Skip to main content
Log in

Genome evolution and phylogenetic relationships in Opuntia tehuacana (Cactaceae, Opuntioideae)

  • Systematics, Phylogeny & Floristics - Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

This study is focused on the Tehuacán-Cuicatlán Valley (Oaxaca, Mexico), which has a high diversity of Opuntia species whose phylogenetic relationships and chromosome numbers are mostly unknown. We aimed to investigate the phylogenetic position of Opuntia tehuacana and its sympatric species and to analyze the ploidy levels in five O. tehuacana localities. We performed phylogenetic analysis under Bayesian inference using three chloroplast markers (matK, ycf1 and psbJ-petA) and two nuclear introns (AT3G48380 and AT1G18270) as well as chromosome counts for three Opuntia species and flow cytometry analysis in O. tehuacana. In a broad phylogenetic context, O. tehuacana is a member of the Basilares clade, as are most of its sympatric species, except for Opuntia decumbens, Opuntia lasiacantha, and Opuntia huajuapensis, which are in the Nopalea clade. The comparison between nuclear and plastid trees showed incongruences for the positions of the eight analyzed Opuntia species, although the O. tehuacana clade was recovered by both analyses. Furthermore, the phylogeny of nuclear evidence showed a geographic structure congruent with the sampled localities for O. tehuacana. The ploidy levels of O. tehuacana are 11x and 12x, the highest reported thus far for the genus, whereas for Opuntia pilifera it is 8x and for O. huajuapensis it is 2x. Finally, we found that the significant differences among O. tehuacana genome sizes and the high ploidy level might be due to multiple polyploidization events occurring between individuals from the same species and involving other Opuntia species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson EF (2001) The cactus family. Timber Press, Portland, Oregon

    Google Scholar 

  • Arias S, Gama S, Vázquez B, Guzmán LU (2012) Flora del valle de Tehuacán-Cuicatlán. Fascículo 95, Cactaceae. Instituto de Biología, Universidad Nacional Autónoma de México 95

    Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, Nueva York

    Google Scholar 

  • Baker M, Pinkava D (2018) Chromosome numbers in some cacti of western North America IX. Haseltonia 25:2–29

    Google Scholar 

  • Baker MA, Rebman JP, Parfitt BD et al (2009) Chromosome numbers in some cacti of western North America-VIII. Haseltonia 15:117–134

    Article  Google Scholar 

  • Barke BH, Karbstein K, Daubert M, Hörandl E (2020) The relation of meiotic behaviour to hybridity, polyploidy and apomixis in the Ranunculus auricomus complex (Ranunculaceae). BMC Plant Biol 20:523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barthlott W, Burstedde K, Geffert JL, et al (2015) Biogeography and biodiversity of cacti. Schumannia, Alemania

  • Biémont C (2008) Within-species variation in genome size. Heredity 101:297–298

    Article  PubMed  CAS  Google Scholar 

  • Bravo-Hollis H (1978) Las cactáceas de México. Universidad Nacional Autónoma de México

    Google Scholar 

  • Bustamante E, Búrquez A, Scheinvar E, Eguiarte LE (2016) Population genetic structure of a widespread bat-pollinated columnar cactus. PLoS ONE 11:e0152329. https://doi.org/10.1371/journal.pone.0152329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ, Ha M, Soltis D (2007) Polyploidy: genome obesity and its consequences. New Phytol 174:717–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cid R, Palomino G (1996) Cytotypes and Meiotic Behavior in Mexican Populations of Myrtillocactus geometrizans var. geometrizans (Cactaceae). Cytologia 61:343–348

    Article  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Storme N, Mason A (2014) Plant speciation through chromosome instability and ploidy change: cellul ar mechanisms, molecular factors and evolutionary relevance. Curr Plant Biol 1:10–33

    Article  Google Scholar 

  • Del Angel C, Palomino G, García A, Méndez I (2006) Nuclear genome size and karyotype analysis in Mammillaria species (Cactaceae). Caryologia 59:177–186

    Article  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protocols 2:2233–2244

    Article  PubMed  CAS  Google Scholar 

  • Doležel J, Čížková J, Šimková H, Bartoš J (2018) One major challenge of sequencing large plant genomes is to know how big they really are. Int J Mol Sci 19:3554. https://doi.org/10.3390/ijms19113554

    Article  CAS  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11–15

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eilam T, Anikster Y, Millet E et al (2010) Genome size in diploids, allopolyploids, and autopolyploids of mediterranean Triticeae. J Bot 2010:e341380. https://doi.org/10.1155/2010/341380

    Article  Google Scholar 

  • Granados-Aguilar X, Granados Mendoza C, Cervantes CR et al (2021) Unraveling reticulate evolution in Opuntia (Cactaceae) from Southern Mexico. Front Plant Sci 11:606809. https://doi.org/10.3389/fpls.2020.606809

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffith PM (2001) Experimental hybridization of northern Chihuahuan Desert region Opuntia (Cactaceae). Aliso 20:37–42

    Article  Google Scholar 

  • Griffith PM, Porter M (2009) Phylogeny of Opuntioideae (Cactaceae). Int J Plant Sci 170:107–116

    Article  Google Scholar 

  • Henry IM, Dilkes BP, Tyagi AP et al (2009) Dosage and parent-of-origin effects shaping aneuploid swarms in A. thaliana. Heredity 103:458–468

    Article  CAS  PubMed  Google Scholar 

  • Hunt DR, Taylor NP, Charles G (2006) The new cactus lexicon: Text. DH Books, Milborne Port, England

    Google Scholar 

  • Huson DH, Scornavacca C (2012) Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks. Syst Biol 61:1061–1067

    Article  PubMed  Google Scholar 

  • Lawrence EM (1985) Senecio L. (Asteraceae) in Australia: recombination systems of a polyploid series. Aust J Bot 33:209–219

    Article  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663

    Article  Google Scholar 

  • Letunic I, Bork P (2007) Interactive Tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128

    Article  CAS  PubMed  Google Scholar 

  • Majure LC, Puente R (2014) Phylogenetic relationships and morphological evolution in Opuntia s. str. and closely related members of tribe Opuntieae. Further studies in the Opuntioideae (Cactaceae), D. Hunt. DH Books, UK, pp 9–30

    Google Scholar 

  • Majure LC, Judd WS, Soltis PS, Soltis DE (2012a) Cytogeography of the Humifusa clade of Opuntia s.s. Mill. 1754 (Cactaceae, Opuntioideae, Opuntieae): correlations with pleistocene refugia and morphological traits in a polyploid complex. Comp Cytogenet 6:53–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Majure LC, Puente R, Griffith MP et al (2012b) Phylogeny of Opuntia s.s. (Cactaceae): clade delineation, geographic origins, and reticulate evolution. Am J Bot 99:847–864

    Article  CAS  PubMed  Google Scholar 

  • Majure LC, Puente R, Pinkava DJ (2012c) Miscellaneous chromosome numbers in Opuntieae Dc. (Cactaceae) with a compilation of counts for the group. Haseltonia 18:67–78

    Article  Google Scholar 

  • Martínez J, Mendez I, Palomino G (2000) Cytological and genical differentiation between cytotypes of Echeandia nana (Anthericaceae). Caryologia 53:147–158

    Article  Google Scholar 

  • Meng J, Fougere-Danezan M, Zhang L-B et al (2011) Untangling the hybrid origin of the Chinese tea roses: evidence from DNA sequences of single-copy nuclear and chloroplast genes. Plant Syst Evol 297:86–101

    Article  CAS  Google Scholar 

  • Mestiri I, Chagué V, Tanguy A-M et al (2010) Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytol 186:86–101

    Article  CAS  PubMed  Google Scholar 

  • Müller J, Müller K, Neinhuis C, Quandt D (2005) PhyDE® - phylogenetic data editor

  • Naumann J, Symmank L, Samain M-S, Müller KF, Neinhuis C, dePamphilis CW et al (2011) Chasing the hare - evaluating the phylogenetic utility of a nuclear single copy gene region at and below species level within the species rich group Peperomia (Piperaceae). BMC Evol Biol 11:357. https://doi.org/10.1186/1471-2148-11-357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobel PS, Bobich EG (2002) Environmental biology. In: Nobel PS (ed) Cacti: biology and uses. University of California Press, California, pp 57–74

    Google Scholar 

  • Nodal-Moreno SA, Palomino G, Almaguer-Sierra P, et al (2019) Análisis del tamaño del genoma, poliploidía y patrón endopoliploide en poblaciones de Nopalea cochenillifera (L.) Salm-Dyck (Cactaceae) en Tamaulipas, México. Acta universitaria 29. https://doi.org/10.15174/au.2019.2238

  • Otto F (1990) Chapter 11 DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Flow cytometry. Elsevier, pp 105–110. https://doi.org/10.1016/S0091-679X(08)60516-6

    Chapter  Google Scholar 

  • Palomino G, Vázquez R (1991) Cytogenetic studies in Mexican populations of species of Crotalaria L. (Leguminosae-Papilionoideae). Cytologia 56:343–351

    Article  Google Scholar 

  • Palomino G, Martínez J, Méndez I et al (2016) Nuclear genome size, ploidy level and endopolyploidy pattern in six species of Opuntia (Cactaceae). Caryologia 69:82–89

    Article  Google Scholar 

  • Pinkava DJ (2002) On the evolution of the North American opuntioideae. Studies in the Opuntioideae (Cactaceae), D. Hunt. DH Books, pp 59–98

    Google Scholar 

  • Powell AM, Weedin JF (2001) Chromosome numbers in Chihuahuan Desert Cactaceae. III Trans-Pecos Texas Am J Bot 88:481–485

    Google Scholar 

  • Rieseberg LH (1991) Homoploid reticulate evolution in Helianthus (Asteraceae): Evidence from ribosomal genes. Am J Bot 78:1218–1237

    Article  Google Scholar 

  • Rieseberg L, Soltis D (1991) Phylogenetic consequences of cytoplasmic gene flow in plants. Evol Trend Plant 5:65–84

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Russell A, Samuel R, Klejna V et al (2010) Reticulate evolution in diploid and tetraploid species of Polystachya (Orchidaceae) as shown by plastid DNA sequences and low-copy nuclear genes. Ann Bot 106:37–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sang T, Zhang D (1999) Reconstructing hybrid speciation using sequences of low copy nuclear genes: hybrid origins of five Paeonia species based on Adh gene phylogenies. Syst Bot 24:148–163

    Article  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    Article  CAS  PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Tate JA (2003) Advances in the study of polyploidy since plant speciation. New Phyt 161:173–191

    Article  CAS  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold Publishers, Londres

    Google Scholar 

  • Team R. Core (2013) R: a language and environment for statistical computing

  • Walker DJ, Moñino I, González E et al (2005) Determination of ploidy and nuclear DNA content in populations of Atriplex halimus (Chenopodiaceae). Bot J Linn Soc 147:441–448

    Article  Google Scholar 

  • Wang Z, Du S, Dayanandan S et al (2014) Phylogeny reconstruction and hybrid analysis of Populus (Salicaceae) based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments. PLoS ONE 9:e103645. https://doi.org/10.1371/journal.pone.0103645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J-H, Datson PM, Manako KI, Murray BG (2014) Meiotic chromosome pairing behaviour of natural tetraploids and induced autotetraploids of Actinidia chinensis. Theor Appl Genet 127:549–557

    Article  PubMed  Google Scholar 

  • Yuasa H, Shimizu H, Kashiwai S, Kondo N (1974) Chromosome numbers and their bearing on the geographic distribution in the subfamily Opuntioideae (Cactaceae). Rep Inst Breed Res 4:1–10

    Google Scholar 

Download references

Acknowledgements

This article is part of the doctoral research of X. Granados, who thanks the graduate program Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México, and the scholarships provided by Consejo Nacional de Ciencia y Tecnología. We thank Yolanda Morales, Daniel Franco, Brenda Calderón, and Cristian Cervantes (Jardín Botánico, UNAM) for supporting the field work, Ulises Rosas and Andrea R. Jiménez (Jardín Botánico and Instituto de Biología, UNAM) for their support in molecular laboratory work, Miriam Ladd Otero for her support in flow cytometry work at Jardín Botánico, UNAM, Andrea Bedoya López and Evelyn Alvarez (Laboratorio Nacional de Citometría de Flujo) for their support in flow cytometry work, Jaroslav Dolezel (Institute of Experimental Botany, Czech Republic) for kindly providing control seeds for flow cytometry studies, the Laboratorio Nacional de Citometría de Flujo (LABNALCIT) at Instituto de Investigaciones Biomédicas, UNAM, and the LANABIO laboratories at Jardín Botánico and Instituto de Biología, UNAM. This contribution was financially supported by UNAM-DGAPA-PAPIIT <IN208619> Granted to S. A.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. XG-A helped in investigation, formal analysis, methodology, writing of the original draft, text revision, and editing. GP contributed to methodology conceptualization, text revision, and editing. JM-R performed methodology conceptualization, formal analysis, text revision, and editing. SA is a researcher leading this study and obtaining financial support. All of the authors approved the submitted version of this manuscript.

Corresponding authors

Correspondence to Xochitl Granados-Aguilar or Salvador Arias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 822 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granados-Aguilar, X., Palomino, G., Martínez-Ramón, J. et al. Genome evolution and phylogenetic relationships in Opuntia tehuacana (Cactaceae, Opuntioideae). Braz. J. Bot 45, 957–969 (2022). https://doi.org/10.1007/s40415-022-00821-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-022-00821-4

Keywords

Navigation