Skip to main content
Log in

Electron Backscattered Diffraction for the Study of Matrices for Immobilization of Actinides Composed of the Murataite-Type Phases

  • CERAMICS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Electron backscattered diffraction (EBSD) has been used to analyze structures of natural minerals and artificial compounds for almost three decades. In recent years, it is applied in nuclear power engineering to study irradiated nuclear fuel and matrices for immobilization of radionuclides. The potential of EBSD for studying the structures of ceramics consisting of murataite-type phases, which are proposed for immobilization of actinides, is considered. A specific feature of these matrices is the presence of a few structurally related compounds (zirconolite, murataite, their polytypes, and pyrochlore), forming zonal crystals. The combined use of EBSD, scanning electron microscopy/energy-dispersive spectroscopy, and X-ray diffraction analysis would allow one to determine more reliably the structure of these phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. K. L. Smith and G. R. Lumpkin, Defects and Processes in the Solid State, in Geoscience Applications: The McLaren Volume, Ed. by J. N. Boland and J. D. Fitz Gerald (Elsevier, Amsterdam, 1993), p. 401.

    Google Scholar 

  2. N. P. Laverov, A. I. Gorshkov, S. V. Yudintsev, et al., Dokl. Akad. Nauk 363 (4), 540 (1998).

    Google Scholar 

  3. N. P. Laverov, S. V. Yudintsev, S. V. Stefanovskii, et al., Radiokhimiya 53 (3), 196 (2011).

    Google Scholar 

  4. N. P. Laverov, V. S. Urusov, S. V. Krivovichev, et al., Geol. Rudn. Mestorozhd. 53 (4), 307 (2011).

    Google Scholar 

  5. S. Krivovichev, S. Yudintsev, A. Pakhomova, et al., ICAM 2019 (14th International Congress for Applied Mineralogy), Ed. by S. Glagolev (SPEES, Springer, 2019), p. 447.

  6. M. S. Nickolsky, Extended Abstract of Cand. Sci. Dissertation in Geology and Mineralogy (IGEM RAN, Moscow, 2018).

  7. E. R. Vance, G. R. Lumpkin, M. L. Carter, et al., J. Am. Ceram. Soc. 85 (7), 1853 (2002).

    Article  Google Scholar 

  8. L. R. Blackburn, S. Sun, L. J. Gardner, et al., J. Nucl. Mater. 535, 152137 (2020).

    Article  Google Scholar 

  9. J. Shiyin, S. Minhua, L. Changzhong, et al., J. Am. Ceram. Soc. 103, 1463 (2020).

    Article  Google Scholar 

  10. E. R. Maddrell, H. C. Paterson, S. E. May, et al., J. Nucl. Mater. 423, 380 (2017).

    Article  ADS  Google Scholar 

  11. J. W. Adams, T. Botinelly, W. N. Sharp, et al., Am. Mineral. 59, 172 (1974).

    Google Scholar 

  12. A. M. Portnov, L. S. Dubakina, and G. K. Krivokoneva, Dokl. Akad. Nauk SSSR, 261 (3), 741 (1981).

    Google Scholar 

  13. T. S. Ercit and F. C. Hawthorne, Can. Mineral. 33, 1223 (1995).

    Google Scholar 

  14. P. E. D. Morgan and F. J. Ryerson, J. Mater. Sci. Lett. 1, 351 (1982).

    Article  Google Scholar 

  15. N. P. Laverov, B. I. Omel’yanenko, S. V. Yudintsev, et al., Geol. Rudn. Mestorozhd. 39 (3), 211 (1997).

    Google Scholar 

  16. N. P. Laverov, I. A. Sobolev, S. V. Stefanovskii, et al., Dokl. Akad. Nauk 362 (5), 670 (1998).

    Google Scholar 

  17. N. P. Laverov, S. V. Yudintsev, S. V. Stefanovsky, et al., Geol. Ore Deposits 48 (5), 335 (2006).

    Article  ADS  Google Scholar 

  18. S. Stefanovsky, S. Yudintsev, B. Nikonov, and O. Stefanovsky, Mater. Res. Soc. Symp. Proc. 985, 0985-NN04-10 (2007).

  19. V. S. Urusov, N. I. Organova, O. V. Karimova, et al., Crystallogr. Rep. 52 (1), 37 (2007).

    Article  ADS  Google Scholar 

  20. S. V. Krivovichev, S. V. Yudintsev, S. V. Stefanovsky, et al., Ang. Chem. 122 (51), 10178 (2010).

    Article  Google Scholar 

  21. A. S. Pakhomova, S. V. Krivovichev, S. V. Yudintsev, et al., Z. Kristallogr. Cryst. Mater. 228 (3), 151 (2013).

    Article  Google Scholar 

  22. A. S. Pakhomova, S. V. Krivovichev, S. V. Yudintsev, et al., Eur. J. Mineral. 28 (1), 205 (2016).

    Article  ADS  Google Scholar 

  23. S. V. Yudintsev, S. V. Stefanovsky, B. S. Nikonov, et al., J. Nucl. Mater. 517, 371 (2019).

    Article  ADS  Google Scholar 

  24. A. E. Ringwood, Mineral. Mag. 49, 159 (1985).

    Article  Google Scholar 

  25. R. S. S. Maki, P. E. D. Morgan, and Y. Suzuki, J. Alloys Compd. 698, 99 (2017).

    Article  Google Scholar 

  26. J. A. Venables and C. J. Harland, Philos. Mag. 27 (5), 1193 (1973).

    Article  ADS  Google Scholar 

  27. S. Kikuchi, Proc. Imperial Acad. 4 (6), 271 (1928).

    Article  Google Scholar 

  28. Database on Materials Science. Materials of the XXI Century, Lecture 9: Electron Backscattering Diffraction (EBSD) Method. http://www.ism-data.misis.ru/index.php/lectures-rem/9-ebsd

  29. Electron Backscatter Diffraction in Materials Science, Ed. by A. J. Schwartz (Springer, New York, 2009).

    Google Scholar 

  30. I. O. Galuskina, E. V. Galuskin, T. Armbruster, et al., Am. Mineral. 95 (8–9), 1172 (2010).

    Article  ADS  Google Scholar 

  31. D. Jadernas, J. Gan, D. Keiser, et al., J. Nucl. Mater. 509, 1 (2018).

    Article  ADS  Google Scholar 

  32. X. Iltis, I. Zacharie-Aubrun, H. J. Ryu, et al., J. Nucl. Mater. 495, 249 (2017).

    Article  ADS  Google Scholar 

  33. P. Tumurugoti, B. M. Clark, D. J. Edwards, et al., J. Solid State Chem. 246, 107 (2017).

    Article  ADS  Google Scholar 

  34. J. A. Peterson, J. V. Crum, B. J. Riley, et al., J. Nucl. Mater. 510, 623 (2018).

    Article  ADS  Google Scholar 

  35. S. V. Yudintsev, A. V. Mokhov, M. S. Nikol’skii, et al., Proc. 19th Int. Conf. “Physico-Chemical and Petrophysical Investigations in Sciences about the Earth,” Moscow, September 24–28, 2018 (IGEM RAN, Moscow, 2018), p. 368.

  36. S. V. Stefanovskii, A. G. Ptashkin, O. A. Knyazev, et al., Fiz. Khim. Obrab. Mater., No. 4, 18 (2008).

  37. I. E. Grey, W. G. Mumme, T. J. Ness, et al., J. Solid State Chem. 174 (2), 285 (2003).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to O.I. Stefanovskaya for synthesizing murataite ceramics by sintering and melting methods and to B.S. Nikonov for the help in their analysis. We also thank the reviewer, whose remarks improved the paper.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-05-00058-a (subject “Crystal Chemistry of Matrices for Long-Lived Radionuclides”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Yudintsev.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nickolsky, M.S., Yudintsev, S.V. Electron Backscattered Diffraction for the Study of Matrices for Immobilization of Actinides Composed of the Murataite-Type Phases. Crystallogr. Rep. 66, 130–141 (2021). https://doi.org/10.1134/S1063774521010090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774521010090

Navigation