Skip to main content

Advertisement

Log in

QbD-driven development of phospholipid-embedded lipidic nanocarriers of raloxifene: extensive in vitro and in vivo evaluation studies

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Raloxifene (RLX) is popularly indicated in treatment of osteoporosis and prevention of breast cancer. Owing to its poor aqueous solubility, high pre-systemic metabolism, intestinal glucuronidation, and P-glycoprotein (P-gp) efflux, however, it demonstrates low (< 2%) and inconsistent oral bioavailability. The current work, Quality by Design (QbD)-driven development of phospholipid-embedded nanostructured lipidic carriers (NLCs) of RLX, accordingly, was undertaken to potentiate its lymphatic uptake, augment oral bioavailability, and possibly reduce drug dosage. Factor screening and failure mode effect analysis (FMEA) studies were performed to delineate high-risk factors using solid lipid (glyceryl monostearate), liquid lipid (vitamin E), and surfactant (Tween 80). Response surface optimization studies were performed employing the Box-Behnken design. Mathematical and graphical methods were adopted to embark upon the selection of optimized NLCs with various critical quality attributes (CQAs) of mean particle size as 186 nm, zeta potential of − 23.6 mV, entrapment efficiency of 80.09%, and cumulative drug release at 12 h of 83.87%. The DSC and FTIR studies, conducted on optimized NLCs, indicated successful entrapment of drug into the lipid matrix. In vitro drug release studies demonstrated Fickian diffusion mechanism. In vivo pharmacokinetic studies in rats construed significant improvement in AUC0–72 h (4.48-folds) and in Cmax (5.11-folds), unequivocally indicating markedly superior (p < 0.001) oral bioavailability of RLX-NLCs vis-à-vis marketed tablet formulation. Subsequently, level “A” in vitro/in vivo correlation (IVIVC) was also successfully attempted between the percentages of in vitro drug dissolved and of in vivo drug absorbed at the matching time points. In vitro cytotoxicity and cellular uptake studies also corroborated higher efficacy and successful localization of coumarin-6-loaded NLCs into MG-63 cells through microfluidic channels.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

All the pertinent data generated or analyzed during these studies have been included in this article and its supplementary information files.

References

  1. Pant A, Singh J, Barnwal RP, Singh G, Singh B. Theranostic approach for the management of osteoporosis. Crit Rev Ther Drug Carrier Syst. 2023;40(3):95–121.

  2. Yavropoulou MP, Makras P, Anastasilakis AD. Bazedoxifene for the treatment of osteoporosis. Expert Opin Pharmacother. 2019;20(10):1201–10.

    Article  CAS  PubMed  Google Scholar 

  3. Sree KSN, Dengale SJ, Mutalik S, Bhat K. Raloxifene HCl–quercetin co-amorphous system: preparation, characterization, and investigation of its behavior in phosphate buffer. Drug Dev Ind Pharm. 2022;48(6):227–38.

    Article  Google Scholar 

  4. Arbuthnot GN, Dalder BW, Hartauer KJ, Wayne DL, Stratford RE. Raloxifene salts and solvates, formulations containing same, and methods for their preparation. 1996;Hungarian Patent, HU9902750A2.

  5. Vora D, Dandekar A, Bhattaccharjee S, Singh ON, Agrahari V, Peet MM, Doncel GF, Banga AK. Formulation development for transdermal delivery of raloxifene, a chemoprophylactic agent against breast cancer. Pharmaceutics. 2022;14(3):1–14.

    Article  Google Scholar 

  6. Joshi A, Kaur J, Kulkarni R, Chaudhari R. In-vitro and ex-vivo evaluation of raloxifene hydrochloride delivery using nano-transfersome based formulations. J Drug Deliv Sci Technol. 2018;45:151–8.

    Article  CAS  Google Scholar 

  7. Jain A, Sharma T, Kumar R, Katare OP, Singh B. Raloxifene-loaded SLNs with enhanced biopharmaceutical potential: QbD-steered development, in vitro evaluation, in vivo pharmacokinetics, and IVIVC. Drug Deliv Transl Res. 2022;12(5):1136–60.

    Article  CAS  PubMed  Google Scholar 

  8. Aldawsari HM, Negm AA. Potentiation of raloxifene cytotoxicity against MCF-7 breast cancer cell lines via transdermal delivery and loading on self-emulsifying nanoemulsions. Trop J Pharm Res. 2020;19(1):11–5.

    Article  Google Scholar 

  9. Golmohammadzadeh S, Farhadian N, Biriaee A, Dehghani F, Khameneh B. Preparation, characterization and in vitro evaluation of microemulsion of raloxifene hydrochloride. Drug Dev Ind Pharm. 2017;43(10):1619–25.

    Article  CAS  PubMed  Google Scholar 

  10. Murthy A, Rao Ravi P, Kathuria H, Malekar S. Oral bioavailability enhancement of raloxifene with nanostructured lipid carriers. Nanomaterials (BaseI). 2020;10(6):1–17.

    Google Scholar 

  11. Patil PH, Belgamwar VS, Patil PR, Surana SJ. Solubility enhancement of raloxifene using inclusion complexes and cogrinding method. J Pharm. 2013;2013:1–9.

    Google Scholar 

  12. Jain A, Saini S, Kumar R, Sharma T, Swami R, Katare OP, Singh B. Phospholipid-based complex of raloxifene with enhanced biopharmaceutical potential: synthesis, characterization and preclinical assessment. Int J Pharm. 2019;571:1–15.

    Article  Google Scholar 

  13. Tran TH, Poudel BK, Marasini N, Chi S-C, Choi H-G, Yong CS, Kim JO. Preparation and evaluation of raloxifene-loaded solid dispersion nanoparticle by spray-drying technique without an organic solvent. Int J Pharm. 2013;443(1–2):50–7.

    Article  CAS  PubMed  Google Scholar 

  14. Ağardan NBM, Değim Z, Yılmaz Ş, Altıntaş L, Topal T. The effectiveness of raloxifene-loaded liposomes and cochleates in breast cancer therapy. AAPS PharmSciTech. 2016;17:968–77.

    Article  PubMed  Google Scholar 

  15. Jain A, Kaur R, Beg S, Kushwah V, Jain S, Singh B. Novel cationic supersaturable nanomicellar systems of raloxifene hydrochloride with enhanced biopharmaceutical attributes. Drug Deliv Transl Res. 2018;8:670–92.

    Article  CAS  PubMed  Google Scholar 

  16. Musakhanian J, Rodier J-D, Dave M. Oxidative stability in lipid formulations: a review of the mechanisms, drivers, and inhibitors of oxidation. AAPS PharmSciTech. 2022;23(5):2–30.

    Google Scholar 

  17. Zakir F, Ahmad A, Farooq U, Mirza MA, Tripathi A, Singh D, Shakeel F, Mohapatra S, Ahmad FJ, Kohli K. Design and development of a commercially viable in situ nanoemulgel for the treatment of postmenopausal osteoporosis. Nanomedicine (Lond). 2020;15(12):1167–87.

    Article  CAS  PubMed  Google Scholar 

  18. Gadade DD, Pekamwar SS. Cyclodextrin based nanoparticles for drug delivery and theranostics. Adv Pharm Bull. 2020;10(2):166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang Y, Dai W-G. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharmaceutica Sinica B. 2014;4(1):18–25.

    Article  PubMed  Google Scholar 

  20. Callender SP, Mathews JA, Kobernyk K, Wettig SD. Microemulsion utility in pharmaceuticals: implications for multi-drug delivery. Int J Pharm. 2017;526(1–2):425–42.

    Article  CAS  PubMed  Google Scholar 

  21. Jain S, Jain V, Mahajan S. Lipid based vesicular drug delivery systems. Adv Pharm. 2014;2014:1–12.

    Google Scholar 

  22. Elmowafy M, Shalaby K, Elkomy MH, Alsaidan OA, Gomaa HA, Abdelgawad MA, Mostafa EM. Polymeric nanoparticles for delivery of natural bioactive agents: recent advances and challenges. Polymers. 2023;15(5):1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Poovi G, Damodharan N. Lipid nanoparticles: a challenging approach for oral delivery of BCS class-II drugs. Future J Pharm Sci. 2018;4(2):191–205.

    Article  Google Scholar 

  24. Zewail MB, Asaad GF, Swellam SM, Abd-Allah SM, Hosny SK, Sallah SK, Eissa JE, Mohamed SS, El-Dakroury WA. Design, characterization and in vivo performance of solid lipid nanoparticles (SLNs)-loaded mucoadhesive buccal tablets for efficient delivery of lornoxicam in experimental inflammation. Int J Pharm. 2022;624.

    Article  CAS  PubMed  Google Scholar 

  25. Dhiman N, Awasthi R, Sharma B, Kharkwal H, Kulkarni GT. Lipid nanoparticles as carriers for bioactive delivery. Front Chem. 2021;9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mitrović JR, Divović-Matović B, Knutson DE, Petković M, Djorović D, Randjelović DV, Dobričić VD, Đoković JB, Lunter DJ, Cook JM. High amount of lecithin facilitates oral delivery of a poorly soluble pyrazoloquinolinone ligand formulated in lipid nanoparticles: physicochemical, structural and pharmacokinetic performances. Int J Pharm. 2023:1–11.

  27. Khurana RK, Gaspar BL, Welsby G, Katare OP, Singh KK, Singh B. Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems. Drug Deliv Transl Res. 2018;8:617–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fricker G, Kromp T, Wendel A, Blume A, Zirkel J, Rebmann H, Setzer C, Quinkert R-O, Martin F, Müller-Goymann C. Phospholipids and lipid-based formulations in oral drug delivery. Pharm Res. 2010;27(8):1469–86.

    Article  CAS  PubMed  Google Scholar 

  29. Jain A, Sharma G, Kushwah V, Thakur K, Ghoshal G, Singh B, Jain S, Shivhare U, Katare O. Fabrication and functional attributes of lipidic nanoconstructs of lycopene: an innovative endeavour for enhanced cytotoxicity in MCF-7 breast cancer cells. Colloids Surf B. 2017;152:482–91.

    Article  CAS  Google Scholar 

  30. Schubert MA, Harms M, Müller-Goymann CC. Structural investigations on lipid nanoparticles containing high amounts of lecithin. Eur J Pharm Sci. 2006;27(2–3):226–36.

    Article  CAS  PubMed  Google Scholar 

  31. Elmowafy M, Shalaby K, Elkomy M, Alruwaili NK, Mostafa EM, Afzal M, Alharbi KS, Mohammed EF, Ali HM, Salama A. Impact of highly phospholipid-containing lipid nanocarriers on oral bioavailability and pharmacodynamics performance of genistein. Pharm Dev Technol. 2022;27(4):435–47.

    Article  CAS  PubMed  Google Scholar 

  32. Liu D, Chen L, Jiang S, Zhu S, Qian Y, Wang F, Li R, Xu Q. Formulation and characterization of hydrophilic drug diclofenac sodium-loaded solid lipid nanoparticles based on phospholipid complexes technology. J Liposome Res. 2014;24(1):17–26.

    Article  PubMed  Google Scholar 

  33. Heiati H, Phillips NC, Tawashi R. Evidence for phospholipid bilayer formation in solid lipid nanoparticles formulated with phospholipid and triglyceride. Pharm Res. 1996;13:1406–10.

    Article  CAS  PubMed  Google Scholar 

  34. Salminen H, Helgason T, Aulbach S, Kristinsson B, Kristbergsson K, Weiss J. Influence of co-surfactants on crystallization and stability of solid lipid nanoparticles. J Colloid Interface Sci. 2014;426:256–63.

    Article  CAS  PubMed  Google Scholar 

  35. Komath S, Garg A, Wahajuddin M. Development and evaluation of chrysin-phospholipid complex loaded solid lipid nanoparticles-storage stability and in vitro anti-cancer activity. J Microencapsul. 2018;35(6):600–17.

    Article  CAS  PubMed  Google Scholar 

  36. Rathore C, Upadhyay NK, Sharma A, Lal UR, Raza K, Negi P. Phospholipid nanoformulation of thymoquinone with enhanced bioavailability: development, characterization and anti-inflammatory activity. J Drug Deliv Sci Technol. 2019;52:316–24.

    Article  CAS  Google Scholar 

  37. Jansook P, Pichayakorn W, Ritthidej GC. Amphotericin B-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): effect of drug loading and biopharmaceutical characterizations. Drug Dev Ind Pharm. 2018;44(10):1693–700.

    Article  CAS  PubMed  Google Scholar 

  38. Akanda M, Getti G, Douroumis D. In vivo evaluation of nanostructured lipid carrier systems (NLCs) in mice bearing prostate cancer tumours. Drug Deliv Transl Res. 2021:1–13.

  39. Houacine C, Adams D, Singh KK. Impact of liquid lipid on development and stability of trimyristin nanostructured lipid carriers for oral delivery of resveratrol. J Mol Liq. 2020;316:1–50.

    Article  Google Scholar 

  40. Thuy VN, Van TV, Dao AH, Lee B-J. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. Open Nano. 2022;8.

    Google Scholar 

  41. Ye Q, Li J, Li T, Ruan J, Wang H, Wang F, Zhang X. Development and evaluation of puerarin-loaded controlled release nanostructured lipid carries by central composite design. Drug Dev Ind Pharm. 2021;47(1):113–25.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao C, Liu Y, Fan T, Zhou D, Yang Y, Jin Y, Zhang Z, Huang Y. A novel strategy for encapsulating poorly soluble drug into nanostructured lipid carriers for intravenous administration. Pharm Dev Technol. 2012;17(4):443–56.

    Article  CAS  PubMed  Google Scholar 

  43. Telange DR, Sohail NK, Hemke AT, Kharkar PS, Pethe AM. Phospholipid complex-loaded self-assembled phytosomal soft nanoparticles: evidence of enhanced solubility, dissolution rate, ex vivo permeability, oral bioavailability, and antioxidant potential of mangiferin. Drug Deliv Transl Res. 2021;11:1056–83.

    Article  CAS  PubMed  Google Scholar 

  44. Telange DR, Nirgulkar SB, Umekar MJ, Patil AT, Pethe AM, Bali NR. Enhanced transdermal permeation and anti-inflammatory potential of phospholipids complex-loaded matrix film of umbelliferone: formulation development, physico-chemical and functional characterization. Eur J Pharm Sci. 2019;131:23–38.

    Article  CAS  PubMed  Google Scholar 

  45. Wang Q, Gong T, Sun X, Zhang Z. Structural characterization of novel phospholipid lipid nanoparticles for controlled drug delivery. Colloids Surf B. 2011;84(2):406–12.

    Article  CAS  Google Scholar 

  46. Elsheikh MA, Elnaggar YS, Gohar EY, Abdallah OY. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal. Int J Nanomed. 2012:3787–3802

  47. Shirazi AS, Varshochian R, Rezaei M, Ardakani YH, Dinarvand R. SN38 loaded nanostructured lipid carriers (NLCs); preparation and in vitro evaluations against glioblastoma. J Mater Sci Mater Med. 2021;32(7):1–12.

    Article  Google Scholar 

  48. Shah B, Khunt D, Bhatt H, Misra M, Padh H. Intranasal delivery of venlafaxine loaded nanostructured lipid carrier: risk assessment and QbD based optimization. J Drug Deliv Sci Technol. 2016;33:37–50.

    Article  CAS  Google Scholar 

  49. Fahmy R, Kona R, Dandu R, Xie W, Claycamp G, Hoag SW. Quality by design I: application of failure mode effect analysis (FMEA) and Plackett-Burman design of experiments in the identification of “main factors” in the formulation and process design space for roller-compacted ciprofloxacin hydrochloride immediate-release tablets. AAPS Pharm Scitech. 2012;13:1243–54.

    Article  CAS  Google Scholar 

  50. Beg S, Saini S, Bandopadhyay S, Katare OP, Singh B. QbD-driven development and evaluation of nanostructured lipid carriers (NLCs) of olmesartan medoxomil employing multivariate statistical techniques. Drug Dev Ind Pharm. 2018;44(3):407–20.

    Article  CAS  PubMed  Google Scholar 

  51. Poonia N, Narang JK, Lather V, Beg S, Sharma T, Singh B, Pandita D. Resveratrol loaded functionalized nanostructured lipid carriers for breast cancer targeting: systematic development, characterization and pharmacokinetic evaluation. Colloids Surf B. 2019;181:756–66.

    Article  CAS  Google Scholar 

  52. Yasir M, Zafar A, Noorulla KM, Tura AJ, Sara UVS, Panjwani D, Khalid M, Haji MJ, Gobena WG, Gebissa T. Nose to brain delivery of donepezil through surface modified NLCs: formulation development, optimization, and brain targeting study. J Drug Deliv Sci Technol. 2022;75:1–15.

    Google Scholar 

  53. Shete MB, Deshpande AS, Shende P. Enhancement of in-vitro anti-oral cancer activities of silymarin using dispersion of nanostructured lipid carrier in mucoadhesive in-situ gel. Int J Pharm. 2023;636:1–16.

    Article  Google Scholar 

  54. Singh B, Pahuja S, Kapil R, Ahuja N. Formulation development of oral controlled release tablets of hydralazine: optimization of drug release and bioadhesive characteristics. Acta Pharm. 2009;59(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  55. Garg B, Beg S, Kumar R, Katare OP, Singh B. Nanostructured lipidic carriers of lopinavir for effective management of HIV-associated neurocognitive disorder. J Drug Deliv Sci Technol. 2019;53:1–13.

    Google Scholar 

  56. Dolatabadi S, Karimi M, Nasirizadeh S, Hatamipour M, Golmohammadzadeh S, Jaafari MR. Preparation, characterization and in vivo pharmacokinetic evaluation of curcuminoids-loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs). J Drug Deliv Sci Technol. 2021;62:1–10.

    Google Scholar 

  57. Wu L, Zhao L, Su X, Zhang P, Ling G. Repaglinide-loaded nanostructured lipid carriers with different particle sizes for improving oral absorption: preparation, characterization, pharmacokinetics, and in situ intestinal perfusion. Drug Delivery. 2020;27(1):400–9.

    Article  CAS  PubMed  Google Scholar 

  58. Ortiz AC, Yañez O, Salas-Huenuleo E, Morales JO. Development of a nanostructured lipid carrier (NLC) by a low-energy method, comparison of release kinetics and molecular dynamics simulation. Pharmaceutics. 2021;13(4):531–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Beg S, Raza K, Kumar R, Chadha R, Katare OP, Singh B. Improved intestinal lymphatic drug targeting via phospholipid complex-loaded nanolipospheres of rosuvastatin calcium. RSC Adv. 2016;6(10):8173–87.

    Article  CAS  Google Scholar 

  60. Wu K-W, Sweeney C, Dudhipala N, Lakhani P, Chaurasiya ND, Tekwani BL, Majumdar S. Primaquine loaded solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and nanoemulsion (NE): effect of lipid matrix and surfactant on drug entrapment, in vitro release, and ex vivo hemolysis. AAPS Pharm Scitech. 2021;22:1–12.

    Google Scholar 

  61. Beg S, Katare OP, Saini S, Garg B, Khurana RK, Singh B. Solid self-nanoemulsifying systems of olmesartan medoxomil: formulation development, micromeritic characterization, in vitro and in vivo evaluation. Powder Technol. 2016;294:93–104.

    Article  CAS  Google Scholar 

  62. Pant A, Sharma G, Saini S, Jain A, Barnwal RP, Singh G, Singh B. Quality by Design (QbD)‐steered development and validation of analytical and bioanalytical methods for raloxifene: application of Monte Carlo simulations and variance inflation factor. Biomed Chromatogr. 2023:1–20.

  63. Hosny KM, Bahmdan RH, Alhakamy NA, Alfaleh MA, Ahmed OA, Elkomy MH. Physically optimized nano-lipid carriers augment raloxifene and vitamin D oral bioavailability in healthy humans for management of osteoporosis. J Pharm Sci. 2020;109(7):2145–55.

    Article  CAS  PubMed  Google Scholar 

  64. Singh B, Rani A, Ahuja N, Kapil R. Formulation optimization of hydrodynamically balanced oral controlled release bioadhesive tablets of tramadol hydrochloride. Sci Pharm. 2010;78(2):303–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shadambikar G, Marathe S, Ji N, Almutairi M, Bandari S, Zhang F, Chougule M, Repka M. Formulation development of itraconazole PEGylated nano-lipid carriers for pulmonary aspergillosis using hot-melt extrusion technology. Int J Pharm: X. 2021;3:1–10.

    Google Scholar 

  66. Teeranachaideekul V, Müller RH, Junyaprasert VB. Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)—effects of formulation parameters on physicochemical stability. Int J Pharm. 2007;340(1–2):198–206.

    Article  CAS  PubMed  Google Scholar 

  67. Uner B, Ozdemir S, Yildirim E, Yaba A, Tas C, Uner M, Ozsoy Y. Loteprednol loaded nanoformulations for corneal delivery: ex-vivo permeation study, ocular safety assessment and stability studies. J Drug Deliv Sci Technol. 2023;81:1–10.

    Google Scholar 

  68. Gera S, Pooladanda V, Godugu C, Swamy Challa V, Wankar J, Dodoala S, Sampathi S. Rutin nanosuspension for potential management of osteoporosis: effect of particle size reduction on oral bioavailability, in vitro and in vivo activity. Pharm Dev Technol. 2020;25(8):971–88.

    Article  CAS  PubMed  Google Scholar 

  69. Gera S, Sampathi S, Maddukuri S, Dodoala S, Junnuthula V, Dyawanapelly S. Therapeutic potential of naringenin nanosuspension: in vitro and in vivo anti-osteoporotic studies. Pharmaceutics. 2022;14(7):1–12.

    Article  Google Scholar 

  70. Kammalla AK, Ramasamy MK, Inampudi J, Dubey GP, Agrawal A, Kaliappan I. Comparative pharmacokinetic study of mangiferin after oral administration of pure mangiferin and US patented polyherbal formulation to rats. AAPS PharmSciTech. 2015;16:250–8.

    Article  CAS  PubMed  Google Scholar 

  71. Varshosaz J, Dayani L, Chegini SP, Minaiyan M. Production of a new platform based on fumed and mesoporous silica nanoparticles for enhanced solubility and oral bioavailability of raloxifene HCl. IET Nanobiotechnol. 2019;13(4):392–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Du X, Gao N, Song X. Bioadhesive polymer/lipid hybrid nanoparticles as oral delivery system of raloxifene with enhancive intestinal retention and bioavailability. Drug Delivery. 2021;28(1):252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shah NV, Seth AK, Balaraman R, Aundhia CJ, Maheshwari RA, Parmar GR. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: design and in vivo study. J Adv Res. 2016;7(3):423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. zur Mühlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery–drug release and release mechanism. Eur J Pharm Biopharm. 1998;45(2):149–155.

  75. Saha I, Palak A, Rai VK. Relevance of NLC-gel and microneedling-assisted tacrolimus ointment against severe psoriasiform: in vitro dermal retention kinetics, in vivo activity and drug distribution. J Drug Deliv Sci Technol. 2022;71:1–16.

    Google Scholar 

  76. Saini S, Sharma T, Jain A, Kaur H, Katare OP, Singh B. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: a preclinical evidence. Colloids Surf B Biointerfaces. 2021;205:111838.https://doi.org/10.1016/j.colsurfb.2021.111838.

  77. Garg B, Katare O, Beg S, Lohan S, Singh B. Systematic development of solid self-nanoemulsifying oily formulations (S-SNEOFs) for enhancing the oral bioavailability and intestinal lymphatic uptake of lopinavir. Colloids Surf B. 2016;141:611–22.

    Article  CAS  Google Scholar 

  78. Garg NK, Sharma G, Singh B, Nirbhavane P, Tyagi RK, Shukla R, Katare OP. Quality by Design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): an improved dermatokinetic profile for inflammatory disorder (s). Int J Pharm. 2017;517(1–2):413–31.

    Article  CAS  PubMed  Google Scholar 

  79. Sharma T, Katare OP, Jain A, Jain S, Chaudhari D, Borges B, Singh B. QbD-steered development of biotin-conjugated nanostructured lipid carriers for oral delivery of chrysin: role of surface modification for improving biopharmaceutical performance. Colloids Surf B Biointerfaces. 2021;197:111429. https://doi.org/10.1016/j.colsurfb.2020.111429.

  80. Kesharwani P, Md S, Alhakamy NA, Hosny KM, Haque A. QbD enabled azacitidine loaded liposomal nanoformulation and its in vitro evaluation. Polymers. 2021;13(2):250–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lin X, Li X, Zheng L, Yu L, Zhang Q, Liu W. Preparation and characterization of monocaprate nanostructured lipid carriers. Colloids Surf A. 2007;311(1–3):106–11.

    Article  CAS  Google Scholar 

  82. Alhalmi A, Amin S, Khan Z, Beg S, Al Kamaly O, Saleh A, Kohli K. Nanostructured lipid carrier-based codelivery of raloxifene and naringin: formulation, optimization, in vitro, ex vivo, in vivo assessment, and acute toxicity studies. Pharmaceutics. 2022;14(9):1–27.

    Article  Google Scholar 

  83. Okonogi S, Riangjanapatee P. Physicochemical characterization of lycopene-loaded nanostructured lipid carrier formulations for topical administration. Int J Pharm. 2015;478(2):726–35.

    Article  CAS  PubMed  Google Scholar 

  84. Rehman M, Madni A, Ihsan A, Khan WS, Khan MI, Mahmood MA, Ashfaq M, Bajwa SZ, Shakir I. Solid and liquid lipid-based binary solid lipid nanoparticles of diacerein: in vitro evaluation of sustained release, simultaneous loading of gold nanoparticles, and potential thermoresponsive behavior. Int J Nanomed. 2015;10:2805–14.

    Article  CAS  Google Scholar 

  85. Jain K, Sood S, Gowthamarajan K. Optimization of artemether-loaded NLC for intranasal delivery using central composite design. Drug Delivery. 2015;22(7):940–54.

    Article  CAS  PubMed  Google Scholar 

  86. da Silva MG, de Godoi KRR, Gigante ML, Cardoso LP, Ribeiro APB. Nanostructured lipid carriers for delivery of free phytosterols: effect of lipid composition and chemical interesterification on physical stability. Colloids Surf A Physicochem Eng. 2022;640:1–13.

  87. Lohan S, Sharma T, Saini S, Singh A, Kumar A, Raza K, Kaur J, Singh B. Galactosylated nanoconstructs of berberine with enhanced biopharmaceutical and cognitive potential: a preclinical evidence in Alzheimer’s disease. J Drug Deliv Sci Technol. 2021;66:1–10.

    Google Scholar 

  88. Ortiz AC, Yañez O, Salas-Huenuleo E, Morales JO. Development of a nanostructured lipid carrier (NLC) by a low-energy method, comparison of release kinetics and molecular dynamics simulation. Pharmaceutics. 2021;13(4):1–21.

    Article  Google Scholar 

  89. Yang S-J, Chang C-H, Young T-H, Wang C-H, Tseng T-H, Wang M-L. Human serum albumin-based nanoparticles alter raloxifene administration and improve bioavailability. Drug Delivery. 2022;29(1):2685–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Muzio LL, Santarelli A, Orsini G, Memè L, Mattioli-Belmonte M, De Florio I, Gatto R, Gallusi G, Nocini P, Bertossi D. MG63 and MC3T3-E1 osteoblastic cell lines response to raloxifene. Eur J Inflamm. 2013;11(3):797–804.

    Article  Google Scholar 

  91. Babanejad N, Farhadian A, Omrani I, Nabid MR. Design, characterization and in vitro evaluation of novel amphiphilic block sunflower oil-based polyol nanocarrier as a potential delivery system: raloxifene-hydrochloride as a model. Mater Sci Eng C. 2017;78:59–68.

    Article  CAS  Google Scholar 

  92. Iemsam-Arng J, Ketchart O, Rattana-Amron T, Wutikhun T, Tapaneeyakorn S. Modified NLC-loaded coumarin for pharmaceutical applications: the improvement of physical stability and controlled release profile. Pharm Dev Technol. 2016;21(8):1015–22.

    Article  CAS  PubMed  Google Scholar 

  93. Soni NK, Sonali L, Singh A, Mangla B, Neupane YR, Kohli K. Nanostructured lipid carrier potentiated oral delivery of raloxifene for breast cancer treatment. Nanotechnology. 2020;31(47):1–47.

    Article  Google Scholar 

  94. Shah VP, Amidon GL. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm Res 12, 413–420, 1995—Backstory of BCS. AAPS J. 2014;16:894–898.

  95. Sharma T, Jain A, Kaur R, Saini S, Katare OP, Singh B. Supersaturated LFCS type III self-emulsifying delivery systems of sorafenib tosylate with improved biopharmaceutical performance: QbD-enabled development and evaluation. Drug Deliv Transl Res. 2020;10:839–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors enunciate their thankfulness to the Department of Science & Technology, New Delhi, India, for providing requisite fiscal grants for the research work. The generosity of Stat-Ease Inc., USA, is also gratefully acknowledged for gifting premium and annual licenses of Design Expert® software 12.0 version to the corresponding author (B.S.) and his team, as an Award of Distinction for his stellar contribution in QbD-steered research work for systematic development of novel drug delivery systems and for analytical method development and validation of varied drugs.

Funding

Department of Science & Technology, New Delhi, India, for the requisite funding to the first author (A.P.) to perform the present work as a DST-INSPIRE Research Fellow (IF170942) availing the facilities of the University Institute of Pharmaceutical Sciences for the present research work.

Author information

Authors and Affiliations

Authors

Contributions

Anjali Pant: data curation, formal analysis, funding acquisition, investigation, methodology, validation, writing—original draft. Gajanand Sharma: methodology and validation. Sumant Saini: software, validation, original draft review. Gurjeet Kaur: cell line studies and validation. Atul Jain: validation and editing. Anil Thakur: In vivo experimental studies. Bhupinder Singh: conceptualization, visualization, project administration, resources, software, supervision, writing—review and editing.

Corresponding author

Correspondence to Bhupinder Singh.

Ethics declarations

Ethics approval and consent to participate

The In vivo studies were carried out in female Wistar rats (220–280 g), after obtaining the requisite permission from the Institutional Animal Ethics Committee (IAEC) of the Panjab University, Chandigarh, India, vide their letter no. PU/45/99/CPCSEA/IAEC/2021/463. All institutional and national guidelines for the care and use of laboratory animals were followed.

Consent for publication

Yes.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1187 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pant, A., Sharma, G., Saini, S. et al. QbD-driven development of phospholipid-embedded lipidic nanocarriers of raloxifene: extensive in vitro and in vivo evaluation studies. Drug Deliv. and Transl. Res. 14, 730–756 (2024). https://doi.org/10.1007/s13346-023-01427-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01427-3

Keywords

Navigation