Skip to main content

Advertisement

Log in

Biorefinery potential of Coelastrella biomass for fuel and bioproducts—a review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In the algae industry, product development based on the biorefinery idea is gaining attraction. In today’s world, bioactive chemicals generated from microalgae are extremely important. Its industrial significance has extended which includes various high-value chemicals in addition to primary biomass. The importance of Coelastrella sp., a less studied green microalgae, for the biorefinery technique is discussed in this review. Industries recently used microalgal feedstocks to help them cope with the rising energy issue. High-value co-products can be produced from algal biomass combined with biofuel to improve the economics of a microalgal biorefinery was emphasised. Coelastrella sp. becomes a significant substrate to investigate in this regard. Coelastrella is a better renewable energy resource feedstock. A total of 18% of their biomass is made up of lipids. Coelastrella sp. has a greater concentration of C18:1, which is beneficial for biodiesel conversion. Furthermore, Coelastrella sp. was discovered to be effective in bioremediation, absorbing nutrients from wastewater to produce lipids and carotenoids. Single product extraction is not economically feasible for industrial practices. In this view, the number of bioactive compounds extracted from Coelastrella sp. relevant to the biorefinery concept is emphasised. Enhancing the production of algal biomass, on the other hand, is one of the industry’s primary concerns. When it comes to artificial lighting and determining the best culture parameters, algal culture appears to be costly. This review discusses the challenges encountered in the biorefinery approach to produce Coelastrella biomass and the future prospects of Coelastrella sp. for various applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Razooki ZH, Abed IJ, Al-Mashhadani MKH (2019) Effect of the aqueous carbon source on growth rate of the microalgae Coelastrella sp. MH923012. Plant Archives 19:1420–1425

  2. Corcoran AA, Seger M, Niu R et al (2019) Evidence for induced allelopathy in an isolate of Coelastrella following co-culture with Chlorella sorokiniana. Algal Res 41:101535. https://doi.org/10.1016/j.algal.2019.101535

  3. Minhas AK, Hodgson P, Barrow CJ et al (2016) The isolation and identification of new microalgal strains producing oil and carotenoid simultaneously with biofuel potential. Bioresour Technol 211:556–565. https://doi.org/10.1016/J.BIORTECH.2016.03.121

    Article  Google Scholar 

  4. Karpagam R, Jawaharraj K, Ashokkumar B et al (2018) Unraveling the lipid and pigment biosynthesis in Coelastrella sp. M-60: genomics-enabled transcript profiling. Algal Res 29:277–289. https://doi.org/10.1016/j.algal.2017.11.031

    Article  Google Scholar 

  5. Cuellar-Bermudez SP, Romero-Ogawa MA, Vannela R et al (2015) Effects of light intensity and carbon dioxide on lipids and fatty acids produced by Synechocystis sp. PCC6803 during continuous flow. Algal Res 12:10–16. https://doi.org/10.1016/j.algal.2015.07.018

    Article  Google Scholar 

  6. Al Raie HH, Al Hassany JS, Rasheed KA (2020) Wastewater treatment by using locally isolated algae species coelastrella terrestris (reisigl). Plant Archives 20:1691–1695

    Google Scholar 

  7. Sudhakar MP, Kumar BR, Mathimani T, Arunkumar K (2019) A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J Clean Prod 228:1320–1333. https://doi.org/10.1016/j.jclepro.2019.04.287

    Article  Google Scholar 

  8. Wang Q, Song H, Liu X et al (2019) Morphology and molecular phylogeny of coccoid green algae Coelastrella sensu lato (Scenedesmaceae, Sphaeropeales), including the description of three new species and two new varieties. J Phycol 55:1290–1305. https://doi.org/10.1111/jpy.12915

    Article  Google Scholar 

  9. Ancona-Canché K, López-Adrián S, Espinosa-Aguilar M, et al (2017) Molecular phylogeny and morphologic data of strains of the genus Coelastrella (Chlorophyta, Scenedesmaceae) from a tropical region in North America (Yucatan Peninsula). Botanical Sciences 95:527–537. https://doi.org/10.17129/botsci.1201

  10. Kawasaki S, Yoshida R, Ohkoshi K, Toyoshima H (2020) Coelastrella astaxanthina sp. nov. (Sphaeropleales, Chlorophyceae), a novel microalga isolated from an asphalt surface in midsummer in Japan. Phycol Res 68:107–114. https://doi.org/10.1111/pre.12412

    Article  Google Scholar 

  11. Kaufnerová V, Eliáš M (2013) The demise of the genus Scotiellopsis Vinatzer (Chlorophyta). Nova Hedwigia 97:415–428. https://doi.org/10.1127/0029-5035/2013/0116

    Article  Google Scholar 

  12. Tschaikner AG, Kofler W (2008) Coelastrella aeroterrestrica sp. nov. (Chlorophyta, Scenedesmoideae) a new, obviously often overlooked aeroterrestrial species. Algol Stud 128:11–20. https://doi.org/10.1127/1864-1318/2008/0128-0011

    Article  Google Scholar 

  13. Lakshmana Senthil S, Suja CP, Anantharaman P et al (2019) First record of Coelastrella vacuolata (Chlorophyta: Scenedesmaceae) in Tuticorin coast, Gulf of Mannar. Indian J of Geo-Marine Sci 48:1860–1863

  14. Shetty P, Farkas A, Pap B et al (2021) Comparative and phylogenomic analysis of nuclear and organelle genes in cryptic Coelastrellavacuolata MACC-549 green algae Algal Res 58. https://doi.org/10.1016/j.algal.2021.102380

  15. Blagoy A. Uzunov, Maya P. Stoyneva GG& WK (2008) First record of Coelastrella species ( Chlorophyta : Scenedesmaceae ) in Bulgaria by. Berichte des Naturwissenschaftlich-medizinischen Vereins in Innsbruck 95:27–34

  16. Suriya Narayanan G, kumar G, Seepana S, et al (2018) Isolation, identification and outdoor cultivation of thermophilic freshwater microalgae Coelastrella sp. FI69 in bubble column reactor for the application of biofuel production. Biocatal Agric Biotechnol 14:357–365. https://doi.org/10.1016/j.bcab.2018.03.022

    Article  Google Scholar 

  17. Gojkovic Z, Shchukarev A, Ramstedt M, Funk C (2020) Cryogenic X-ray photoelectron spectroscopy determines surface composition of algal cells and gives insights into their spontaneous sedimentation. Algal Res 47:101836. https://doi.org/10.1016/j.algal.2020.101836

    Article  Google Scholar 

  18. Lee HG, Song HJ, Kim DS et al (2016) Unique mitochondrial genome structure of the green algal strain yc001 (sphaeropleales, chlorophyta), with morphological observations. Phycologia 55:72–78. https://doi.org/10.2216/15-71.1

    Article  Google Scholar 

  19. Wang Q, Song H, Liu X et al (2019) Deep genomic analysis of Coelastrella saipanensis (Scenedesmaceae, Chlorophyta): comparative chloroplast genomics of Scenedesmaceae. Eur J Phycol 54:52–65. https://doi.org/10.1080/09670262.2018.1503334

    Article  Google Scholar 

  20. Abe K, Takizawa H, Kimura S, Hirano M (2004) Characteristics of chlorophyll formation of the aerial microalga Coelastrella striolata var. multistriata and its application for environmental biomonitoring. J Biosci Bioeng 98:34–39. https://doi.org/10.1016/S1389-1723(04)70239-X

    Article  Google Scholar 

  21. Skrebovska S, Kostikov I (2012) Scotiellopsis levicostata (Chlorophyta) in the Scenedesmaceae. Chornomorski Botanical Journal 8:401–412. https://doi.org/10.14255/2308-9628/12.84/7

  22. Hu CW, Te CL, Yu PC, Chen CNN (2013) Pigment production by a new thermotolerant microalga Coelastrella sp. F50. Food Chem 138:2071–2078. https://doi.org/10.1016/j.foodchem.2012.11.133

    Article  Google Scholar 

  23. Japar SA, Azis NM, Sobri M et al (2017) Application of different techniques to harvest microalgae. Trans Sci Technol 4:98–108

    Google Scholar 

  24. Badar SN, Yaakob Z, Timmiati SN (2017) Growth evaluation of microalgae isolated from palm oil mill effluent in synthetic media. Malaysian Journal of Analytical Sciences 21:82–94. https://doi.org/10.17576/mjas-2017-2101-10

  25. Axelsson E (2016) Up-scaling of algae cultivation Master thesis on Up-scaling of algae cultivation

  26. Razooki ZH, Al-Mashhadani MKH, Abed IJ (2020) Biomaterial composition of the microalga Coelastrella sp. (MH923012): effect of carbon source. Materials Today: Proceedings 20:621–626. https://doi.org/10.1016/j.matpr.2019.09.200

    Article  Google Scholar 

  27. Mahdi RS, Al-Mashhadani MKH, Abed IJ (2021) Pre-dissolved inorganic carbon (DIC) for cultivation Chlorella sorokiniana MH923013, Coelastrella MH923011 and Coelastrella MH923012. IOP Conf Ser: Mater Sci Eng 1076:012025. https://doi.org/10.1088/1757-899x/1076/1/012025

    Article  Google Scholar 

  28. Chiu PH, Soong K, Chen CNN (2016) Cultivation of two thermotolerant microalgae under tropical conditions: influences of carbon sources and light duration on biomass and lutein productivity in four seasons. Biores Technol 212:190–198. https://doi.org/10.1016/j.biortech.2016.04.045

    Article  Google Scholar 

  29. Maltsev Y, Krivova Z, Maltseva S et al (2021) Lipid accumulation by Coelastrella multistriata (Scenedesmaceae, Sphaeropleales) during nitrogen and phosphorus starvation. Sci Rep 11:1–13. https://doi.org/10.1038/s41598-021-99376-9

    Article  Google Scholar 

  30. Luo L, He H, Yang C et al (2016) Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater. Biores Technol 216:135–141. https://doi.org/10.1016/j.biortech.2016.05.059

    Article  Google Scholar 

  31. Karpagam R, Raj KJ, Ashokkumar B, Varalakshmi P (2015) Characterization and fatty acid profiling in two fresh water microalgae for biodiesel production: lipid enhancement methods and media optimization using response surface methodology. Biores Technol 188:177–184. https://doi.org/10.1016/j.biortech.2015.01.053

    Article  Google Scholar 

  32. Pongpadung P, Liu J, Yokthongwattana K et al (2015) Screening for hydrogen-producing strains of green microalgae in phosphorus or sulphur deprived medium under nitrogen limitation. ScienceAsia 41:97–107. https://doi.org/10.2306/scienceasia1513-1874.2015.41.097

    Article  Google Scholar 

  33. Li X, Yang WL, He H et al (2018) Responses of microalgae Coelastrella sp. to stress of cupric ions in treatment of anaerobically digested swine wastewater. Biores Technol 251:274–279. https://doi.org/10.1016/j.biortech.2017.12.058

    Article  Google Scholar 

  34. Sakthi Vignesh N, Vimali E, Sangeetha R et al (2020) Sustainable biofuel from microalgae: application of lignocellulosic wastes and bio-iron nanoparticle for biodiesel production. Fuel 278:118326. https://doi.org/10.1016/j.fuel.2020.118326

    Article  Google Scholar 

  35. Gardner R, Peters P, Peyton B, Cooksey KE (2011) Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the Chlorophyta. J Appl Phycol 23:1005–1016. https://doi.org/10.1007/s10811-010-9633-4

    Article  Google Scholar 

  36. Abe K, Hattori H, Hirano M (2007) Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chem 100:656–661. https://doi.org/10.1016/j.foodchem.2005.10.026

    Article  Google Scholar 

  37. Aburai N, Ohkubo S, Miyashita H, Abe K (2013) Composition of carotenoids and identification of aerial microalgae isolated from the surface of rocks in mountainous districts of Japan. Algal Res 2:237–243. https://doi.org/10.1016/j.algal.2013.03.001

    Article  Google Scholar 

  38. Neofotis P, Huang A, Sury K et al (2016) Characterization and classification of highly productive microalgae strains discovered for biofuel and bioproduct generation. Algal Res 15:164–178. https://doi.org/10.1016/j.algal.2016.01.007

    Article  Google Scholar 

  39. Vidya D, Nayana K, Sreelakshmi M et al (2021) A sustainable cultivation of microalgae using dairy and fish wastes for enhanced biomass and bio-product production. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01817-y

  40. MubarakAli D, Arunkumar J, Nag KH et al (2013) Gold nanoparticles from pro and eukaryotic photosynthetic microorganisms-comparative studies on synthesis and its application on biolabelling. Colloids Surf, B 103:166–173. https://doi.org/10.1016/j.colsurfb.2012.10.014

    Article  Google Scholar 

  41. Chen JE, Smith AG (2012) A look at diacylglycerol acyltransferases (DGATs) in algae. J Biotechnol 162:28–39. https://doi.org/10.1016/j.jbiotec.2012.05.009

    Article  Google Scholar 

  42. Cagliari A, Margis R, Dos Santos MF et al (2011) Biosynthesis of triacylglycerols (TAGs) in plants and algae. Int J Plant Biol 2:40–52. https://doi.org/10.4081/pb.2011.e10

    Article  Google Scholar 

  43. Lakatos G, Deák Z, Vass I et al (2014) Bacterial symbionts enhance photo-fermentative hydrogen evolution of Chlamydomonas algae. Green Chem 16:4716–4727. https://doi.org/10.1039/c4gc00745j

    Article  Google Scholar 

  44. Aburai N, Kazama H, Tsuruoka A et al (2018) Development of a whole-cell-based screening method for a carotenoid assay using aerial microalgae. J Biotechnol 268:6–11. https://doi.org/10.1016/j.jbiotec.2017.12.025

    Article  Google Scholar 

  45. Pushpalatha S, Sangeetha R, Ariraman S et al (2021) Photocatalyst (TiO2) as an enhancer: an attempt to enhance the production of carotenoids and lipids with the combined oxidative stresses in Coelastrella sp. M60. Clean Technol Environ Policy 23:41–53. https://doi.org/10.1007/s10098-020-01879-y

    Article  Google Scholar 

  46. Chiu CS, Chiu PH, Yong TC et al (2020) Mechanisms protect airborne green microalgae during long distance dispersal. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-71004-y

    Article  Google Scholar 

  47. Schüler LM, Gangadhar KN, Duarte P et al (2020) Improvement of carotenoid extraction from a recently isolated, robust microalga, Tetraselmis sp. CTP4 (chlorophyta). Bioprocess Biosyst Eng 43:785–796. https://doi.org/10.1007/s00449-019-02273-9

    Article  Google Scholar 

  48. Toyoshima H, Takaichi S, Kawasaki S (2020) Water-soluble astaxanthin-binding protein (AstaP) from Coelastrella astaxanthina Ki-4 (Scenedesmaceae) involving in photo-oxidative stress tolerance. Algal Res 50:101988. https://doi.org/10.1016/j.algal.2020.101988

    Article  Google Scholar 

  49. Minyuk GS, Chelebieva ES, Chubchikova IN et al (2016) pH and CO2 effects on Coelastrella (Scotiellopsis) rubescens growth and metabolism. Russ J Plant Physiol 63:566–574

    Article  Google Scholar 

  50. Minyuk G, Chelebieva E, Chubchikova I et al (2017) Stress-induced secondary carotenogenesis in Coelastrella rubescens (Scenedesmaceae, Chlorophyta), a producer of value-added keto-carotenoids. Algae 32:245–259. https://doi.org/10.4490/algae.2017.32.8.6

    Article  Google Scholar 

  51. Goecke F, Noda J, Paliocha M, Gislerød HR (2020) Revision of Coelastrella (Scenedesmaceae, Chlorophyta) and first register of this green coccoid microalga for continental Norway. World J Microbiol Biotechnol 36:1–17. https://doi.org/10.1007/s11274-020-02897-0

    Article  Google Scholar 

  52. Chekanov K, Fedorenko T, Kublanovskaya A et al (2020) Diversity of carotenogenic microalgae in the White Sea polar region. FEMS Microbiol Ecol 96:1–14. https://doi.org/10.1093/femsec/fiz183

    Article  Google Scholar 

  53. Saeki K, Aburai N, Aratani S et al (2017) Salt-stress and plant hormone-like responses for selective reactions of esterified xanthophylls in the aerial microalga Coelastrella sp. KGU-Y002. J Appl Phycol 29:115–122. https://doi.org/10.1007/s10811-016-0911-7

    Article  Google Scholar 

  54. Iyer G, Nagle V, Gupte YV et al (2015) Characterization of high carotenoid producing Coelastrella oocystiformis and its anti-cancer potential. Int J Curr Microbiol App Sci 4:527–536

    Google Scholar 

  55. Al-rawi A, Hassan FM, Alwash BMJ (2021) In vitro stiumlation of ergosterol from Coelastrella terrestris by using squalene and studying antioxidant effect graphic abstract in vitro stiumlation of ergosterol from Coelastrella terrestris by using squalene and studying antioxidant effect. Systematic Reviews in Pharmacy 11:1795–1803. https://doi.org/10.31838/srp.2020.11.250

  56. Gojkovic Z, Lu Y, Ferro L et al (2020) Modeling biomass production during progressive nitrogen starvation by North Swedish green microalgae Algal Res 47. https://doi.org/10.1016/j.algal.2020.101835

  57. Xu J, Zhu S, Mo N et al (2020) Screening of freshwater oleaginous microalgae from South China and its cultivation characteristics in energy grass digestate. J Clean Prod 276:124193. https://doi.org/10.1016/j.jclepro.2020.124193

    Article  Google Scholar 

  58. Technologies G, Practices BC (2019) Proceedings of the 5 th Postgraduate Colloquium for Environmental Research ( POCER 2019 ) 8–9 August 2019 Pulse Grande Hotel , Putrajaya , Malaysia Green Technologies : Bridging Conventional

  59. Minhas AK, Hodgson P, Barrow CJ, Adholeya A (2020) Two-phase method of cultivating Coelastrella species for increased production of lipids and carotenoids. Biores Technol Rep 9:100366. https://doi.org/10.1016/j.biteb.2019.100366

    Article  Google Scholar 

  60. Karpagam R, Rani K, Ashokkumar B, et al (2020) Green energy from Coelastrella sp. M-60: bio-nanoparticles mediated whole biomass transesterification for biodiesel production. Fuel 279:118490. https://doi.org/10.1016/j.fuel.2020.118490

  61. Karpagam R, Rani K, Gunaseelan S et al (2019) Transcript analysis of hydrogenase A in an indigenous microalga, Coelastrella sp. M-60. Biocatal Agric Biotechnol 17:571–575. https://doi.org/10.1016/j.bcab.2019.01.011

    Article  Google Scholar 

  62. Mansur D, Fitriady MA, Susilaningsih D, Simanungkalit SP (2017) Production of biodiesel from Coelastrella sp. microalgae. AIP Conference Proceedings 1904:. https://doi.org/10.1063/1.5011925

  63. Belete YZ, Leu S, Boussiba S et al (2019) Characterization and utilization of hydrothermal carbonization aqueous phase as nutrient source for microalgal growth. Biores Technol 290:121758. https://doi.org/10.1016/j.biortech.2019.121758

    Article  Google Scholar 

  64. Heredia Falconí JH, Soares J, Rocha DN et al (2021) Strain screening and ozone pretreatment for algae farming in wastewaters from sugarcane ethanol biorefinery J Clean Prod 282. https://doi.org/10.1016/j.jclepro.2020.124522

  65. Aray-Andrade M, Moreira C, Santander V, et al (2019) Characterization of three algal strains used as a tertiary treatment for rural wastewater of ecuadorian littoral. European Biomass Conference and Exhibition Proceedings 241–248

  66. Li X, Yang C, Zeng G et al (2020) Nutrient removal from swine wastewater with growing microalgae at various zinc concentrations. Algal Res 46:101804. https://doi.org/10.1016/j.algal.2020.101804

    Article  Google Scholar 

  67. Saxena P, Harish, (2019) Toxicity assessment of ZnO nanoparticles to freshwater microalgae Coelastrella terrestris. Environ Sci Pollut Res 26:26991–27001. https://doi.org/10.1007/s11356-019-05844-1

    Article  Google Scholar 

  68. Saxena P, Sangela V, Harish, (2020) Toxicity evaluation of iron oxide nanoparticles and accumulation by microalgae Coelastrella terrestris. Environ Sci Pollut Res 27:19650–19660. https://doi.org/10.1007/s11356-020-08441-9

    Article  Google Scholar 

  69. Al-Khazali ZKM, Alghanmi HA (2019) Influence of different concentrations of nano-magnesium oxide on the growth of Coelastrella terrestris J Phys: Conf Ser 1234. https://doi.org/10.1088/1742-6596/1234/1/012070

  70. Al-Khazali ZKM, Alghanmi HA (2019) Influence of different concentrations of nano-copper oxide on the growth of Coelastrella terrestris J Phys: Conf Ser 1234. https://doi.org/10.1088/1742-6596/1234/1/012071

  71. Tong M, Li X, Luo Q et al (2020) Effects of humic acids on biotoxicity of tetracycline to microalgae Coelastrella sp. Algal Res 50:101962. https://doi.org/10.1016/j.algal.2020.101962

    Article  Google Scholar 

  72. Ding GT, Mohd Yasin NH, Takriff MS, et al (2020) Phycoremediation of palm oil mill effluent (POME) and CO2 fixation by locally isolated microalgae: Chlorella sorokiniana UKM2, Coelastrella sp. UKM4 and Chlorella pyrenoidosa UKM7. Journal of Water Process Engineering 35:. https://doi.org/10.1016/j.jwpe.2020.101202

  73. Udaiyappan AFM, Hasan HA, Takriff MS et al (2020) Microalgae-bacteria interaction in palm oil mill effluent treatment Journal of Water Process Engineering 35:101203. https://doi.org/10.1016/j.jwpe.2020.101203

  74. Jasni J, Arisht SN, Mohd Yasin NH et al (2020) Comparative toxicity effect of organic and inorganic substances in palm oil mill effluent (POME) using native microalgae species. J Water Process Eng 34:101165. https://doi.org/10.1016/j.jwpe.2020.101165

    Article  Google Scholar 

  75. Canton MC, Holguin FO, Boeing WJ (2019) Alkaloid gramine to control algal invaders: algae inhibition and gramine persistence. Bioresour Technol Rep 7:1–25. https://doi.org/10.1016/j.biteb.2019.100304

    Article  Google Scholar 

  76. Canton MC, Omar Holguin F, Gard CC, Boeing WJ (2021) Allelochemical effect of gramine under temperature stress and impact on fat transesterification. Chem Ecol 1:12. https://doi.org/10.1080/02757540.2021.1888934

    Article  Google Scholar 

  77. S Fan B Ji H Abu Hasan et al 2021 Microalgal–bacterial granular sludge process for non-aerated aquaculture wastewater treatment Bioprocess BiosystEng. https://doi.org/10.1007/s00449-021-02556-0

  78. Lee SA, Lee N, Oh HM, Ahn CY (2021) Stepwise treatment of undiluted raw piggery wastewater, using three microalgal species adapted to high ammonia. Chemosphere 263:127934. https://doi.org/10.1016/j.chemosphere.2020.127934

    Article  Google Scholar 

  79. Durán I, Rubiera F, Pevida C (2018) Microalgae: potential precursors of CO2 adsorbents. Journal of CO2 Utilization 26:454–464. https://doi.org/10.1016/j.jcou.2018.06.001

  80. Suriya Narayanan G, Kumar G, Seepana S, et al (2019) Utilization of unfiltered LPG-burner exhaust-gas emission using microalga Coelastrella sp. Journal of CO2 Utilization 29:283–295. https://doi.org/10.1016/j.jcou.2018.12.020

  81. Baldev E, MubarakAli D, Ilavarasi A et al (2013) Degradation of synthetic dye, Rhodamine B to environmentally non-toxic products using microalgae. Colloids Surf, B 105:207–214. https://doi.org/10.1016/j.colsurfb.2013.01.008

    Article  Google Scholar 

  82. Meng J, Li J, He J et al (2019) Nutrient removal from high ammonium swine wastewater in upflow microaerobic biofilm reactor suffered high hydraulic load. J Environ Manage 233:69–75. https://doi.org/10.1016/j.jenvman.2018.12.027

    Article  Google Scholar 

  83. Kumar BR, Mathimani T, Sudhakar MP et al (2021) A state of the art review on the cultivation of algae for energy and other valuable products: application, challenges, and opportunities. Renew Sustain Energy Rev 138:110649. https://doi.org/10.1016/j.rser.2020.110649

    Article  Google Scholar 

  84. Bhatia SK, Mehariya S, Bhatia RK et al (2021) Wastewater based microalgal biorefinery for bioenergy production: progress and challenges. Sci Total Environ 751:141599. https://doi.org/10.1016/j.scitotenv.2020.141599

    Article  Google Scholar 

  85. Khavari F, Saidijam M, Taheri M, Nouri F (2021) Microalgae: therapeutic potentials and applications. Mol Biol Rep 48:4757–4765. https://doi.org/10.1007/s11033-021-06422-w

    Article  Google Scholar 

  86. Delalat B, Sheppard VC, RasiGhaemi S et al (2015) Targeted drug delivery using genetically engineered diatom biosilica. Nat Commun 6. https://doi.org/10.1038/ncomms9791

  87. Lage Francesco S, Gentili G (2018) Quantification and characterisation of fatty acid methyl esters in microalgae: Comparison of pretreatment and purification methods. Bioresour Technol 257121–128. https://doi.org/10.1016/j.biortech.2018.01.153

Download references

Acknowledgements

The authors wish to acknowledge CSIR/UGC for financial support and the Department of Plant Science, Central University of Kerala, for laboratory facilities.

Author information

Authors and Affiliations

Authors

Contributions

K. Nayana: conceptualisation, writing—original draft, data curation, investigation. M.P. Sudhakar: data curation, writing and language editing of the manuscript. K. Arunkumar: conceptualisation, investigation, data curation, writing—original draft, validation.

Corresponding author

Correspondence to K. Arunkumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayana, K., Sudhakar, M.P. & Arunkumar, K. Biorefinery potential of Coelastrella biomass for fuel and bioproducts—a review. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-02519-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-02519-9

Keywords

Navigation