Skip to main content

Advertisement

Log in

Spinosyn insecticides

  • Lecture Text
  • Published:
ChemTexts Aims and scope Submit manuscript

Abstract

The spinosyns found in the bacterial species Saccharopolyspora spinosa were first isolated from a soil sample from an abandoned rum distillery on the British Virgin Islands. Their anti-insecticidal activity against several commercially relevant pests is based on the allosteric, agonistic binding at the nicotinic acetylcholine receptor and an antagonistic effect on the γ-aminobutyric acid receptor. Spinosyns result from the polyketide pathway. The biosynthesis of the tetracyclic lactone comprises an enzymatic Diels–Alder and a Rauhut–Currier-like reaction followed by glycosylation with rhamnose and forosamine. The spinosyns, constituting the insecticidal active ingredients in Spinosad® and Spinetoram® from Dow AgroSciences, are manufactured by fermentation. However, in recent years, facilitated by computer-aided molecular modeling and bioactivity directed synthesis, novel highly potent, structurally simplified spinosyn analogs were discovered, which might be accessible in the future by total synthesis on an industrial scale.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(© public domain, credit to Jim Buckman)

Fig. 4
Fig. 5

(Image courtesy of Jae Kyung Sohng, Sun Moon University, Asan, South Korea)

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

(Image is courtesy of Adrian T. Keatinge-Clay, University of Texas at Austin, Austin, Texas)

Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  1. Dittmeyer R, Keim W, Kreysa G, Oberholz A (eds) (2005) Winnacker, Küchler, Chemische Technik, vol 8, 5th edn. Wiley-VCH, Weinheim, p 216

    Google Scholar 

  2. Müller F (2005) Winnacker, Küchler, Chemische Technik, vol 8, 5th edn. Wiley-VCH, Weinheim, p 213

    Google Scholar 

  3. Sorensen WC (1995) Brethren of the Net, American Entomology, 1840–1880. University of Alabama, Alabama, pp 124–125

    Google Scholar 

  4. Gachelin G, Garner P, Ferroni E, Verhave JP, Opinel A (2018) Malar J. https://doi.org/10.1186/s12936-018-2244-2

    Article  PubMed  PubMed Central  Google Scholar 

  5. Büchel KH (1977) Pflanzenschutz und Schädlingsbekämpfung. Georg Thieme Verlag, Stuttgart, pp 6, 11, 13, 20, 62, 82

    Google Scholar 

  6. https://en.wikipedia.org/wiki/Imidacloprid. Accessed 04 Apr 2020.

  7. Pictet A, Rotschy A (1904) Ber Dtsch Chem Ges 37:1225–1235

    CAS  Google Scholar 

  8. Tomizawa M, Casida JE (2005) Annu Rev Pharmacol Toxicol 45:247–268

    CAS  PubMed  Google Scholar 

  9. Zacherl J (1884) US308172

  10. Staudinger H, Ruzicka L (1924) Helv Chim Acta 7:177–458

    CAS  Google Scholar 

  11. Vaz S Jr (2019) Sustainable agrochemistry: a compendium of technologies. Springer, Cham, p 22

    Google Scholar 

  12. Geoffroy E (1895) Contribution à l’étude du Robinia Nicou Aublet, au point de vue botanique, chimique et physiologique. Extrait des Annales de l’Institut Colonial de Marseille 2:1–86

    Google Scholar 

  13. La Forge FB, Haller HL, Smith LE (1933) Chem Rev 18:181–213

    Google Scholar 

  14. Rogers EF, Koniuszy FR, Shavel J, Folkers K (1948) J Am Chem Soc 70:3086–3088

    CAS  PubMed  Google Scholar 

  15. Wiesner K (1972) Adv Org Chem 8:295–316

    CAS  Google Scholar 

  16. Xu C, Han A, Virgil SC, Reisman SE (2017) ACS Cent Sci 3:278–282

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Karlson P, Butenandt A (1959) Annu Rev Entomol 4:39–58

    CAS  Google Scholar 

  18. Karlson P, Lüscher M (1959) Nature 183:55–56

    CAS  PubMed  Google Scholar 

  19. Berliner E (1915) Z Angew Entomologie 2:29–56

    Google Scholar 

  20. Zakharyan RA, Israelyan YA, Agabalyan AS, Tatevosyan PE, Akopyan SM, Afrikyan EK (1979) Mikrobiol 48:226–229

    CAS  Google Scholar 

  21. Mertz FP, Yao RC (1990) Int Syst Bacteriol 40:34–39

    Google Scholar 

  22. Kirst HA, Michel KH, Martin JW, Creemer LC, Chio EH, Yao RC, Nakatsukasa WM, Boeck LD, Occolowitz JL, Paschal JW, Deeter JB, Jones ND, Thompson GD (1991) Tetrahedron Lett 32:4839–4842

    CAS  Google Scholar 

  23. Kirst HA (2010) J Antibiot 63:101–111

    CAS  PubMed  Google Scholar 

  24. Davies J, Davies D (2010) Microbiol Mol Biol Rev 74:417–433

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lewis K (2013) Nat Rev Drug Discov 12:371–387

    CAS  PubMed  Google Scholar 

  26. http://www.pewtrusts.org/~/media/assets/2016/05/ascientificroadmapforantibioticdiscovery.pdf. Accessed 26 May 2017.

  27. Tu Y (2016) Angew Chem 128:10366–10382

    Google Scholar 

  28. Campbell WC (2016) Angew Chem 128:10338–10343

    Google Scholar 

  29. Omura S (2016) Angew Chem 128:10344–10364

    Google Scholar 

  30. Thompson GD, Dutton R, Sparks TC (2000) Pest Manag Sci 56:696–702

    CAS  Google Scholar 

  31. Thayer AM (2010) Chem Eng News 88(30):9

    Google Scholar 

  32. Huang K, Xia L, Zhang Y, Ding X, Zahn JA (2009) Appl Microbiol Biotechnol 82:13–23

    CAS  PubMed  Google Scholar 

  33. https://www.justice.gov/opa/pr/chinese-national-sentenced-87-months-prison-economic-espionage-and-theft-trade-secrets. Accessed 26 May 2017.

  34. http://www.telegraph.co.uk/news/worldnews/asia/china/8972031/Chinese-scientist-sentenced-for-stealing-US-secrets.html. Accessed 26 May 2017.

  35. Graupner PR, Martynow J, Anzeveno PB (2005) J Org Chem 70:2154–2160

    CAS  PubMed  Google Scholar 

  36. Geze M, Blanchard P, Fourrey JL, Robert-Gero M (1983) J Am Chem Soc 105:7638–7640

    CAS  Google Scholar 

  37. Jomon K, Kuroda Y, Ajisaka M, Sakai H (1972) J Antibiot (Tokyo) 25:271–280

    CAS  Google Scholar 

  38. Aizawa S, Akutsu H, Satomi T, Nagatsu T, Taguchi R, Seino A (1979) J Antibiot (Tokyo) 32:193–196

    CAS  Google Scholar 

  39. Liu C, Wang X, Zhao J, Liu Q, Wang L, Guan X, He H, Xiang W (2013) Int J Syst Evol Microbiol 63:3579–3584. https://doi.org/10.1099/ijs.0.050088-0

    Article  CAS  PubMed  Google Scholar 

  40. Xu J, Wang Y, Xie SJ, Xu J, Xiao J, Ruan JS (2009) Int J Syst Evol Microbiol 59:472–476. https://doi.org/10.1099/ijs.0.000497-0

    Article  CAS  PubMed  Google Scholar 

  41. Yu HL, Jiang SH, Bu XL, Wang JH, Weng JY, Yang XM, He KY, Zhang ZG, Ao P, Xu J, Xu MJ (2017) Sci Rep. https://doi.org/10.1038/srep40689

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pinnert-Sindico S, Ninet L, Preud’homme J, Cosar C (1954-1955) Antibiot Annu 724-727

  43. Paul R, Tchelifcheff S (1965) Bull Soc Chim 650

  44. Kaufman HE (1961) Arch Ophthalmol 66:609–610

    Google Scholar 

  45. Hasumi K, Shinohara C, Naganuma S, Endo A (1992) Eur J Biochem 205:841–846

    CAS  PubMed  Google Scholar 

  46. Yu HL, Jiang SH, Bu XL, Wang JH, Weng JY, Yang XM, He KY, Zhang ZG, Ao P, Xu J, Xu MJ (2017) Sci Rep. https://doi.org/10.1038/srep40689

    Article  PubMed  PubMed Central  Google Scholar 

  47. http://www.encyclopedia.com/topic/The_Dow_Chemical_Company.aspx. Accessed 26 May 2017.

  48. Lewer P, Hahn DR, Karr LL, Duebelbeis DO, Gilbert JR, Crouse GD, Worden T, Sparks TC, McKamey P, Edwards R, Graupner PR (2009) Bioorg Med Chem 17:4185–4196

    CAS  PubMed  Google Scholar 

  49. Dripps J, Olson B, Sparks T, Crouse G (2008) Plant Health Progress. http://www.plantmanagementnetwork.org/pub/php/perspective/2008/spinetoram/. Accessed 26 May 2017.

  50. Sparks TC, Crouse GD, Dripps JE, Anzeveno P, Martynow J, Deamicis CV, Gifford J (2008) J Comput Aided Mol Des 22:393–401

    CAS  PubMed  Google Scholar 

  51. Sparks TC, Crouse GD, Durst G (2001) Pest Manag Sci 57:896–905

    CAS  PubMed  Google Scholar 

  52. Li L, Rang J, He H, He S, Liu Z, Tang J, Xiao J, He L, Hu S, Yu Z, Ding X, Xia L (2018) Appl Microbiol Biotechnol 102:8011–8021

    CAS  PubMed  Google Scholar 

  53. Daeuble J, Sparks TC, Johnson P, Graupner PR (2009) Bioorg Med Chem 17:4197–4205

    CAS  PubMed  Google Scholar 

  54. Dripps JE, Boucher RE, Chloridis A, Cleveland CB, DeAmicis CV, Gomez LE, Paroonagian DL, Pavan LA, Sparks TC, Watson GB, López O, Fernández-Bolaños JG, Kraus GA (2011) Green trends in insect control. RCS, Cambridge, p 169

    Google Scholar 

  55. Krämer W, Schirmer U, Jeschke P, Witschel M (2012) Modern crop protection compounds: insecticides, vol 3. VCH, Weinheim, p 1239

    Google Scholar 

  56. Salgado VL, Sparks TC, Gilbert LI, Gill SS (2010) Insect control: biological and synthetic agents. Elsevier, Amsterdam, p 228

    Google Scholar 

  57. Bacci L, Lupi D, Savoldelli L, Rossaro B (2016) J Entomol Acarol Res 48:5653

    Google Scholar 

  58. Watson GB (2001) Pestic Biochem Physiol 71:20–28

    CAS  Google Scholar 

  59. Yin XH, Wu QJ, Zhang YJ, Long YH, Wu XM, Li RY, Wang M, Tian XL, Jiao XG (2016) Genet Mol Res. https://doi.org/10.4238/gmr.15038782

    Article  PubMed  Google Scholar 

  60. Vo DT, Hsu WH, Martin RJ (2010) J Vet Pharmacol Ther 33:315–322

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamamoto I (1999) Nicotine to Nicotinoids: 1962 to 1997. In: Yamamoto I, Casida J (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Tokyo, pp 3–27

    Google Scholar 

  62. Unwin N (2005) J Mol Biol 346:967–989

    CAS  PubMed  Google Scholar 

  63. Perry T, McKenzie JA, Batterham P (2007) Insect Biochem Mol Biol 37:184–188

    CAS  PubMed  Google Scholar 

  64. Perry T, Somers J, Yang YT, Batterham P (2015) Insect Biochem Mol Biol 64:106–115 (literature cited therein)

    CAS  PubMed  Google Scholar 

  65. Wang J, Wang X, Lansdell SJ, Zhang J, Millar NS, Wu Y (2016) Insect Biochem Mol Biol 71:29–36 (literature cited therein)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zimmer CT, Garrood WT, Puinean AM, Eckel-Zimmer M, Williamson MS, Davies TG, Bass C (2016) Insect Biochem Mol Biol 73:62–69 (literature cited therein)

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Waldron C, Matsushima P, Rosteck PR Jr, Broughton MC, Turner J, Madduri K, Crawford KP, Merlo DJ, Baltz RH (2001) Chem Biol 8:487–499

    CAS  PubMed  Google Scholar 

  68. http://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-7100&detail-level=3. Accessed 26 May 2017.

  69. Hahn DR, Gustafson G, Waldron C, Bullard B, Jackson D, Mitchell J (2006) J Ind Microbiol Biotechnol 33:94–104

    CAS  PubMed  Google Scholar 

  70. Kim HJ, Ruszczycky MW, Choi S, Liu Y, Liu H (2011) Nature 473:109–112

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim HJ, White-Phillip JA, Ogasawara Y, Shin N, Isiorho EA, Liu H (2010) J Am Chem Soc 132:2901–2903

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim HJ, Choi S, Jeon B, Kim N, Pongdee R, Wu Q, Liu H (2014) Angew Chem Int Edn 53:13553–13557

    CAS  Google Scholar 

  73. http://biocyc.org/META/NEW-IMAGE?type=PATHWAY&object=DTDPRHAMSYN-PWY&detail-level=4. Accessed 26 May 2017

  74. http://metacyc.org/META/NEW-IMAGE?type=PATHWAY&object=PWY-6808. Accessed 26 May 2017.

  75. Diels O, Alder K (1928) Liebigs Ann Chem 460:98–122

    CAS  Google Scholar 

  76. Kim HJ, Ruszczycky MW, Liu HW (2012) Curr Opin Chem Biol 16:124–131

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Jeon BS, Wang SA, Ruszczycky MW, Liu HW (2017) Chem Rev 117:5367–5388

    CAS  PubMed  Google Scholar 

  78. Kelly WL (2008) Org Biomol Chem 6:4483–4493

    CAS  PubMed  Google Scholar 

  79. Klas K, Tsukamoto S, Sherman DH, Williams RM (2015) J Org Chem 80:11672–11685

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Serafimov JM, Gillingham D, Kuster S, Hilvert D (2008) J Am Chem Soc 130:7798–7799

    CAS  PubMed  Google Scholar 

  81. Schaefer B (2014) Natural products in the chemical industry. Springer, Heidelberg, p 403

    Google Scholar 

  82. Hazuda D, Blau CU, Felock P, Hastings J, Pramanik B, Wolfe A, Bushman F, Farnet C, Goetz M, Williams M, Silverman K, Lingham R, Singh S (1999) Antivir Chem Chemother 10:63–70

    CAS  PubMed  Google Scholar 

  83. Sims JW, Fillmore JP, Warner DD, Schmidt EW (2005) Chem Commun (Camb) (2):186-188

  84. Kim W, Park JJ, Dugan FM, Peever TL, Gang DR, Vandemark G, Chen W (2017) Environ Microbiol 19:1822–1835

    CAS  PubMed  Google Scholar 

  85. Mizushina Y, Kamisuki S, Kasai N, Shimazaki N, Takemura M, Asahara H, Linn S, Yoshida S, Matsukage A, Koiwai O, Sugawara F, Yoshida H, Sakaguchi K (2002) J Biol Chem 277:630–638

    CAS  PubMed  Google Scholar 

  86. Fage CD, AIsiorho E, Liu Y, Wagner DT, Liu H, Keatinge-Clay AT (2015) Nat Chem Biol 11:256–258

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Medvedev MG, Zeifman AA, Novikov FN, Bushmarinov IS, Stroganov OV, Titov IY, Chilov GG, Svitanko IV (2017) J Am Chem Soc 139:3942–3945

    CAS  PubMed  Google Scholar 

  88. Jeon BS, Ruszczycky MW, Russell WK, Lin GM, Kim N, Choi SH, Wang SA, Liu YN, Patrick JW, Russell DH, Liu HW (2017) Proc Natl Acad Sci USA 114:10408–10413

    CAS  PubMed  Google Scholar 

  89. Aroyan CE, Dermenci A, Miller SJ (2009) Tetrahedron 65:4069–4084

    CAS  Google Scholar 

  90. Rauhut MM, Currier H (American Cyanamid Co) (1963) US 3074999

  91. Baizer MM, Anderson JD (1965) J Org Chem 30:1357–1360

    CAS  Google Scholar 

  92. McClure JD (Shell Oil) (1965) US 3225083

  93. Morita K, Suzuki Z, Hirose H (1968) Bull Chem Soc Jpn 41:2815–2819

    CAS  Google Scholar 

  94. Baylis AB, Hillman MED (Celanese Corp) (1972) DE2155113

  95. Hoffmann HMR, Rabe J (1983) Angew Chem Int Edn Engl 22:795–797

    Google Scholar 

  96. Aroyan CE, Miller SJ (2007) J Am Chem Soc 129:256–257

    CAS  PubMed  Google Scholar 

  97. Masson G, Housseman C, Zhu J (2007) Angew Chem Int Edn 119:4698–4712

    Google Scholar 

  98. Cai X, Bai Y, Dai M (2018) Synlett 29:2623–2632

    CAS  Google Scholar 

  99. Evans DA, Black WC (1993) J Am Chem Soc 115:4497–4513

    CAS  Google Scholar 

  100. Paquette LA, Gao Z, Ni Z, Smith GF (1998) J Am Chem Soc 120:2543–2552

    CAS  Google Scholar 

  101. Paquette LA, Collado I, Purdie M (1998) J Am Chem Soc 120:2553–2562

    CAS  Google Scholar 

  102. Mergott DJ, Frank SA, Roush WA (2004) PNAS 101:11955–11959

    CAS  PubMed  Google Scholar 

  103. Bai Y, Shen X, Li Y, Dai M (2016) J Am Chem Soc 138:10838–10841

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Jin ZH, Xu B, Lin SZ, Jin QC, Cen PL (2009) Appl Biochem Biotechnol 159:655–663

    CAS  PubMed  Google Scholar 

  105. Xue C, Duan Y, Zhao F, Lu W (2013) Biochem Eng J 72:90–95

    CAS  Google Scholar 

  106. Jha AK, Pokhrel AR, Chaudhary AK, Park S-W, Cho WJ, Sohng JK (2014) Mol Cells 37:727–733

    PubMed  PubMed Central  Google Scholar 

  107. Jin ZH, Cheng X, Cen PL (2006) Chin J Chem Eng 14:542–546

    CAS  Google Scholar 

  108. Jin ZH, Wu JP, Zhang Y (2006) J Zhejiang Univ 7:366–370

    Google Scholar 

  109. Lan Z, Zhao C, Guo W, Guan X, Zhang X (2015) J Mol Microbiol Biotechnol 25:253–261

    CAS  PubMed  Google Scholar 

  110. Zhao F, Zhang C, Yin J, Shen Y, Lu W (2015) Appl Biochem Biotechnol 176:2144–2156

    CAS  PubMed  Google Scholar 

  111. Tietze LF, Brasche G, Stadler C, Grube A, Böhnke N (2006) Angew Chem Int Edn 45:5015–5018

    CAS  Google Scholar 

  112. Tietze LF, Brasche G, Grube A, Bohnke N, Stadler C (2007) Chem Eur J 13:8543–8563

    CAS  PubMed  Google Scholar 

  113. Tietze LF, Schützenmeister N, Grube A, Scheffer T, Baag MM, Granitzka M, Stalke D (2012) Eur J Org Chem 2012:5748–5756

    CAS  Google Scholar 

  114. Crouse GD, Demeter DA, Samaritoni G, McLeod CL, Sparks TC (2018) Sci Rep 8:4861. https://doi.org/10.1038/s41598-018-22894-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sparks TC, Crouse GD, Demeter DA, McLeod CL (2019) Pest Manag Sci 75:309–313

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Gary D. Crouse (formerly Dow AgroSciences) for valuable suggestions and careful proof-reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Schaefer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachanderan, R., Schaefer, B. Spinosyn insecticides. ChemTexts 6, 20 (2020). https://doi.org/10.1007/s40828-020-00113-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40828-020-00113-y

Keywords

Navigation