TA, Kirschner R et al (2011) Diversity patterns neotropocal plant parasitic microfungi. Ecotropica 17:27–40

    Google Scholar 

  • Piepenbring M, Hofmann TA, Unterseher M et al (2012) Species richness of plants and fungi in western Panama: towards a fungal inventory in the tropics. Biodivers Conserv 21:2181–2193

    Article  Google Scholar 

  • Pirozynski KA (1976) Fossil fungi. Annu Rev Phytopathol 14:237–246

    Article  Google Scholar 

  • Pohlad BR, Reynolds DR (1974) Treubiomyces rediscovered. Mycologia 66:521–524

    Article  Google Scholar 

  • Pratibha J, Prabhugaonkar A, Hyde KD et al (2014) Phylogenetic placement of Bahusandhika, Cancellidium and Pseudoepicoccum (asexual Ascomycota). Phytotaxa 176:68–80

    Article  Google Scholar 

  • Prieto M, Etayo J, Olariaga IA (2021) A new lineage of mazaediate fungi in the Eurotiomycetes: Cryptocaliciomycetidae subclass. nov., based on the new species Cryptocalicium blascoi and the revision of the ascoma evolution. Mycol Prog 20:889–904

    Article  Google Scholar 

  • Pugh GJF, Boddy L (1988) A view of disturbance and life strategies in fungi. Proc R Soc Edinb Sect B 94:3–11

    Google Scholar 

  • Puttemans A (1904) Contribution à l’étude de la fumagine des caféiers. Bull Soc Mycol France 20:152–154

    Google Scholar 

  • Qiao M, Zheng H, Guo JS, Castañeda-Ruiz RF et al (2021) Two new asexual genera and six new asexual species in the family Microthyriaceae (Dothideomycetes, Ascomycota) from China. MycoKeys 85:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Quan Y, Muggia L, Moreno LF et al (2020) A re-evaluation of the Chaetothyriales using criteria of comparative biology. Fungal Divers 103:47–85

    Article  Google Scholar 

  • Raciborski (1899) Halbania. Crypt. Par. Java 89

  • Raciborski M (1900) Batavia, Indonesia, Staatsdruckerei. Parasitische Algen Und Pilze Javas 1:1–39

    Google Scholar 

  • Raj TN (1977) Miscellaneous microfungi. II. Can J Bot 55:757–765

    Article  Google Scholar 

  • Ramanujam CGK, Rao KP (1973) On some microthyriaceous fungi from a Tertiary lignite of south India. Palaeobotanist 20:203–209

    Google Scholar 

  • Rambaut A (2012) FigTree v1.4: tree figure drawing tool, http://treebio.ed.ac.uk/software/figtree/. Accessed 14 April 2022

  • Rambaut A, Suchard MA, Xie D et al (2013) Tracer version 1.6. University of Edinburgh. http://tree.bio.ed.ac.uk/software/tracer. Accessed 19 Nov 2022

  • Rao AR (1958) Fungal remains from some Tertiary deposits of India. The Palaeobotanist 7

  • Rao KP, Ramanujam CGK (1976) A further record of microthyriaceous fungi from the Neogene deposits of Kerala in South India. Geophytology 6:98–104

    Google Scholar 

  • Rathnayaka AR, Jayawardena RS (2019) Checklist of order Capnodiales in Thailand. Plant Pathol Quarant 9:166–184

  • Réblová M, Untereiner WA, Štěpánek V et al (2017) Disentangling Phialophora section Catenulatae: disposition of taxa with pigmented conidiophores and recognition of a new subclass, Sclerococcomycetidae (Eurotiomycetes). Mycol Prog 16:27–46

    Article  Google Scholar 

  • Renard L, Firmino AC, Pereira OL et al (2020) Character evolution of modern fly-speck fungi and implications for interpreting thyriothecial fossils. Am J Bot 107:1021–1040

    Article  Google Scholar 

  • Reynolds DR (1971) The sooty mould ascomycete genus Limacinula. Mycologia 63:1173–1209

    Article  Google Scholar 

  • Reynolds DR (1983) Foliicolous ascomycetes. 5. The Capnodiaceous clypeate genus Treubiomyces. Mycotaxon 17:349–360

    Google Scholar 

  • Reynolds DR (1999) Capnodium citri: the sooty mold fungi comprising the taxon concept. Mycopathologia 148:141–147

    Article  CAS  PubMed  Google Scholar 

  • Reynolds DR, Gilbert GS (2005) Epifoliar fungi from Queensland, Australia. Aust Syst Bot 18:265–289

    Article  Google Scholar 

  • Reynolds DR, Gilbert GS (2006) Epifoliar fungi from Panama. Cryptogam Mycol 27:249

    Google Scholar 

  • Rodríguez Justavino D, Piepenbring M (2007) Two new species of Appendiculella (Meliolaceae) from Panama. Mycologia 99:544–552

    Article  Google Scholar 

  • Rodriguez Justavino D, Kirschner R, Piepenbring M (2015) New species and new records of Meliolaceae from Panama. Fungal Divers 70:73–84

    Article  Google Scholar 

  • Roger L (1953) Phytopathologie des pays Chauda. In: Encyclopedia mycologique 1638–1653

  • Rosendahl CO (1943) Some fossil fungi from Minnesota. Bull Torrey Bot Club 70:126–138

    Article  Google Scholar 

  • Rossman AY, Allen WC, Braun U et al (2016) Overlooked competing asexual and sexually typified generic names of Ascomycota with recommendations for their use or protection. IMA Fungus 7:289–308

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruibal C, Platas G, Bills GF (2005) Isolation and characterization of melanised fungi from limestone formations in Mallorca. Mycol Prog 4:23–38

    Article  Google Scholar 

  • Ruibal C, Platas G, Bills GF (2008) High diversity and morphological convergence among melanised fungi from rock formations in the Central Mountain System of Spain. Persoonia 21:93–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saccardo PA (1883) Sylloge Fungorum (Abellini), Italy. Pavia 4:1–815

    Google Scholar 

  • Saccardo (1889) Sylloge Fungorum (Abellini) 8:738

  • Saccardo PA (1904) De Diagnostica et nomenclatura mycologica, Admonita quaedam. Ann Mycologici 2:195–198

    Google Scholar 

  • Saccardo PA (1919) Cartolina Postale Italiana, 1919 déc. 22, Avellino,[à] Monsieur le professeur JA Henriques, Coimbra

  • Saikkonen K, Faeth SH, Helander M et al (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Samarakoon MC, Hyde KD, Hongsanan S et al (2019) Divergence time calibrations for ancient lineages of Ascomycota classification based on a modern review of estimations. Fungal Divers 96:285–346

    Article  Google Scholar 

  • Santesson R (1952) Foliicolous lichens I. A revision of the taxonomy of the obligately foliicolous, lichenized fungi. Symbolae Botanicae Upsalians 12:1–590

    Google Scholar 

  • Saxena RK, Khare S (1992) Fungal remains from the Neyveli Formation of Tiruchirapalli District, Tamil Nadu, India. Geophytology 21:37–43

    Google Scholar 

  • Saxena RK, Misra NK (1990) Palynological investigation of the Ratnagiri Beds of Sindhu Durg District, Maharashtra. Palaeobotanist 38:263–276

    CAS  Google Scholar 

  • Saxena RK, Tripathi SKM (2011) Indian fossil fungi. Palaeobotanist 60:1–208

    Google Scholar 

  • Saxena RK, Wijayawardene NN, Dai DQ et al (2021) Diversity in fossil fungal spores. Mycosphere 12:670–874

    Article  Google Scholar 

  • Schmidt AR, Beimforde C, Seyfullah LJ et al (2014) Amber fossils of sooty moulds. Rev Palaeobot Palynol 200:53–64

    Article  Google Scholar 

  • Schnitzler N, Peltroche-Llacsahuanga H, Bestier N et al (1999) Effect of melanin and carotenoids of Exophiala (Wangiella) dermatitidis on phagocytosis, oxidative burst, and killing by human neutrophils. Infect Immun 67:94–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoch C, Sung GH, López-Giráldez F et al (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 8:224–239

    Article  Google Scholar 

  • Scott KJ (1972) Obligate parasitism by phytopathogenic fungi. Biol Rev 47:537–572

    Article  Google Scholar 

  • Seifert KA, Hughes SJ (2000) Spiropes dictyosporus, a new synnematous fungus associated with sooty moulds. NZ J Bot 38:489–492

    Article  Google Scholar 

  • Selkirk DR (1975) Tertiary fossil fungi from Kiandra, New SouthWales. Proc Linnean Soc NSW 100:70–94

    Google Scholar 

  • Senanayake IC, Pem D, Rathnayaka AR et al (2022) Predicting global numbers of teleomorphic ascomycetes. Fungal Divers 114(1):237–278

    Article  Google Scholar 

  • Sharma N, Kar RK, Agarwal A et al (2005) Fungi in dinosaurian (Isisaurus) coprolites from the Lameta Formation (Maastrichtian) and its reflection on food habit and environment. Micropaleontology 51:73–82

    Article  Google Scholar 

  • Singh SK, Chauhan MS (2008) Fungal remains from the Neogene sediments of Mahuadanr Valley, Latehar district, Jharkhand, India and their palaeoclimatic significance. J Palaeontol Soc India 53:73–81

    Google Scholar 

  • Sivanesan A (1970) Parmulariopsella burseracearum gen. et sp. nov. and Microcyclus placodisci sp. nov. Trans Br Mycol Soc 55:509–514

    Article  Google Scholar 

  • Sivanesan A (1984) The bitunicate ascomycetes and their anamorphs. J. Cramer, Vaduz, p 701

  • Sivanesan A, Shivas RG (2002) New species of foliicolous Loculoascomycetes on Dysoxylum, Melaleuca and Syzygium from Queensland, Australia. Fungal Divers 11:151–158

    Google Scholar 

  • Sivanesan A, Sinha ARP (1989) Aldonata, a new ascomycete genus in the Parmulariaceae. Mycol Res 92:246–249

    Article  Google Scholar 

  • Slippers B, Boissin E, Phillips AJ et al (2013) Phylogenetic lineages in the Botryosphaeriales: a systematic and evolutionary framework. Stud Mycol 76:31–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PH (1980) Trichothyriaceous fungi from the Early Tertiary of southern England. Palaeontology 23:205–212

    Google Scholar 

  • Song ZC, Zheng Y, Li M et al (1999) Fossil spores and pollen of China. Science Press, Beijing, p 910

    Google Scholar 

  • Spatafora JW, Mitchell TG, Vilgalys R (1995) Analysis of genes coding for small-subunit rRNA sequences in studying phylogenetics of dematiaceous fungal pathogens. J Clin Microbiol 33:1322–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Species Fungorum (2023b) http://www.speciesfungorum.org/names/. Accessed 26 June 2023b

  • Spegazzini C (1888) Pugillus II. Anales de la Sociedad Cientifica Argentina 26:5–74

    Google Scholar 

  • Spegazzini C (1912) Mycetes argentinenses (Series VI). Anales del Museo Nacional de Historia Natural de Buenos Aires 23:1–146

    Google Scholar 

  • Spegazzini CL (1918) Notas micológicas. Physics 4:281–329

    Google Scholar 

  • Spegazzini C (1921a) Breve nota sobre uredinales berberidicolas sudamericanas. Revista chilena de historia natural 25

  • Spegazzini C (1921b) Mycetes chilenses. Boletín de la Academia Nacional de Ciencias en Córdoba 25:1–124

    Google Scholar 

  • Spegazzini C (1924) Relación de un paseo hasta al Cabo de Hoorn (Cabo de Hornos). Boletin de la Academia Nacional de Ciencias en Córdoba 27:321–404

    Google Scholar 

  • Spooner BM, Kirk PM (1990) Observations on some genera of Trichothyriaceae. Mycol Res 94:223–230

    Article  Google Scholar 

  • Staiger B (2002) Die Flechtenfamilie Graphidaceae. Studien in Richtung einer natürlicheren Gliederung. Bibliotheca Lichenologica, 85, J. Cramer, Berlin, Stuttgart 526

  • Sterflinger K, de Hoog GS, Haase G (1999) Phylogeny and ecology of meristematic Ascomycetes. Stud Mycol 43:5–22

    Google Scholar 

  • Stevens FL (1918) Some Meliolicolous parasites and commensals from Porto Rico. Bot Gaz 65:227–249

    Article  Google Scholar 

  • Stevens FL (1925) Hawaiian Fungi. Bernice P. Bishop Museum Bull 19:1–189

    Google Scholar 

  • Stevens FL (1927) The Meliolineae I. Annal Mycol 25:405–477

  • Stevens FL (1928) The Meliolineae II. Annal Mycol 26:165–388

  • Stubblefield SP, Taylor TN (1988) Recent advances in palaeomycology. New Phytol 108:3–25

    Article  PubMed  Google Scholar 

  • Sugiyama J, Hosoya T (2020) Taxonomic and nomenclatural changes in Euantennariaceous sooty moulds: Ten new combinations in Euantennaria for species of Antennatula. Mycoscience 61:353–358

    Article  Google Scholar 

  • Sun JZ, Liu XZ, McKenzie EHC et al (2019) Fungicolous fungi: terminology, diversity, distribution, evolution, and species checklist. Fungal Divers 95:337–430

    Article  Google Scholar 

  • Sun W, Su L, Yang S, Sun J et al (2020) Unveiling the hidden diversity of rock-inhabiting fungi: Chaetothyriales from China. J Fungi 6:187

    Article  CAS  Google Scholar 

  • Swart HJ (1975) Callosities in fungi. Trans Br Mycol Soc 64:511–515

    Article  Google Scholar 

  • Swart HJ (1986) Australian leaf-inhabiting fungi XXII. Microthyrium-like fungi on Eucalyptus. Trans Br Mycol Soc 87:81–91

    Article  Google Scholar 

  • Swart HJ (1988) Australian leaf-inhabiting fungi. XXX. Two interesting Parmulariaceae. Trans Br Mycol Soc 91:581–585

    Article  Google Scholar 

  • Sydow H (1924) Beiträge zur Kenntnis der Pilzflora Neu-Seelands. Ann Mycologici 22:303

    Google Scholar 

  • Sydow H (1925) Fungi in itinere costaricensi collecti. Pars Prima. Ann Mycologici 23:308–429

    Google Scholar 

  • Sydow H (1927) Fungi in itinere costaricensi III. Ann Mycologici 25:1–160

    Google Scholar 

  • Sydow H (1938) Fungi Himalayensis. Ann Mycol 36:437–442

    Google Scholar 

  • Sydow H, Petrak F (1929) Fungi costaricensis a cl. Prof Alberto M. Brenes Collecti. Ann Mycologici 27:1–86

    Google Scholar 

  • Sydow H, Sydow P (1914) Fungi from northern Palawan. Philipp J Sci 9:157–189

    Google Scholar 

  • Sydow H, Sydow P (1916) Fungi amazonici a cl. E. Ule lecti. Ann Mycologici 14:65–97

    Google Scholar 

  • Szwedo J, Nel A (2011) The oldest aphid insect from the Middle Triassic of the Vosges, France. Acta Palaeontol Pol 56:757–766

    Article  Google Scholar 

  • Taylor TN (1994) The fossil history of ascomycetes. In: Hawksworth DL (ed) Ascomycete Systematics: problems and perspectives in the Nineties. Plenum Press, New York, pp 167–174

    Chapter  Google Scholar 

  • Taylor TH, Krings M, Taylor ED (2015) Fossil fungi. Academic Press Elsevier, Amsterdam

    Google Scholar 

  • Telle S, Thines M (2008) Amplification of cox2 (~620 bp) from 2 mg of up to 129 years old herbarium specimens, comparing 19 extraction methods and 15 polymerases. PLoS ONE 3:1–8

    Article  Google Scholar 

  • Tennakoon DS, Thambugala KM, Jeewon R et al (2019) Additions to Chaetothyriaceae (Chaetothyriales): Longihyalospora gen. nov. and Ceramothyrium longivolcaniforme, a new host record from decaying leaves of Ficus ampelas. MycoKeys 61:91–109

    Article  PubMed  PubMed Central  Google Scholar 

  • Tennakoon DS, Kuo CH, Maharachchikumbura SS et al (2021) Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. Fungal Divers 108:1–215

    Article  Google Scholar 

  • Tennakoon DS, Hongsanan S, De Silva N et al (2023) Molecular phylogeny and morphological characterization of Paramicrothyrium bambusae sp. nov. and Tumidispora thailandica sp. nov. from leaf litter. Phytotaxa 578:112–124

    Article  Google Scholar 

  • Teixeira MD, Moreno LF, Stielow BJ et al (2017) Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota). Stud Mycol 86:1–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaung MM (2006) Biodiversity of phylloplane ascomycetes in Burma. Australasian Mycol 25:5–23

    Google Scholar 

  • Theissen F (1912) Zur Revision der Gattungen Microthyrium und Seynesia. Oesterreichische Botanische Zeitschrift 62:275–280

    Article  Google Scholar 

  • Theissen F (1913a) Die Gattung Asterina. Abhandlungen Der Kaiserlich-Koniglichen Zoologisch-Botanisch Gesellschaft in Wien 7:1–130

    Google Scholar 

  • Theissen F (1913b) Über Membranstructuren bei den Microthyriaceen als Grundlage für den Ausbau der Hemisphaeriales. Mycologisches Centralblatt 3:273–286

    Google Scholar 

  • Theissen F (1913c) Uber einige Microthyriaceen. Ann Mycologici 11:499

    Google Scholar 

  • Theissen F (1921) Le genre Asterinella. Brotéria Série Botânica 10:101–123

    Google Scholar 

  • Theissen F, Sydow H (1914) Dothideazeen-studien: I-II. Ann Mycologici 12:268–281

    Google Scholar 

  • Theissen F, Sydow H (1915) Die Dothideales. Kritisch-Systematische Riginaluntersuchungen. Ann Mycologici 13:147–746

    Google Scholar 

  • Theissen F, Sydow H (1918) Synoptische Tafeln. Ann Mycologici 15:422

    Google Scholar 

  • Thomas S, Gunn MS, Halvor BG et al (2015) A revision of the history of the Colletotrichum acutatum species complex in the Nordic countries based on herbarium specimens. FEMS Microbiol Lett 362:fnv130

    Article  Google Scholar 

  • Tian Q, Hongsanan S, Dai DQ et al (2016) Towards a natural classification of Dothideomycetes: clarification of Aldona, Aldonata and Viegasella (Parmulariaceae). Mycosphere 7:511–524

    Article  Google Scholar 

  • Tian Q, Chomnunti P, Lumyong S et al (2021) Phylogenetic relationships and morphological reappraisal of Chaetothyriales. Mycosphere 12:1157–1261

    Article  Google Scholar 

  • Toro RA (1952) A study of the tropical American black-mildews. J Agric Univ Puerto Rico 36:24–87

    Google Scholar 

  • Trifinopoulos J, Nguyen LT, von Haeseler A et al (2016) Nucleic Acids Res 44:W232–W235

  • Tripathi SKM (2009) Fungi from palaeoenvironments: their role in environmental interpretations. In: Misra, JK, Deshmukh SK (ed) Fungi from different environments. Progress in Mycological Research Series. Science Publishers, Enfield, pp 1–27

    Google Scholar 

  • Untereiner WA, Gueidan C, Orr MJ et al (2011) The phylogenetic position of the lichenicolous Ascomycete Capronia peltigerae. Fungal Divers 49:225–233

    Article  Google Scholar 

  • van der Aa H, Van Oorschot CA (1985) A redescription of some genera with staurospores. Persoonia-Mol Phylogeny Evol Fungi 12:415–425

    Google Scholar 

  • van der Aa H, von Arx JA (1986) On Vonarxia, Kazulia and other fungi with stauroconidia. Persoonia-Mol Phylogeny Evol Fungi 13:127–128

    Google Scholar 

  • Van Geel B, Aptroot A, Mauquoy D (2006) Sub-fossil evidence for fungal hyperparasitism (Isthmospora spinosa on Meliola ellisii, on Calluna vulgaris) in a Holocene intermediate ombrotrophic bog in northern-England. Rev Palaeobot Palynol 141:121–126

    Article  Google Scholar 

  • Venkatachala BS, Kar RK (1969) Palynology of the Tertiary sediments in Kutch-2. Epiphyllous fungal remains from the bore-hole no. 14. Palaeobotanist 17:179–183

    Google Scholar 

  • Verma RK, Kamal R (1987) Studies on foliicolous ascomycotina-III. Some interesting bitunicati. Indian Phytopathol 40:410–413

    Google Scholar 

  • Videira SIR, Groenewald JZ, Nakashima C et al (2017) Mycosphaerellaceae–chaos or clarity? Stud Mycol 87:257–421

  • Vishnu A, Khan MA, Bera M et al (2017) Fossil Asterinaceae in the phyllosphere of the eastern Himalayan Neogene Siwalikforest and their palaeoecological significance. Bot J Linn Soc 185:147–167

    Article  Google Scholar 

  • von Höhnel F (1909) Fragmente zur Mykologie: IX. Mitteilung (Nr. 407 bis 467). Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften 118:1461–1552

    Google Scholar 

  • von Höhnel FXR (1911) Fragmente zur Mykologie XIII (713): Über Leptosphaeria maculans (Desm.) und Sphaeria lingam Tode. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien. (Mathematisch–naturwissenschaftliche Klasse (Abteilung I) 120:458–463

  • von Höhnel F (1917) System der Phacidiales. Berichte der Deutschen Botanischen Gesellschaft 35:416–422

    Google Scholar 

  • von Höhnel F (1918a) Dritte vorlaufige Mitteilung mycologischer Ergebnisse (Nr. 201–304). Berichte Der Deutschen Botanischen Gesellschaft 36:309–317

    Article  Google Scholar 

  • von Höhnel FXR (1918b) Mycologische Fragmente, 272 Über die Hysteriaceen. Ann Mycologici 16:145–154

    Google Scholar 

  • von Höhnel FXR (1918c) Fragmente zur Mykologie. Sitzungsberichten der Kais erliche Akademie der Wissenschaften in WienMathematische–Naturwissenschaftliche Klasse. Abt 1:329–339

    Google Scholar 

  • von Höhnel F (1919) Berichte der Deutschen Botanischen Gesellschaft 36

  • von Arx JA, Müller E (1975) A re-evaluation of the bitunicate Ascomycetes with keys to families and genera. Stud Mycol 9:1–159

    Google Scholar 

  • Wang ZX, Sun BN, Sun FK et al (2017) Identification of two new species of Meliolinites associated with Lauraceae leaves from the middle Miocene of Fujian, China. Mycologia 109:676–689

    PubMed  Google Scholar 

  • Wedin M, Döring H, Gilenstam G et al (2006) Stictis s. lat. (Ostropales, Ascomycota) in northern Scandinavia, with a key and notes on morphological variation in relation to lifestyle. Mycol Res 110:773–789

    Article  PubMed  Google Scholar 

  • Wellman FL (1972) Tropical American plant disease. The Scarcccrow Press, Metuchen, p 989

    Google Scholar 

  • Wells A, Hill R (1993) Epiphyllous microorganisms as palaeoclimate estimators: the developmental sequence of fungal ‘germlings’ on their living host. Aust Syst Bot 6:377–386

    Article  Google Scholar 

  • Wijayawardene NN, Hyde KD, Rajeshkumar KC et al (2017a) Notes for genera: Ascomycota. Fungal Divers 86:1–594

    Article  Google Scholar 

  • Wijayawardene NN, Hyde KD, Tibpromma S et al (2017b) Towards incorporating asexual fungi in a natural classification: checklist and notes 2012–2016. Mycosphere 8:1457–1554

    Article  Google Scholar 

  • Wijayawardene NN, Hyde KD, Lumbsch HT et al (2018) Outline of Ascomycota: 2017. Fungal Divers 88:167–263

    Article  Google Scholar 

  • Wijayawardene NN, Hyde KD, Al-Ani LK et al (2020) Outline of Fungi and fungus-like taxa. Mycosphere 11:1060–1456

    Article  Google Scholar 

  • Wijayawardene NN, Hyde KD, Dai DQ et al (2022) Outline of Fungi and fungus-like taxa—2021. Mycosphere 13:53–453

    Article  Google Scholar 

  • Winka K, Eriksson OE, Bång Å (1998) Molecular evidence for recognizing the Chaetothyriales. Mycologia 90:822–830

    Article  CAS  Google Scholar 

  • Winton LM, Stone JK, Hansen EM et al (2007) The systematic position of Phaeocryptopus gaeumannii. Mycologia 99:240–252

    Article  CAS  PubMed  Google Scholar 

  • Wood AR, Damm U, van der Linde EJ et al (2016) Finding the missing link: resolving the Coryneliomycetidae within Eurotiomycetes. Persoonia 37:37–56

    Article  CAS  PubMed  Google Scholar 

  • Woronichin NN (1915) Les fumagines de Sotschi. Trudy Byuro po Prikladnoj Botanik 8:769–807

    Google Scholar 

  • Woronichin (1917) Key to fungi (fungi imperfecti) 2:743

  • Woronichin NN (1925) Über die Capnodiales. Ann Mycologici 23:174–178

    Google Scholar 

  • Woronichin NN (1926) Zur Kenntnis der Morphologie und Systematik der Russtaupilze Transkaukasiens. Ann Mycologici 24:231–264

    Google Scholar 

  • Wu HX, Hyde KD (2013) Re-appraisal of Scolecopeltidium. Mycotaxon 125:1

    Article  Google Scholar 

  • Wu H, Li Y, Chen H et al (2010) Studies on Microthyriaceae: some excluded genera. Mycotaxon 113:147–156

    Article  Google Scholar 

  • Wu HX, Schoch CL, Boonmee S et al (2011a) A reappraisal of Microthyriaceae. Fungal Divers 51:189–248

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu HX, Jaklitsch WM, Voglmayr H et al (2011b) Epitypification, morphology and phylogeny of Tothia fuscella. Mycotaxon 118:203–211

    Article  Google Scholar 

  • Wu HX, Tian Q, Li WJ et al (2014) A reappraisal of Microthyriaceae. Phytotaxa 176:201–212

    Article  Google Scholar 

  • Yang H, Chomnunti P, Ariyawansa H et al (2014) The genus Phaeosaccardinula (Chaetothyriales) from Yunnan China, introducing two new species. Chiang Mai J Sci 41:873–884

    Google Scholar 

  • Yarwood CE (1973) Pyrenomycetes: Erysiphales. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The fungi: an advanced treatise, vol IVA. Academic, New York, pp 71–86

    Google Scholar 

  • Yen L, Tsurumi Y, Hop D et al (2018) Three new anamorph of Ceramothyrium from fallen leaves in Vietnam. Adv Microbiol 8:314–323

    Article  Google Scholar 

  • Zeng XY, Zhao JJ, Hongsanan S et al (2017) A checklist for identifying Meliolales species. Mycosphere 8:218–359

    Article  Google Scholar 

  • Zeng XY et al (2018) Simplified and efficient DNA extraction protocol for Meliolaceae specimens. Mycol Prog 17:403–415

    Article  Google Scholar 

  • Zeng XY, Wu HX, Hongsanan S et al (2019) Taxonomy and the evolutionary history of Micropeltidaceae. Fungal Divers 97:393–436

    Article  Google Scholar 

  • Zeng XY, Jeewon R, Hongsanan S et al (2020) Unravelling evolutionary relationships between epifoliar Meliolaceae and angiosperms. J Syst Evol 60:23–42

    Article  Google Scholar 

  • Zhang N, Castlebury LA, Miller AN et al (2006) An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 98:1076–1087

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang L, Xi L et al (2013) Melanin in a meristematic mutant of Fonsecaea monophora inhibits the production of nitric oxide and Th1 cytokines of murine macrophages. Mycopathologia 175:515–522

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Kevin D. Hyde thanks the Thailand Research Fund for Grant No. RDG6130001, entitled “Impact of Climate Change on Fungal Diversity and Biogeography in the Greater Mekong Subregion” and Thailand Science Research and Innovation of the project “Macrofungi diversity research from the Lancang-Mekong Watershed and Surrounding areas” (Grant No. DBG6280009). Gareth Jones acknowledges the award of a Distinguished Scientist Fellowship 594 DSFP), by King Saud University, Kingdom of Saudi Arabia. Dr. Shaun Pennycook is thanked for nomenclatural review. Dr. Mark A. Miller, Prof. Chang-Hsin Kuo, Dr. Danushka S. Tennakoon, Dr. Hasini Ekanayake, Anu pem and Digvi Bhundun are thanked for their support. We would like to thank the Mushroom Research Foundation (Thailand). Diana S. Marasinghe also would like to extend her heartfelt gratefulness to Mae Fah Luang University for granting her the tuition scholarship for her PhD studies and (Thesis or Dissertation Writing Grant, reference no อว 7702(6)/125) for funding this research. We would like to appreciated and dedicate this work to all mycologists for their immense contributions for the taxonomy of epifoliar fungi.

Funding

Funding was provided by Thailand Research Fund (Grant no. RDG6130001), Thailand Science Research and Innovation (Grant no. DBG6280009).

Author information

Authors and Affiliations

Authors

Contributions

DSM—Writing, original draft preparation; KDH, SH, EBGJ, PC, XYZ and SB—review; KDH—supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to K. D. Hyde.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Handling Editor: Sajeewa Maharachchikumbura.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marasinghe, D.S., Hongsanan, S., Zeng, X.Y. et al. Taxonomic monograph of epifoliar fungi. Fungal Diversity 121, 139–334 (2023). https://doi.org/10.1007/s13225-023-00522-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-023-00522-7

Keywords

Navigation