Skip to main content
Log in

Hibbingite and Its Manganoan Variety from Metamorphosed Pentlandite–Putoranite Ores at Deep Levels of the Oktyabrskoe Deposit, Norilsk Ore Field

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Hibbingite, siderite, and their manganoan varieties replacing magnetite and associated sulfides are widespread in tectonized and metamorphosed pentlandite–putoranite ores with magnetite at the deep level of the Oktyabrskoe deposit in the Norlisk ore field, Krasnoyarsk krai. Hibbingite aggregates are formed by intergrown lamellar crystals. Hibbingite, \({\text{Fe}}_{2}^{{2 + }}\) (OH)3Cl, contains 2–38 mol % kempite endmember, \({\text{Mn}}_{2}^{{2 + }}\)(OH)3Cl. Hibbingite with 7–13% kempite molecule is common. Hibbingite replacing magnetite and putoranite is enriched in Cu, up to 2.6 wt %, which corresponds to the 4 mol % atacamite endmember, \({\text{Cu}}_{2}^{{2 + }}\)(OH)3Cl. Hibbingite replacing magnetite and pentlandite is enriched in Ni, up to 1.5 wt %. In zoned siderite crystals, the siderite core is depleted in minor elements, whereas the rim is enriched in Mn (up to 23 mol % rhodochrosite molecule) and Cu (up to 4.5 wt % CuO). Native silver and sphalerite enriched in Cd are associated with hibbingite and siderite. These are low-temperature metamorphic-hydrothermal assemblages formed under zeolite facies conditions. Replacement of magnetite by hibbingite and siderite is a reductive process that appears to have occurred in an acidic–CO2 environment possibly involving hydrocarbons or hydrogen. The likely reaction is Fe2+\({\text{Fe}}_{2}^{{3 + }}\) O4 + HCl + СО2 + H2\({\text{Fe}}_{2}^{{2 + }}\)(OH)3Cl + Fe2+[CO3].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig 2.
Fig. 3.

REFERENCES

  1. Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C., Handbook of Mineralogy. Volume 5. Borates, Carbonates, Sulfates, Tucson: Mineral Data Publishing, 2003.

    Google Scholar 

  2. Buchwald, V.F. and Koch, C.B., Hibbingite, β-Fe2(OH)3Cl, a chlorine-rich corrosion product in meteorites and ancient iron objects, Meteoritics, 1995, Vol. 30. P. 493.

    Google Scholar 

  3. Bud’ko, I.A., Izoitko, V.M., Kulagov, E.A., and Mitenkov, G.A., Makinavite and valleriite in Norilsk and Talnakh ores, Uch Zap., 1966, vol. 5, pp. 203–209.

    Google Scholar 

  4. Genkin, A.D., Distler, V.V., Filimonova, A.A., Evstigneeva, T.L., Kovalenker, V.A., Sluzhenikin, S.F., Laputina, I.P., Smirnov, A.V., and Grokhovskaya, T.L., Sul’fidnye medno-nikelevye rudy noril’skikh mestorozhdenii (Sulphide Copper–Nickel Ores of the Norilsk Deposits, Moscow: Nauka, 1981.

  5. Godlevsky, M.N., Trappy i rudonosnye intruzii Noril’skogo raiona (Traps and Ore-Bearing Intrusions of the Norilsk Region), Moscow: Gosgeoltekhizdat, 1959.

  6. Godlevsky, M.N. and Shumskaya, N.I., Chalcopyrite–millerite ores of the Norilsk-I deposit, Geol. Ore Deposits, 1960, no. 6, pp. 61–72.

  7. Goryainov, I.N. and Aplonov, V.S., Regional hydrothermal activity in the northwest of the Siberian platform, Geol. Geofiz., 1980, no. 7, pp. 35–43.

  8. Izoitko, V.M., Tekhnologicheskaya mineralogiya i otsenka rud, (Technological Mineralogy and Assessment of Ores), St. Petersburg: Nauka, 1997.

    Google Scholar 

  9. Junge, M., Oberthur, T., and Melcher, F., Cryptic variation of chromite chemistry, platinum group element and platinum group mineral distribution in the UG-2 chromitite: an example from the Karee Mine, western Bushveld Complex, South Africa, Econ. Geol., 1993, vol. 88, pp. 795–810.

    Google Scholar 

  10. Kulagov, E.A., Izoitko, V.M., and Mitenkov, G.A., Heazlewoodite in sulfide copper–nickel ores of the Talnakh deposit, Dokl. Akad. Nauk SSSR, 1967, vol. 176, pp. 900–902.

    Google Scholar 

  11. Kulagov, E.A., Evstigneeva, T.L., and Yushko-Zakharova, O.E., A new nickel sulfide—godlevskite, Geol. Rudn. Mestorozhd., 1969, vol. 11, no. 3, pp. 115–121.

    Google Scholar 

  12. Lyulko, V.A., Amosov, Yu.N., and Dushatkin, A.B., Tectonics, ore-controlling structures and metallogenic zoning of the Igarsko-Norilsk region, Metallogeniya Sibiri (Metallogeny of Siberia), Novosibirsk: Nauka, 1987, vol. 2, pp. 143–149.

    Google Scholar 

  13. Maslov G.D. Tectonics of the Igarka–Norilsk region and ore-controlling structures. In: Tektonika Sibiri (Tectonics of Siberia), Novosibirsk: Nauka, 1963, vol. 2, pp. 336—350. P. 52–79.

    Google Scholar 

  14. Philpotts, A.R. and Ague, J.J., Principles of Igneous and Metamorphic Petrology, Cambridge: University Press, 2009.

    Book  Google Scholar 

  15. Ryabov, V.V., Some features of the mineralogy of metasomatites from the aureole of the Talnakh differentiated ore-bearing intrusion (northwest of the Siberian platform), Mat. Po genetich. i eksperiment. mineralogii (Proceedings on the Genetic and Experimental Mineralogy), Novosibirsk: Nauka, 1975, vol. 8, pp. 107–147.

    Google Scholar 

  16. Saini-Eidukat, B., Kucha, H., and Keppler, H., Hibbingite, γ-Fe2(OH)3Cl, a new mineral from the Duluth Complex, Minnesota, with implications for the oxidation of Fe-bearing compounds and the transport of metals,” Am. Mineral., 1994, vol. 79, pp. 555–561.

    Google Scholar 

  17. Sainti-Eidukat, B., Rudashevsky, N.S., and Polozov, A.G., Evidence for hibbingite–kempite solid solution, Mineral. Mag., 1998, vol. 62, pp. 251–255.

    Article  Google Scholar 

  18. Spiridonov, E.M., Ore-magmatic systems of the Norilsk ore field, Russ. Geol. Geophys., 2010, vol. 51, no. 9, pp. 1059–1077.

    Article  Google Scholar 

  19. Spiridonov E.M. Genetic model of deposits of the Norilsk ore field. In: Smirnovskii sbornik-2019 (Smirnov Collection-2019), Moscow: Max Press, 2019, pp. 41–113.

    Google Scholar 

  20. Spiridonov, E.M., The vysotskite holotype: metamorphogenic–hydrothermal vysotskite (Pd, Ni)S from the Norilsk-I deposit, Moscow Univ. Geol. Bull., 2021, vol. 76, no. 3, pp. 316–324.

    Article  Google Scholar 

  21. Spiridonov, E.M. and Gritsenko, Yu.D., Epigeneticheskii nizkogradnyi metamorfizm i Co–Ni–Sb–As mineralizatsiya v Noril’skom rudnom pole (Epigenetic Low-Grade Metamorphism and Co–Ni–Sb–As mineralization in the Norilsk Ore Field), Moscow: Naychny mir, 2009.

  22. Spiridonov, E.M., Ladygin, V.M., Anastasenko, G.F., Kulagov, E.A., Lyulko, V.A., and Stepanov, V.K., Metavulkanity prenit—pumpelliitovoi I tseolitovoi fatsii trappovoiformatsii Noril’skogo raiona Sibirskoi platformy (Metavolcanic rocks of the Prehnite–Pumpellyite and Zeolite Facies of the Trap Formation of the Norilsk Region of the Siberian Platform), Moscow: Moscow State University, 2000.

    Google Scholar 

  23. Spiridonov, E.M., Golubev, V.N., and Gritsenko, Yu.D., Lead isotopic composition of galena, altaite and palladium intermetallic compounds of sulfide ores of the Norilsk ore field, Geochem. Int, 2010, vol. 48, pp. 815–824.

    Article  Google Scholar 

  24. Spiridonov, E.M., Serova, A.A., Kulikova, I.M., Korotaeva, N.N., and Zhukov, N.N., Metamorphic–hydrothermal Ag–Pd–Pt mineralization in the Noril’sk sulfide ore deposit, Siberia, Can. Mineral., 2016, vol. 54, pp. 429–452.

    Article  Google Scholar 

  25. Stepanov, V.K. and Turovtsev, D.M., Multivariate models of copper-nickel deposits of the Norilsk type, Tr. TsNIGRI, 1988, vol. 223, pp. 86–94.

    Google Scholar 

  26. Zolotukhin, V.V., About low-temperature metasomatites associated with serpentinization processes in the Norilsk ore-bearing trap intrusions, In: Geologiya i petrologiya intruzivnykh trappov Sibirskoi platformy (Geology and Petrology of the Intrusive Traps of the Siberian Platform), Moscow: Nauka, 1970, pp. 179–186.

    Google Scholar 

  27. Zolotukhin, V.V., Vasiliev, Yu.R., Smekalin, A.G., and Bakumenko, I.T., Babingtonite–prehnite-pumpelyite paragenetic association in the Norilsk metasomatites, In: Mat. po genetich. i eksperiment. mineralogii (Proceedings on Genetic and Experimental Mineralogy), Novosibirsk: Nauka, 1967, vol. 5, pp. 218–251.

    Google Scholar 

  28. Zubkova, N.V., Pekov, I.V., Sereda, E.V., Yapaskurt, V.O., and Pushcharovsky, D.Yu., The crystal structure of hibbingite, orthorhombic Fe2(OH)3Cl, Z. Krist., 2019, Bd. 254, pp. 379–382.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Spiridonov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Baksheev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiridonov, E.M., Belyakov, S.N., Ivanova, Y.A. et al. Hibbingite and Its Manganoan Variety from Metamorphosed Pentlandite–Putoranite Ores at Deep Levels of the Oktyabrskoe Deposit, Norilsk Ore Field. Geol. Ore Deposits 64, 495–502 (2022). https://doi.org/10.1134/S1075701522070091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701522070091

Keywords:

Navigation