Skip to main content

Advertisement

Log in

Polymicrobial oral conventionalization model in mice

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study is to describe a new polymicrobial oral conventionalization protocol in mice. Oral biofilm samples were collected from wild C57 BL/6 mice (WG), which had not been previously submitted to any experimental procedure. The contents of these samples were used for inoculation in the oral cavity of specific pathogen free (SPF) animals. This inoculation was repeated 3 times. Qualitative cytological analyses were performed in the days 0, 16 and 80 of the experimental protocol, to check the presence or absence of microorganisms, their morphology and staining characteristics on the oral cavity of the animals. At the end of this study, was observed a combination of oral bacterial microbiota of SPF animals and wild animals in the conventionalized group (CONV). Samples collected from CONV mice on day 16, a period in which these animals had been previously inoculated 3 times with wild mouse microbiota, showed a greater amount of Gram-positive cocci, as seen in SPF animals. In addition, Gram-negative cocci were present, although in a much smaller proportion than previously seen in wild mice. On the 80th experimental day, CONV animals showed a predominance of Gram-positive cocci and bacilli. Filamentous bacteria were also seen in this group. The conventionalization of SPF animals using the technique with inoculum from the resident microbiota of wild mice proved to be an effective, low-cost and easily reproducible technique. The conventionalized animals showed the colonization of a microbiota similar to wild animals up to 80 days of experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. He J, Li Y, Cao Y, Xue J, Zhou X (2015) The oral microbiome diversity and its relation to human diseases. Folia Microbiol 60:69–80. https://doi.org/10.1007/s12223-014-0342-2

    Article  CAS  Google Scholar 

  2. Sampaio-Maia B, Caldas IM, Pereira ML, Pérez-Mongiovi D, Araujo R (2016) The Oral Microbiome in Health and Its Implication in Oral and Systemic Diseases. Adv Appl Microbiol 97:171–210. https://doi.org/10.1016/bs.aambs.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  3. Patil S, Rao RS, Sanketh DS, Amrutha N (2013) Microbial Flora in Oral Diseases. J Contemp Dent Pract 14:1202–1208. https://doi.org/10.5005/jp-journals-10024-1477

    Article  PubMed  Google Scholar 

  4. Kesavalu L, Sathishkumar S, Bakthavatchalu V, Matthews C, Dawson D, Steffen M, Ebersole JE (2007) Rat Model of Polymicrobial Infection, Immunity, and Alveolar Bone Resorption in Periodontal Disease. Infect Immun 75:1704–1712. https://doi.org/10.1128/IAI.00733-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Polak D, Wilensky A, Shapira L, Halabi A, Goldstein D, Weiss EI, Houri-Haddad Y (2009) Mouse model of experimental periodontitis induced by Porphyromonas gingivalis/Fusobacterium nucleatuminfection: bone loss and host response. J Clin Periodontol 36:406–410. https://doi.org/10.1111/j.1600-051x.2009.01393.x

    Article  PubMed  Google Scholar 

  6. Meulman T, Peruzzo DC, Stipp RN, Gonçalves PF, Sallum EA, Casati MZ, Gonçalves RB, Nociti FH Jr (2011) Impact of Porphyromonas gingivalis inoculation on ligature-induced alveolar bone loss. A pilot study in rats. J Periodontal Res 46:629–636. https://doi.org/10.1111/j.1600-0765.2011.01385.x

    Article  CAS  PubMed  Google Scholar 

  7. Abe T, Hajishengallis G (2013) Optimization of the ligature-induced periodontitis model in mice. J Immunol Methods 394:49–54. https://doi.org/10.1016/j.jim.2013.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Molon RS, Mascarenhas VI, Avila ED, Finoti LS, Toffoli GB, Spolidorio DMP, Scarel-Caminaga RM, Tetradis S, Cirelli JÁ (2016) Long-term evaluation of oral gavage with periodontopathogens or ligature induction of experimental periodontal disease in mice. Clin Oral Invest 20:1203–1216. https://doi.org/10.1007/s00784-015-1607-0

    Article  Google Scholar 

  9. Hiyari S, Wong RL, Yaghsezian A, Naghibi A, Tetradis S, Camargo PM, Pirih FQ (2018) Ligature-induced peri-implantitis and periodontitis in mice. J Clin Periodontol 45:89–99. https://doi.org/10.1111/jcpe.12817

    Article  PubMed  Google Scholar 

  10. Vargas-Sanchez PK, Moro MG, Santos FA, Anbinder AL, Kreich E, Moraes RM, Padilha L, Kusiak C, Scomparin DX, Franco GCN (2017) Agreement, correlation, and kinetics of the alveolar bone-loss measurement methodologies in a ligature-induced periodontitis animal model. J Appl Oral Sci 25:490–497. https://doi.org/10.1590/1678-7757-2016-0517

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vo TNN, Hao J, Chou J, Oshima M, Aoki K, Kuroda S, Kaboosaya B, Kasugai S (2017) Ligature induced peri-implantitis: tissue destruction and inflammatory progression in a murine model. Clin Oral Implant Res 28:129–136. https://doi.org/10.1111/clr.12770

    Article  Google Scholar 

  12. Andrade A, Pinto SC, Oliveira RS (2002) Animais de laboratório: criação e experimentação. Fiocruz, Rio de Janeiro

    Google Scholar 

  13. Jiao Y, Hasegawa M, Inohara N (2014) Emerging roles of immunostimulatory oral bacteria in periodontitis development. Trends Microbiol 22:157–163. https://doi.org/10.1016/j.tim.2013.12.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Einheber A, Carter D (1966) The role of the microbial flora in uremia. I. Survival times of germfree, limited-flora, and conventionalized rats after bilateral nephrectomy and fasting. J Exp Med 12:239–250. https://doi.org/10.1084/jem.123.2.239

    Article  Google Scholar 

  15. Tennant B, Malm OJ, Horowitz RE, Levenson SM (1968) Response of Germfree, Conventional, Conventionalized and E. coli Mono contaminated Mice to Starvation. J Nutr 94:151–160. https://doi.org/10.1093/jn/94.2.151

    Article  CAS  PubMed  Google Scholar 

  16. Tennant B, Reina-Guerra M, Harrold D, Goldman M (1969) Influence of microorganisms on intestinal absorption: oleic acid 131-I and triolein 131-I absorption by germfree and conventionalized rats. J Nutr 97:65–69. https://doi.org/10.1093/jn/97.1.65

    Article  CAS  PubMed  Google Scholar 

  17. Nahid MA, Rivera M, Lucas A, Chan EKL, Kesavalu L (2011) Polymicrobial Infection with Periodontal Pathogens Specifically Enhances MicroRNA miR-146a in ApoE−/−Mice during Experimental Periodontal Disease. Infect Immun 79:1597–1605. https://doi.org/10.1128/iai.01062-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marchesan JT, Morelli T, Lundy SK, Jiao Y, Lim S, Inohara N, Nunez G, Fox DA, Giannobile WV (2012) Divergence of the systemic immune response following oral infection with distinct strains of Porphyromonas gingivalis. Mol Oral Microbiol 27:483–495. https://doi.org/10.1111/omi.12001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Settem RP, El-Hassan AT, Honma K, Stafford GP, Sharma A (2012) Fusobacterium nucleatum and Tannerella forsythia Induce Synergistic Alveolar Bone Loss in a Mouse Periodontitis Model. Infect Immun 80:2436–2443. https://doi.org/10.1128/iai.06276-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rivera MF, Lee JY, Aneja Monika, Goswami V, Liu L, Velsko IM, Chukkapalli SS, Bhattacharyya I, Chen H, Lucas AR, Kesavalu LN (2013) Polymicrobial Infection with Major Periodontal Pathogens Induced Periodontal Disease and Aortic Atherosclerosis in Hyperlipidemic ApoE (null) Mice. PLoS One 8:e57178. https://doi.org/10.1371/journal.pone.0057178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kos M, Junka A, Smutnicka D, Bartoszewicz M, Kurzynowski T, Gluza K (2013) Pamidronate Enhances Bacterial Adhesion to Bone Hydroxyapatite. Another Puzzle in the Pathology of Bisphosphonate-Related Osteonecrosis of the Jaw? J Oral Maxillofac Surg 71:1010–1016. https://doi.org/10.1016/j.joms.2012.12.005

    Article  PubMed  Google Scholar 

  22. Anbinder AL, Moraes RM, Lima GMG, Oliveira FE, Campos DRC, Rossoni RD, Oliveira LD, Junqueira JC, Elefteriou Y (2016) Periodontal disease exacerbates systemic ovariectomy-induced bone loss in mice. Bone 83:241–247. https://doi.org/10.1016/j.bone.2015.11.014

    Article  PubMed  Google Scholar 

  23. Mota VB (2013) Avaliação da eficácia do método de esterilização química por ácido peracético a 0,2% de escovas de Robinson. 27p. Trabalho de Conclusão de Curso em Odontologia. Universidade Federal do Ceará, Fortaleza- CE.

  24. Matsuda Y, Kato T, Takahashi N, Nakajima M, Arimatsu K, Minagawa T, Sato K, Ohno H, Yamazaki K (2016) Ligature-induced periodontitis in mice induces elevated levels of circulating interleukin-6 but shows only weak effects on adipose and liver tissues. J Periodontal Res 51:639–646. https://doi.org/10.1111/jre.12344

    Article  CAS  PubMed  Google Scholar 

  25. Czuprynski CJ, Balish E (1981) Pathogenesis of Listeria monocytogenes for Gnotobiotic Rats. Infect Immun 32:323–331

    Article  CAS  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) -  Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was performed by Camila Carvalho de Oliveira Coelho, Lidiany Karla Azevedo Rodrigues Gerage, Ana Paula Negreiros Nunes Alves; Fabrício Bitu Sousa, Lidiany Karla Azevedo Rodrigues Gerage, Mário Rogério Lima Mota, Ana Paula Negreiros Nunes Alves helped in methodology; Lidiany Karla Azevedo Rodrigues Gerage, Ana Paula Negreiros Nunes were involved in formal analysis and investigation; Camila Carvalho de Oliveira Coelho, Maria Imaculada de Queiroz Rodrigues wrote the original draft; Lidiany Karla Azevedo Rodrigues Gerage, Ana Paula Negreiros Nunes Alves, Camila Carvalho de Oliveira Coelho, Maria Imaculada de Queiroz Rodrigues contributed to writing—review and editing; Fabrício Bitu Sousa, Lidiany Karla Azevedo Rodrigues Gerage, Mário Rogério Lima Mota, Ana Paula Negreiros Nunes Alves supervised the study.

Corresponding author

Correspondence to Mário Rogério Lima Mota.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

This study was approved by the Ethics Committee on Animal Use of the Federal University of Ceará (protocol 85/16) and the University of Fortaleza (protocol 6466171017).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Queiroz Rodrigues, M.I., de Oliveira Coelho, C.C., Sousa, F.B. et al. Polymicrobial oral conventionalization model in mice. Braz J Microbiol 53, 885–890 (2022). https://doi.org/10.1007/s42770-022-00712-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00712-6

Keywords

Navigation