Skip to main content

Advertisement

Log in

Nephrotic syndrome: pathophysiology and consequences

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

In patients with kidney disease, nephrotic syndrome can lead to several complications including progressive kidney dysfunction. Proteinuria may lead to the formation of cellular or fibrous crescents with reciprocal development of rapidly progressive glomerulonephritis or focal glomerulosclerosis. Proteinuria may also cause overload and dysfunction of tubular epithelial cells, eventually resulting in tubular atrophy and interstitial fibrosis. Hypoalbuminemia is usually associated with increased risk of mortality and kidney dysfunction. Dyslipidemia may increase the risk of atherosclerotic complications, cause podocyte dysfunction and contribute to vascular thrombosis. Urinary loss of anticoagulants and overproduction of coagulation factors may facilitate a hypercoagulable state. Edema, hypogammaglobulinemia, loss of complement factors, and immunosuppressive therapy can favor infection. Treatment of these complications may reduce their impact on the severity of NS. Nephrotic syndrome is a kidney disorder that can worsen the quality of life and increase the risk of kidney disease progression.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Russo LM, Sandoval RM, McKee M, Osicka TM, Collins AB, Brown D, Molitoris BA, Comper WD (2007) The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int 71(6):504–513

    Article  CAS  PubMed  Google Scholar 

  2. Nielsen R, Christensen EI, Birn H (2016) Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int 89(1):58–67

    Article  CAS  PubMed  Google Scholar 

  3. Molitoris BA, Sandoval RM, Yadav SPS, Wagner MC (2022) Albumin uptake and processing by the proximal tubule: physiological, pathological, and therapeutic implications. Physiol Rev 102(4):1625–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Russo LM, Sandoval RM, Campos SB, Molitoris BA, Comper WD, Brown D (2009) Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J Am Soc Nephrol 20(3):489–499

    Article  PubMed  PubMed Central  Google Scholar 

  5. Han Y, Ly NDK, Tesch GH, Poronnik P, Nikolic-Paterson DJ (2018) Reduced tubular degradation of glomerular filtered plasma albumin is a common feature in acute and chronic kidney disease. Clin Exp Pharmacol Physiol 45(3):241–249

    Article  CAS  PubMed  Google Scholar 

  6. Iseki K, Ikemiya Y, Iseki C, Takishita S (2003) Proteinuria and the risk of developing end-stage renal disease. Kidney Int 63(4):1468–1474

    Article  PubMed  Google Scholar 

  7. Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, Striker G (1994) The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med 330(13):877–884

    Article  CAS  PubMed  Google Scholar 

  8. Ruggenenti P, Perna A, Mosconi L, Pisoni R, Remuzzi G (1998) Urinary protein excretion rate is the best independent predictor of ESRF in non-diabetic proteinuric chronic nephropathies. “Gruppo Italiano di Studi Epidemiologici in Nefrologia” (GISEN). Kidney Int 53(5):1209–1216

    Article  CAS  PubMed  Google Scholar 

  9. Rydel JJ, Korbet SM, Borok RZ, Schwartz MM (1995) Focal segmental glomerular sclerosis in adults: presentation, course, and response to treatment. Am J Kidney Dis 25(4):534–542

    Article  CAS  PubMed  Google Scholar 

  10. Cattran DC, Pei Y, Greenwood CM, Ponticelli C, Passerini P, Honkanen E (1997) Validation of a predictive model of idiopathic membranous nephropathy: its clinical and research implications. Kidney Int 51:901–907

    Article  CAS  PubMed  Google Scholar 

  11. Ponticelli C, Villa M, Banfi G, Cesana B, Pozzi C, Pani A, Passerini P, Farina M, Grassi C, Baroli A (1999) Can prolonged treatment improve the prognosis in adults with focal segmental glomerulosclerosis? Am J Kidney Dis 34(4):618–625

    Article  CAS  PubMed  Google Scholar 

  12. Ogawa-Akiyama A, Sugiyama H, Kitagawa M et al (2020) Podocyte autophagy is associated with foot process effacement and proteinuria in patients with minimal change nephrotic syndrome. PLoS ONE 15(1):e0228337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Teh YM, Mualif SA, Lim SK (2022) A comprehensive insight into autophagy and its potential signaling pathways as a therapeutic target in podocyte injury. Int J Biochem Cell Biol 143:106153

    Article  CAS  PubMed  Google Scholar 

  14. Ponticelli C, Moroni G, Reggiani F (2023) Autophagy and podocytopathy. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfad024. (Online ahead of print)

    Article  PubMed  Google Scholar 

  15. Kriz W, LeHir M (2005) Pathways to nephron loss starting from glomerular diseases-insights from animal mode. Kidney Int 67:404–419

    Article  PubMed  Google Scholar 

  16. Anguiano L, Kain R, Anders HJ (2020) The glomerular crescent: triggers, evolution, resolution, and implications for therapy. Curr Opin Nephrol Hypertens 29(3):302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smeets B, Moeller MJ (2012) Parietal epithelial cells and podocytes in glomerular diseases. Semin Nephrol 32(4):357–367

    Article  CAS  PubMed  Google Scholar 

  18. Baines RJ, Brunskill NJ (2011) Tubular toxicity of protenuria. Nat Rev Nephrol 7(3):177–180

    Article  CAS  PubMed  Google Scholar 

  19. Sharma S, Smyth B (2021) From proteinuria to fibrosis: an update on pathophysiology and treatment options. Kidney Blood Press Res 46(4):411–420

    Article  CAS  PubMed  Google Scholar 

  20. Nolin AC, Mulhern RM, Panchenko MV, Pisarek-Horowitz A, Wang Z, Shirihai O, Borkan SC, Havasi A (2016) Proteinuria causes dysfunctional autophagy in the proximal tubule. Am J Physiol Renal Physiol 311(6):F1271–F1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim HJ, Moradi H, Yuan J, Norris K, Vaziri ND (2009) Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am J Physiol Renal Physiol 296:F1297-1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaysen GA, Gambertoglio J, Jimenez I, Jones H, Hutchison FN (1986) Effect of dietary protein intake on albumin homeostasis in nephrotic patients. Kidney Int 29(2):572–577

    Article  CAS  PubMed  Google Scholar 

  23. Pezeshki A, Zapata RC, Singh A, Yee NJ, Chelikani PK (2016) Low protein diets produce divergent effects on energy balance. Sci Rep 28(6):25145

    Article  Google Scholar 

  24. Chrysant SG, Chrysant GS (2015) Dual renin-angiotensin-aldosterone blockade: promises and pitfalls. Curr Hypertens Rep 17(1):511

    Article  PubMed  Google Scholar 

  25. Mei M, Zhou Z, Zhang Q, Chen Y, Zhao H, Shen B (2021) Dual blockade of the renin-angiotensin system: a strategy that should be reconsidered in cardiorenal diseases? Nephron 145(2):99–106

    Article  CAS  PubMed  Google Scholar 

  26. Trujillo H, Caravaca-Fontán F, Caro J, Morales E, Praga M (2021) The forgotten antiproteinuric properties of diuretics. Am J Nephrol 52(6):435–449

    Article  CAS  PubMed  Google Scholar 

  27. Morales E, Caro J, Gutierrez E, Sevillano A, Auñón P, Fernandez C et al (2015) Diverse diuretics regimens differentially enhance the antialbuminuric effect of renin-angiotensin blockers in patients with chronic kidney disease. Kidney Int 88(6):1434–1441

    Article  CAS  PubMed  Google Scholar 

  28. Currie G, Taylor AH, Fujita T, Ohtsu H, Lindhardt M, Rossing P, Boesby L, Edwards NC, Ferro CJ, Townend JN, van den Meiracker AH, Saklayen MG, Oveisi S, Jardine AG, Delles C, Preiss DJ, Mark PB (2016) Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol 17(1):127

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kiyomoto H, Rafiq K, Mostofa M, Nishiyama A (2008) Possible underlying mechanisms responsible for aldosterone and mineralocorticoid receptor-dependent renal injury. J Pharmacol Sci 108(4):399–405

    Article  CAS  PubMed  Google Scholar 

  30. Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin-Kanasaki M, Araki H, Araki S, Koya D, Asanuma K, Kim EH, Haneda M, Kajiwara N, Hayashi K, Ohashi H, Ugi S, Maegawa H, Uzu T (2016) Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes 65(3):755–767

    Article  CAS  PubMed  Google Scholar 

  31. Heerspink HJL, Perkins BA, David H, Fitchett DH, Husain M, David ZI, Cherney DZ (2016) Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134(10):752–772

    Article  CAS  PubMed  Google Scholar 

  32. Agarwal R, Acharya M, Tian J, Hippensteel RL, Melnick JZ, Qiu P, Williams L, Batlle D (2005) Antiproteinuric effect of oral paricalcitol in chronic kidney disease. Kidney Int 68:2823–2828

    Article  CAS  PubMed  Google Scholar 

  33. Cheng HF, Wang CJ, Moeckel GW, Zhang MZ, McKanna JA et al (2002) Cyclooxygenase-2 inhibitor blocks expression of mediators of renal injury in a model of diabetes and hypertension. Kidney Int 62(3):929–939

    Article  CAS  PubMed  Google Scholar 

  34. Bakhriansyah M, Souverein PC, van den Hoogen MWF, de Boer A, Klungel OH (2019) Risk of nephrotic syndrome for non-steroidal anti-inflammatory drug users: a case-control study. Clin J Am Soc Nephrol 14:1355–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, Chang JM, Choi HY, Campbell KN, Kim K, Reiser J, Mundel P (2008) The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med 14(9):931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu H, Kistler A, Faridi MH, Meyer JO, Tryniszewska B, Mehta D, Yue L, Dryer S, Reiser J (2016) Synaptopodin limits TRPC6 podocyte surface expression and attenuates proteinuria. J Am Soc Nephrol 27(11):3308–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Drovandi S, Lipska-Ziętkiewicz BS, Ozaltin F, Emma F, Gulhan B, Boyer O, Trautmann A, Xu H, Shen Q, Rao J, Riedhammer KM, Heemann U, Hoefele J, Stenton SL, Tsygin AN, Ng KH, Fomina S, Benetti E, Aurelle M, Prikhodina L, Schreuder MF, Tabatabaeifar M, Jankowski M, Baiko S, Mao J, Feng C, Liu C, Sun S, Deng F, Wang X, Clavé S, Stańczyk M, Bałasz-Chmielewska I, Fila M, Durkan AM, Levart TK, Dursun I, Esfandiar N, Haas D, Bjerre A, Anarat A, Benz MR, Talebi S, Hooman N, Ariceta G, PodoNet Consortium; mitoNET Consortium; CCGKDD Consortium, Schaefer F (2022) Variation of the clinical spectrum and genotype-phenotype associations in Coenzyme Q10 deficiency associated glomerulopathy. Kidney Int 102(3):592–603

    Article  CAS  PubMed  Google Scholar 

  38. Kaysen GA (1993) The nephrotic syndrome: pathogenesis and consequences. The homeostatic and pathogenic consequences of proteinuria. Introduction. Am J Nephrol 13(5):309–310

    Article  CAS  PubMed  Google Scholar 

  39. Dogra GK, Herrmann S, Irish AB, Thomas MA, Watts GF (2002) Insulin resistance, dyslipidaemia, inflammation and endothelial function in nephrotic syndrome. Nephrol Dial Transplant 17(12):2220–2225

    Article  CAS  PubMed  Google Scholar 

  40. Soeters PB, Wolfe RR, Shenkin A (2019) Hypoalbuminemia: pathogenesis and clinical significance. JPEN J Parenter Enteral Nutr 43(2):181–193

    Article  CAS  PubMed  Google Scholar 

  41. Lang J, Katz R, Ix JH, Gutierrez OM, Peralta CA, Parikh CR, Satterfield S, Petrovic S, Devarajan P, Bennett M, Fried LF, Cummings SR, Sarnak MJ, Shlipak MG (2018) Association of serum albumin levels with kidney function decline and incident chronic kidney disease in elders. Nephrol Dial Transplant 33(6):986–992

    Article  CAS  PubMed  Google Scholar 

  42. Kikuchi H, Kanda E, Mandai S, Akazawa M, Iimori S, Oi K, Naito S, Noda Y, Toda T, Tamura T, Sasaki S, Sohara E, Okado T, Rai T, Uchida S (2017) Combination of low body mass index and serum albumin level is associated with chronic kidney disease progression: the chronic kidney disease-research of outcomes in treatment and epidemiology (CKD-ROUTE) study. Clin Exp Nephrol 21(1):55–62

    Article  CAS  PubMed  Google Scholar 

  43. Walther CP, Gutiérrez OM, Cushman M, Judd SE, Lang J, McClellan W, Muntner P, Sarnak MJ, Shlipak MG, Warnock DG, Katz R, Ix JH (2018) Serum albumin concentration and risk of end-stage renal disease: the REGARDS study. Nephrol Dial Transplant 33(10):1770–1777

    Article  CAS  PubMed  Google Scholar 

  44. Yoshimura A, Ideura T, Iwasaki S, Taira T, Koshikawa S (1992) Aggravation of minimal change nephrotic syndrome by administration of human albumin. Clin Nephrol 37(3):109–114

    CAS  PubMed  Google Scholar 

  45. Klinkmann G, Klammt S, Jäschke M, Henschel J, Gloger M, Reuter DA, Mitzner S (2022) Impact of albumin binding function on pharmacokinetics and pharmacodynamics of furosemide. Medicina (Kaunas) 58(12):1780

    Article  PubMed  Google Scholar 

  46. Bockenhauer D (2013) Over- or underfill: not all nephrotic states are created equal. Pediatr Nephrol 28(8):1153–1156

    Article  PubMed  Google Scholar 

  47. Teoh CW, Robinson LA, Noone D (2015) Perspectives on edema in childhood nephrotic syndrome. Am J Physiol Renal Physiol 309(7):F575-582

    Article  CAS  PubMed  Google Scholar 

  48. Hinrichs GR, Jensen BL, Svenningsen P (2020) Mechanisms of sodium retention in nephrotic syndrome. Curr Opin Nephrol Hypertens 29(2):207–212

    Article  CAS  PubMed  Google Scholar 

  49. Larionov A, Dahlke E, Kunke M, Zanon Rodriguez L, Schiessl IM, Magnin JL, Kern U, Alli AA, Mollet G, Schilling O, Castrop H, Theilig F (2019) Cathepsin B increases ENaC activity leading to hypertension early in nephrotic syndrome. J Cell Mol Med 23(10):6543–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Siddall EC, Radhakrishnan J (2012) The pathophysiology of edema formation in the nephrotic syndrome. Kidney Int 82(6):635–642

    Article  CAS  PubMed  Google Scholar 

  51. Novak JE, Ellison DH (2022) Diuretics in states of volume overload: core curriculum 2022. Am J Kidney Dis 80(2):264–276

    Article  PubMed  Google Scholar 

  52. Lee TH, Kuo G, Chang CH, Huang YT, Yen CL, Lee CC, Fan PC, Chen JJ (2021) Diuretic effect of co-administration of furosemide and albumin in comparison to furosemide therapy alone: an updated systematic review and meta-analysis. PLoS ONE 16(12):e0260312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hedin E, Bijelić V, Barrowman N, Geier P (2022) Furosemide and albumin for the treatment of nephrotic edema: a systematic review. Pediatr Nephrol 37(8):1747–1757

    Article  PubMed  Google Scholar 

  54. Masuda T, Ohara K, Nagayama I, Matsuoka R, Murakami T, Nakagawa S, Oka K, Asakura M, Igarashi Y, Fukaya Y, Miyazawa Y, Maeshima A, Akimoto T, Saito O, Nagata D (2019) Impact of serum albumin levels on the body fluid response to tolvaptan in chronic kidney disease patients. Int Urol Nephrol 51(9):1623–1629

    Article  CAS  PubMed  Google Scholar 

  55. Agrawal S, Zaritsky JJ, Fornoni A, Smoyer WE (2017) Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat Rev Nephrol 14(1):70

    Article  PubMed  Google Scholar 

  56. Vaziri ND (2016) Disorders of lipid metabolism in nephrotic syndrome: mechanisms and consequences. Kidney Int 90(1):41–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ishibashi R, Takemoto M, Tsurutani Y, Kuroda M, Ogawa M, Wakabayashi H, Uesugi N, Nagata M, Imai N, Hattori A, Sakamoto K, Kitamoto T, Maezawa Y, Narita I, Hiroi S, Furuta A, Miida T, Yokote K (2018) Immune-mediated acquired lecithin-cholesterol acyltransferase deficiency: a case report and literature review. J Clin Lipidol 12(4):888-897.e2

    Article  PubMed  Google Scholar 

  58. Haas ME, Levenson AE, Sun X, Liao WH, Rutkowski JM, de Ferranti SD, Schumacher VA, Scherer PE, Salant DJ, Biddinger SB (2016) The role of proprotein convertase subtilisin/kexin type 9 in nephrotic syndrome-associated hypercholesterolemia. Circulation 134(1):61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morris AWJ (2016) PCSK9: a target for hypercholesterolaemia in nephrotic syndrome. Nat Rev Nephrol 12:510

    Article  PubMed  Google Scholar 

  60. Izquierdo-Lahuerta A, Martínez-García C, Medina-Gómez G (2016) Lipotoxicity as a trigger factor of renal disease. J Nephrol 29:603–610

    Article  CAS  PubMed  Google Scholar 

  61. Wahl P, Ducasa GM, Fornoni A (2016) Systemic and renal lipids in kidney disease development and progression. Am J Physiol Ren Physiol 310:F433–F445

    Article  CAS  Google Scholar 

  62. Fornoni A, Merscher S (2020) Lipid metabolism gets in a JAML during kidney disease. Cell Metab 32(6):903–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Law M, Rudnicka AR (2006) Statin safety: a systematic review. Am J Cardiol 97(8A):52C-60C

    Article  CAS  PubMed  Google Scholar 

  64. Kim BK, Hong SJ, Lee YJ, Hong SJ, Yun KH, Hong BK, Heo JH, Rha SW, Cho YH, Lee SJ, Ahn CM, Kim JS, Ko YG, Choi D, Jang Y, Hong MK, RACING investigators (2022) Long-term efficacy and safety of moderate-intensity statin with ezetimibe combination therapy versus high-intensity statin monotherapy in patients with atherosclerotic cardiovascular disease (RACING): a randomised, open-label, non-inferiority trial. Lancet 400(10349):380–390

    Article  CAS  PubMed  Google Scholar 

  65. Kerlin BA, Waller AP, Sharma R, Chanley MA, Nieman MT, Smoyer WE (2015) Disease severity correlates with thrombotic capacity in experimental nephrotic syndrome. J Am Soc Nephrol 26(12):3009–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Waller AP, Troost JP, Parikh SV, Wolfgang KJ, Rovin BH, Nieman MT, Smoyer WE, Kretzler M, Kerlin BA, NEPTUNE Investigators (2021) Nephrotic syndrome disease activity is proportional to its associated hypercoagulopathy. Thromb Res 201:50–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Abdelghani E, Waller AP, Wolfgang KJ, Stanek JR, Parikh SV, Rovin BH, Smoyer WE, Kerlin BA, PNRC Investigators, NEPTUNE Investigators (2023) Exploring the role of antithrombin in nephrotic syndrome-associated hypercoagulopathy: a multi-cohort study and meta-analysis. Clin J Am Soc Nephrol 18(2):234–244

    Article  PubMed  Google Scholar 

  68. Gigante A, Barbano B, Sardo L, Martina P, Gasperini ML, Labbadia R, Liberatori M, Amoroso A, Cianci R (2014) Hypercoagulability and nephrotic syndrome. Curr Vasc Pharmacol 12(3):512–517

    Article  CAS  PubMed  Google Scholar 

  69. Li L, Zhou J, Wang S, Jiang L, Chen X, Zhou Y, Li J, Shi J, Liu P, Shu Z, Gonzalez FJ, Liu A, Hu H (2022) Critical role of peroxisome proliferator-activated receptor α in promoting platelet hyperreactivity and thrombosis under hyperlipidemia. Haematologica 107(6):1358–1373

    Article  CAS  PubMed  Google Scholar 

  70. van Geffen JP, Swieringa F, van Kuijk K, Tullemans BME, Solari FA, Peng B, Clemetson KJ, Farndale RW, Dubois LJ, Sickmann A, Zahedi RP, Ahrends R, Biessen EAL, Sluimer JC, Heemskerk JWM, Kuijpers MJE (2020) Mild hyperlipidemia in mice aggravates platelet responsiveness in thrombus formation and exploration of platelet proteome and lipidome. Sci Rep 10(1):21407

    Article  PubMed  PubMed Central  Google Scholar 

  71. Irace C, Carallo C, Scavelli F, Esposito T, De Franceschi MS, Tripolino C, Gnasso A (2014) nfluence of blood lipids on plasma and blood viscosity. Clin Hemorheol Microcirc 57(3):267–274

    Article  CAS  PubMed  Google Scholar 

  72. Stæhr M, Buhl KB, Andersen RF, Svenningsen P, Nielsen F, Hinrichs GR, Bistrup C, Jensen BL (2015) Aberrant glomerular filtration of urokinase-type plasminogen activator in nephrotic syndrome leads to amiloride-sensitive plasminogen activation in urine. Am J Physiol Renal Physiol 309(3):F235-241

    Article  PubMed  Google Scholar 

  73. Mehta JL, Li DY, Yang H, Raizada MK (2002) Angiotensin II and IV stimulate expression and release of plasminogen activator inhibitor-1 in cultured human coronary artery endothelial cells. J Cardiovasc Pharmacol 39(6):789–794

    Article  CAS  PubMed  Google Scholar 

  74. Mahmoodi BK, ten Kate MK, Waanders F, Veeger NJ, Brouwer JL, Vogt L, Navis G, van der Meer J (2008) High absolute risks and predictors of venous and arterial thromboembolic events in patients with nephrotic syndrome: results from a large retrospective cohort study. Circulation 117(2):224–230

    Article  PubMed  Google Scholar 

  75. Kerlin BA, Ayoob R, Smoyer WE (2012) Epidemiology and pathophysiology of nephrotic syndrome-associated thromboembolic disease. Clin J Am Soc Nephrol 7(3):513–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Suri D, Ahluwalia J, Saxena AK, Sodhi KS, Singh P, Mittal BR, Das R, Rawat A, Singh S (2014) Thromboembolic complications in childhood nephrotic syndrome: a clinical profile. Clin Exp Nephrol 18(5):803–813

  77. Casey D, Romero K, Patel R, Ouellette T, Anasseri S, Eftekhari P (2022) Bilateral renal vein thrombosis in membranous nephropathy: hypoalbuminemia predictive of venous thromboembolism in nephrotic syndrome. Cureus 14(10):e30032

    PubMed  PubMed Central  Google Scholar 

  78. Barbour SJ, Greenwald A, Djurdjev O, Levin A, Hladunewich MA, Nachman PH, Hogan SL, Cattran DC, Reich HN (2012) Disease-specific risk of venous thromboembolic events is increased in idiopathic glomerulonephritis. Kidney Int 81(2):190–195

    Article  PubMed  Google Scholar 

  79. Kimura Y, Miura N, Debiec H, Morita H, Yamada H, Banno S, Ronco P, Imai H (2017) Circulating antibodies to α-enolase and phospholipase A2 receptor and composition of glomerular deposits in Japanese patients with primary or secondary membranous nephropathy. Clin Exp Nephrol 21(1):117–126

    Article  CAS  PubMed  Google Scholar 

  80. Díaz-Ramos A, Roig-Borrellas A, García-Melero A, López-Alemany R (2012) α-Enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol 2012:156795

    Article  PubMed  PubMed Central  Google Scholar 

  81. Go AS, Tan TC, Chertow GM, Ordonez JD, Fan D, Law D, Yankulin L, Wojcicki JM, Zheng S, Chen KK, Khoshniat-Rad F, Yang J, Parikh RV (2021) Primary nephrotic syndrome and risks of ESKD, cardiovascular events, and death: the kaiser permanente nephrotic syndrome study. J Am Soc Nephrol 32(9):2303–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lai X, Cui Z, Zhang H, Zhang YM, Wang F, Wang X, Meng LQ, Cheng XY, Liu G, Zhao MH (2023) Long-term visit-to-visit variability in low-density lipoprotein cholesterol is associated with poor cardiovascular and kidney outcomes in patients with primary nephrotic syndrome. Int Urol Nephrol. https://doi.org/10.1007/s11255-023-03467-7. (Online ahead of print. PMID: 36648742)

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hari P, Khandelwal P, Smoyer WE (2020) Dyslipidemia and cardiovascular health in childhood nephrotic syndrome. Pediatr Nephrol 35(9):1601–1619

    Article  PubMed  Google Scholar 

  84. Alves C, Pinho JF, Dos Santos LM, Magalhães G, da Silva JM, Fontes FL, Caligiorne SM, Pinheiro S, Rodrigues-Machado MG (2020) Augmentation index, a predictor of cardiovascular events, is increased in children and adolescents with primary nephrotic syndrome. Pediatr Nephrol 35(5):815–827

    Article  PubMed  Google Scholar 

  85. Göçeroğlu A, Grenmyr E, Berden AE, Hagen EC, Bunch D, Sommarin Y, Bruijn JA, Bajema IM, Wieslander J (2018) Anti-plasminogen antibodies in ANCA-associated vasculitis: an optimized anti-plasminogen assay. PLoS ONE 13(11):e0207064

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rankin AJ, McQuarrie EP, Fox JG, Geddes CC, MacKinnon B, Scottish Renal Biopsy Registry (2017) Venous thromboembolism in primary nephrotic syndrome—is the risk high enough to justify prophylactic anticoagulation? Nephron 135(1):39–45

    Article  PubMed  Google Scholar 

  87. Sarasin FP, Schifferli JA (1994) Prophylactic oral anticoagulation in nephrotic patients with idiopathic membranous nephropathy. Kidney Int 45(2):578–585

    Article  CAS  PubMed  Google Scholar 

  88. Lee T, Biddle AK, Lionaki S, Derebail VK, Barbour SJ, Tannous S, Hladunewich MA, Hu Y, Poulton CJ, Mahoney SL, Charles Jennette J, Hogan SL, Falk RJ, Cattran DC, Reich HN, Nachman PH (2014) Personalized prophylactic anticoagulation decision analysis in patients with membranous nephropathy. Kidney Int 85(6):1412–1420

    Article  CAS  PubMed  Google Scholar 

  89. Rovin BH, Adler SG, Barratt J, Bridoux F, Burdge KA, Chan TM, Cook HT, Fervenza FC, Gibson KL, Glassock RJ, Jayne DRW, Jha V, Liew A, Liu ZH, Mejía-Vilet JM, Nester CM, Radhakrishnan J, Rave EM, Reich HN, Ronco P, Sanders JF, Sethi S, Suzuki Y, Tang SCW, Tesar V, Vivarelli M, Wetzels JFM, Lytvyn L, Craig JC, Tunnicliffe DJ, Howell M, Tonelli MA, Cheung M, Earley A, Floege J (2021) Executive summary of the KDIGO 2021 guideline for the management of glomerular diseases. Kidney Int 100(4):753–779

    Article  PubMed  Google Scholar 

  90. Kelddal S, Hvas AM, Grove EL, Birn H (2022) Safety and effectiveness of direct oral anticoagulants in patients with nephrotic syndrome: a report of 21 cases. BMC Nephrol 23(1):305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tijani A, Coons EM, Mizuki B, Dermady M, Stanilova K, Casey AL, Alqudsi M, Gastanaduy M, Elmayan A, Bamnolker A, Velez JCQ (2022) Direct oral anticoagulants versus warfarin for venous thromboembolism prophylaxis in patients with nephrotic syndrome: a retrospective cohort study. Ann Pharmacother, 10600280221129348

  92. Gipson DS, Messer KL, Tran CL, Herreshoff EG, Samuel JP, Massengill SF et al (2013) Inpatient health care utilization in the United States among children, adolescents, and young adults with nephrotic syndrome. Am J Kidney Dis 61:910–917

    Article  PubMed  Google Scholar 

  93. Carpenter SL, Goldman J, Sherman AK, Selewski DT, Kallash M, Tran CL, Seamon M, Katsoufis C, Ashoor I, Hernandez J, Supe-Markovina K, D’alessandri-Silva C, DeJesus-Gonzalez N, Vasylyeva TL, Formeck C, Woll C, Gbadegesin R, Geier P, Devarajan P, Smoyer WE, Kerlin BA, Rheault MN (2019) Association of infections and venous thromboembolism in hospitalized children with nephrotic syndrome. Pediatr Nephrol 34(2):261–267

    Article  PubMed  Google Scholar 

  94. Narain U, Gupta A (2018) Urinary tract infection in children with nephrotic syndrome. Pediatr Infect Dis J 37(2):144–146

    Article  PubMed  Google Scholar 

  95. Sorkhi H, Riahi SM, Ebrahimpour S, Shaikh N, Rostami A (2019) Urinary tract infection in children with nephrotic syndrome: a systematic review and meta-analysis. Microb Pathog 137:10371

    Article  Google Scholar 

  96. El Mashad GM, El Hady Ibrahim SA, Abdelnaby SAA (2017) Immunoglobulin G and M levels in childhood nephrotic syndrome: two centers Egyptian study. Electron Physician 9(2):3728–3732

    Article  PubMed  PubMed Central  Google Scholar 

  97. Worm M, Bohnert BN, Alenazi F, Boldt K, Klose F, Junger K, Ueffing M, Birkenfeld AL, Kalbacher H, Artunc F (2021) Proteasuria in nephrotic syndrome-quantification and proteomic profiling. J Proteomics 230:103981

    Article  Google Scholar 

  98. Kumar M, Ghunawat J, Saikia D, Manchanda V (2019) Incidence and risk factors for major infections in hospitalized children with nephrotic syndrome. Kumar J Bras Nefrol 41(4):526–533

    Article  PubMed  Google Scholar 

  99. Vanoaica L, Richman L, Jaworski M, Darshan D, Luther SA, Kühn LC (2014) Conditional deletion of ferritin H in mice reduces B and T lymphocyte populations. PLoS ONE 9(2):e89270

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ponticelli C, Glassock RJ (2019) Prevention of complications from use of conventional immunosuppressants: a critical review. J Nephrol 32(6):851–870

    Article  PubMed  Google Scholar 

  101. Enya T, Morimoto Y, Oshima R, Miyazaki K, Miyazawa T, Okada M, Sugimoto K (2021) Nephrotic syndrome relapse in a boy with COVID-19. CEN Case Rep 10(3):431–434

    Article  PubMed  PubMed Central  Google Scholar 

  102. Watanabe Y, Watanabe T, Ikeda H (2022) Case of recurrent refractory nephrotic syndrome in a Japanese boy with COVID-19. Pediatr Int 64(1):e14862

    Article  CAS  PubMed  Google Scholar 

  103. Morello W, Vianello FA, Proverbio E, Peruzzi L, Pasini A, Montini G (2022) COVID-19 and idiopathic nephrotic syndrome in children: systematic review of the literature and recommendations from a highly affected area. Pediatr Nephrol 37(4):757–764

    Article  PubMed  Google Scholar 

  104. Tran CL, Selewski DT, Oh GJ, Troost JP, Massengill SF, Al-Akash SI, Mahesh S, Amin R, Ashoor IF, Chanchlani R, Kallash M, Woroniecki RP, Gipson DS (2021) Pediatric immunization practices in nephrotic syndrome: an assessment of provider and parental knowledge. Front Pediatr 5(8):619548

    Article  Google Scholar 

  105. Nakagawa N, Maruyama S, Kashihara N, Narita I, Isaka Y (2022) New-onset and relapse of nephrotic syndrome following COVID-19 vaccination: a questionnaire survey in Japan. Clin Exp Nephrol 26(9):909–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lim JH, Han MH, Kim YJ, Kim MS, Jung HY, Choi JY, Cho JH, Kim CD, Kim YL, Park SH (2021) J New-onset nephrotic syndrome after Janssen COVID-19 vaccination: a case report and literature review. Korean Med Sci 36(30):e218

    Article  CAS  Google Scholar 

  107. Angeletti A, Drovandi S, Sanguineri F, Santaniello M, Ferrando G, Forno R, Cipresso G, Caridi G, Riella LV, Cravedi P, Ghiggeri GM (2020) COVID-19 in children with nephrotic syndrome on anti-CD20 chronic immunosuppression. Clin J Am Soc Nephrol 15(10):1494–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The Authors have no relevant financial or non-financial interests to disclose. 

Ethical approval

Not applicable.

Human and animal rights

Human and animal rights are respected

Informed consent

No informed consent is needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claudio, P., Gabriella, M. Nephrotic syndrome: pathophysiology and consequences. J Nephrol 36, 2179–2190 (2023). https://doi.org/10.1007/s40620-023-01697-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-023-01697-7

Keyword

Navigation