Skip to main content
Log in

Growth, Coenosarc Pulsations, and Hydroplasm Movement in the Colonial Hydroid Dynamena pumila (L., 1758) Placed in Flow-Through and Nonflow Cuvettes

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The coenosarc pulsations of the stolon and hydroplasmic flows (HFs) in the colonial hydroid Dynamena pumila (L., 1758) have been recorded in flow-through and nonflow, shallow cuvettes via time-lapse video microscopy. The water in the flow-through cuvette was refreshed during every 24 s. Each episode was video recorded for 2 h. Eleven indicators were used to compare hydroid reactions to maintenance in flowing and nonflowing water: the period and amplitude of pulsations of the stolon growing tip; the hourly stolon growth; the period and amplitude of transverse coenosarc pulsations; the period of unidirectional HF rate pulsations; the maximum velocity of HFs to and from the stolon tip; the distance of particle transfer per act of unidirectional HF; the volume of displaced hydroplasm per HF; and the percentage of the rest ratio in coenosarc pulsations and hydroplasm movement. On the whole, no significant changes in the coenosarc pulsations or in the growth and displacement of the hydroplasm were detected when they were compared sequentially in the same colonies in nonflowing and flowing water. At the same time, there were no changes in the growth, the frequency and amplitude of the transverse pulsations of the coenosarc, or the activity and extent of the hydroplasm currents. However, it was found that the period of growth pulsations increases by 20% in the regime with water exchange in comparison with the previous regime without flowing water. The period of HFs in the stolon increases by 42%, and the maximum current velocity decreases by 20% in flowing water. As a result, the calculated volume of moved hydroplasm in the stolon for one HF decreased by 30% in flow conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. Contemporary name for Isostichopus badionotus (Selenka, 1867).

REFERENCES

  1. Allan, G.L. and Maguire, G.B., The effects of water exchange on production of Metapenaeus macleayi and water quality in experimental pools, J. World Aquacult. Soc., 1993, vol. 24, no. 3, pp. 321–328.

    Article  Google Scholar 

  2. Bakhmet, I.N. and Zdorovenov, P.E., Variability in cardiac activity of the bivalves Mytilus edulis and Modiolus modiolus, Russ. J. Mar. Biol., 2010, vol. 36, no. 3, pp. 223–225.

    Article  Google Scholar 

  3. Bayne, B.L., Ventilation, the heart beat and oxygen uptake by Mytilus edulis L. in declining oxygen tension, Comp. Biochem. Physiol., 1971, vol. 40, pp. 1065–1085.

    Article  Google Scholar 

  4. Belousov, L.B., Labas, Yu.A., and Badenko, L.A., Growth pulsations and the shape of the rudiments of hydroid polyps, Zh. Obshch. Biol., 1984, vol. 45, pp. 796–806.

    Google Scholar 

  5. Beloussov, L.V., Growth and morphogenesis of some marine Hydrozoa according to histological data and time-lapse studies, Publ. Seto Mar. Biol. Lab., 1973, vol. 20, pp. 315–336.

    Article  Google Scholar 

  6. Beloussov, L.V., Badenko, L.A., and Labas, J.A., Growth rhythms and species-specific in Thecaphora hydroids, in Development and Cellular Biology of Coelenterates, Amsterdam: Elsevier, 1980, pp. 175–178.

    Google Scholar 

  7. Beloussov, L.V., Kazakova, N.I., Luchinskaia, N.N., et al., Studies in developmental cytomechanics, Int. J. Dev. Biol., 1997, vol. 41, pp. 793–799.

    CAS  PubMed  Google Scholar 

  8. Brand, A.R. and Roberts, D., The cardiac responses of the scallop Pecten maximus (L.) to respiratory stress, J. Exp. Mar. Biol. Ecol., 1973, vol. 13, pp. 29–43.

    Article  Google Scholar 

  9. Burykin, Yu.B., Distribution system formation in hydroid polyp development, Russ. J. Dev. Biol., 2008, vol. 39, no. 3, pp. 172–180.

    Article  Google Scholar 

  10. Burykin, Yu.B., Relay-ray way of hydroplasm movement in hydroid colonies, Russ. J. Dev. Biol., 2013, vol. 44, no. 2, pp. 90–99.

    Article  Google Scholar 

  11. Burykin, Yu.B., Marfenin, N.N., and Karlsen, A.G., Laboratory maintaining of marine colonial hydroid Dynamena pumila (L.), Nauchn. Dokl. Vyssh. Shk., Biol. Nauki, 1984, no. 1, pp. 102–106.

  12. Coble, D.W., Influence of water exchange and dissolved oxygen in reds on survival of steelhead trout embryos, Trans. Am. Fish. Soc., 1961, vol. 90, no. 4, pp. 469–474.

    Article  Google Scholar 

  13. Crowell, S., Differential responses of growth zones to nutritive level, age, and temperature in the colonial hydroid Campanularia, J. Exp. Zool., 1957, vol. 134, pp. 63–90.

    Article  CAS  PubMed  Google Scholar 

  14. El-Kadi, S.M. and El-Morsy, A.M., The effect of water aquaria change on nutrient utilization and microbial activity of Nile tilapia Oreochromis niloticus, Int. J. Fish. Aquat. Stud., 2016, vol. 4, no. 4, pp. 196–205.

    Google Scholar 

  15. Gaber, M.M., Omar, E.A., Abdel-Rahim, M., Nour, A.M., Zaki, M.A., and Srour, R.T., Effects of stocking density and water exchange rates on growth performance of tiger shrimp, Penaeus semisulcatus cultured in earthen ponds, J. Aquacult. Res. Dev., 2012, vol. 3, no. 7. https://doi.org/10.4172/2155-9546.1000151

  16. Hale, L.J., Cell movements, cell division and growth in the hydroid Clytia johnstoni, J. Embryol. Exp. Morphol., 1964, vol. 12, no. 2, pp. 517–538.

    CAS  PubMed  Google Scholar 

  17. Helmuth, B. and Sebens, K., The influence of colony morphology and orientation to flow on particle capture by the scleractinean coral Agaricia agaricites (Linnaeus), J. Exp. Mar. Biol. Ecol., 1993, vol. 165, pp. 251–278.

    Article  Google Scholar 

  18. Johnson, A.S. and Sebens, K.P., Consequences of a flattened morphology: effects of flow on feeding rates of the scleractinean coral Meandrina meandrites, Mar. Ecol.: Progr. Ser., 1993, vol. 99, pp. 99–114.

    Article  Google Scholar 

  19. Karlsen, A.G. and Marfenin, N.N., Movement of hydroplasm in the colony of hydroids by example of Dynamena pumila (L.) and other hydroid species, Zh. Obshch. Biol., 1984, vol. 45, no. 5, pp. 670–680.

    Google Scholar 

  20. Kazakova, N.I., Kosevich, I.A., and Belousov, L.B., Effect of mechanical deformations and cytoskeletal inhibitors on growth pulsations of hydroid polyps, Ontogenez, 1997, vol. 28, no. 4, pp. 293–300.

    Google Scholar 

  21. Koehl, M.A.R., Mechanical design in sea anemones, in Coelenterate Ecology and Behavior, Mackie G.O., Ed., New York: Plenum, 1976, pp. 23–31.

    Google Scholar 

  22. Koehl, M.A.R., Mechanical organization of cantilever-like sessile organisms: sea anemones, J. Exp. Biol., 1977a, vol. 69, pp. 127–142.

    Google Scholar 

  23. Koehl, M.A.R., Water flow and the morphology of zoanthid colonies, Proc. Third Int. Coral Reef Symp., Taylor, D.L., Ed., Miami, Fl: Fish. Island Stn., 1977b, vol. 1, pp. 437–444.

  24. Koehl, M.A.R., Ecological biomechanics of benthic organisms: Life history, mechanical design and temporal patterns of mechanical stress, J. Exp. Biol., 1999, vol. 202, pp. 3469–3476.

    CAS  PubMed  Google Scholar 

  25. Koehl, M.A.R., Helmuth, B., and Carpenter, R., Growing and flowing, in The Algorithmic Beauty of Seaweeds, Sponges and Corals, Kaandorp, J.A. and Kubler, J.E., Eds., Heidelberg: Springer-Verlag, 2001, pp. 17–29.

    Google Scholar 

  26. Kosevich, I.A., Development of internodes of shoots and stolons of hydroids of genus Obelia (Campanulariidae), Vestn. Mosk. Univ., Ser. 16: Biol., 1990, no. 3, pp. 26–32.

  27. Kosevich, I.A., Comparison of the functioning of the growth of shoot tips and stolons in the Obelia loveni (Allm.) (Hydrozoa, Campanulariidae) colony, Vestn. Mosk. Univ., Ser. 16: Biol., 1991, no. 2, pp. 44–52.

  28. Kraus, Yu.A., Conservative form—variability of morphogenesis: comparison of early development of Hydrozoa and Scyphozoa, Zh. Obshch. Biol., 2002, vol. 63, no. 4, pp. 326–334.

    PubMed  Google Scholar 

  29. Labas, Yu.A., Belousov, L.B., Badenko, L.A., and Letunov, V.N., Pulsating growth of multicellular organisms, Dokl. Akad. Nauk SSSR, 1981, vol. 257, pp. 1247–1250.

    CAS  Google Scholar 

  30. Leversee, G.J., Flow and feeding in fan-shaped colonies of the gorgonian coral, Leptogorgia, Biol. Bull., 1976, vol. 151, pp. 344–356.

    Article  PubMed  Google Scholar 

  31. Lutz, B.R., The effect of low oxygen tension on the pulsations of the isolated holothurian cloaca, Biol. Bull., 1930, vol. 58, no. 1, pp. 74–84.

    Article  Google Scholar 

  32. Malyutin, O.I. and Marfenin, N.N., The selection of indicators to analyse the effects of water movement on hydroids, in Gubki i knidarii. Sovremennoe sostoyanie i perspektivy issledovanii (Sponges and Cnidarians: Modern Status and Prospective Studies), Leningrad: Zool. Inst., Akad. Nauk SSSR, 1988, pp. 98–103.

  33. Marfenin, N.N., Growth morphology of the colony of hydroid polyp Dynamena pumila (Hydrozoa, Leptolida), Zh. Obshch. Biol., 1973, vol. 34, no. 5, pp. 727–737.

    Google Scholar 

  34. Marfenin, N.N., Integration of the colony of Dynamena pumila (L.) using quantitative morphological parameters, Zh. Obshch. Biol., 1977, vol. 38, no. 3, pp. 409–422.

    Google Scholar 

  35. Marfenin, N.N., Influence of the water flow rate on the growth of colonial hydroids (Hydrozoa, Thecaphora), Dokl. Akad. Nauk SSSR, 1984, vol. 278, no. 6, pp. 1506–1510.

    Google Scholar 

  36. Marfenin, N.N., The functions of the distribution system in the colonies of the colonial hydroids: a new method and facts, in Gubki i knidarii. Sovremennoe sostoyanie i perspektivy issledovanii (Sponges and Cnidarians: Modern Status and Prospective Studies), Leningrad: Zool. Inst., Akad. Nauk SSSR, 1988, pp. 103–111.

  37. Marfenin, N.N., Funktsional’naya morfologiya kolonial’nykh gidroidov (Functional Morphology of Colonial Hydroids), St. Petersburg: Zool. Inst., Ross. Akad. Nauk, 1993.

  38. Marfenin, N.N., A new method for studying the transport system in colonial hydroids, Hydrobiologia, 2015, vol. 759, no. 1, pp. 133–146.

    Article  Google Scholar 

  39. Marfenin, N.N. and Dementyev, V.S., Functional morphology of hydrozoan stolons: stolonal growth, contractility, and hydroplasmic movement in Gonothyraea loveni (Allman, 1859), Mar. Biol. Res., 2017. https://doi.org/10.1080/17451000.2016.1276292

  40. Marfenin, N.N., and Dementyev, V.S., Paradox of extended flows in Dynamena pumila (Linnaeus, 1758) colonial hydroid, Biol. Bull. Rev., 2018, vol. 8, no. 3, pp. 212–226.

    Article  Google Scholar 

  41. Marfenin, N.N. and Malyutin, O.I., Influence of water flow on single branches of different hydroid species, Zh. Obshch. Biol., 1994, vol. 55, pp. 119–127.

    Google Scholar 

  42. Marfenin, N.N., Kosevich, I.A., and Kraus, Yu.A., Cyclic morphogenesis in module organisms, Materialy nauchnoi konferentsii posvyashchennoi 70-letiyu Belomorskoi biologicheskoi stantsii MGU (Proc. Sci. Conf. Dedicated to the 70th Anniversary of White Sea Biological Station of Moscow State University), Moscow: Grif i K, 2008, pp. 177–181.

  43. McDonald, J.I., McGuinness, K.A., and Hooperb, J.N.A., Influence of re-orientation on alignment to flow and tissue production in a Spongia sp. (Porifera, Demospongiae, Dictyoceratida), J. Exp. Mar. Biol. Ecol., 2003, vol. 296, pp. 13–22.

    Article  Google Scholar 

  44. Murdock, G.R., Hydroid skeletons and fluid flow, in Coelenterate Ecology and Behavior, Mackie, G.O., Ed., New York: Plenum, 1976, pp. 33–40.

    Google Scholar 

  45. Naumov, D.V., Gidroidy i gidromeduzy morskikh, solonovatovodnykh i presnovodnykh basseinov SSSR (Hydroids and Hydromedusa of Marine, Brackish, and Freshwater Basins of Soviet Union), Moscow: Akad. Nauk SSSR, 1960.

  46. Nikishin, D.A., Kremnyov, S.V., and Glagoleva, N.S., Role of gap junctions and mechanosensitive ion channels in the mechanisms of growth pulsations of Gonothyraea loveni, Dokl. Biol. Sci., 2015, vol. 460, no. 1, pp. 64–67.

    Article  CAS  PubMed  Google Scholar 

  47. Patterson, M.R., Patterns of whole colony prey capture in the octocoral, Alcyonium siderium, Biol. Bull., 1984, vol. 167, no. 3, pp. 613–629.

    Article  PubMed  Google Scholar 

  48. Roper, M., Dayel, M.J., Pepper, R.E., and Koehl, M.A.R., Cooperatively generated stress let flows supply fresh fluid to multicellular choanoflagellate colonies, Phys. Rev. Lett. 2013, vol. 110, p. 228104. https://doi.org/10.1103/PhysRevLett.110.228104

    Article  CAS  PubMed  Google Scholar 

  49. Sebens, K.P., Water flow and coral colony size: interhabitat comparisons of the octocoral Alcyonium siderium, Proc. Natl. Acad. Sci. U.S.A., 1984, vol. 81, pp. 5473–5477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Svoboda, A., The orientation of Aglaophenia fans to current in laboratory conditions (Hydrozoa, Coelenerata), in Coelenterate Ecology and Behavior, Mackie, G.O., Ed., New York: Plenum, 1976, pp. 41–48.

    Google Scholar 

  51. Vogel, S., Current-induced flow through the sponge, Halichondria, Biol. Bull., 1974, vol. 147, no. 2, pp. 443–456.

    Article  CAS  PubMed  Google Scholar 

  52. Vogel, S., Current-induced flow through living sponges in nature, Proc. Natl. Acad. Sci. U.S.A., 1977, vol. 74, no. 5, pp. 2069–2071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vogel, S., Life in Moving Fluids: The Physical Biology of Flow, Princeton NJ: Princeton Univ. Press, 1994, 2nd ed.

    Google Scholar 

  54. Vogel, S. and Bretz, W.L., Interfacial organisms: passive ventilation in the velocity gradients near surfaces, Science, 1972, vol. 175, pp. 210–211.

    Article  CAS  PubMed  Google Scholar 

  55. Wainwright, S.A. and Koehl, M.A.R., The nature of flow and the reaction of benthic cnidaria to it, in Coelenterate Ecology and Behavior, Mackie, G.O., Ed., New York: Plenum, 1976, pp. 5–21.

    Google Scholar 

  56. Wyttenbach, C.R., The dynamics of stolon elongation in the hydroid, Campanularia flexuosa, J. Exp. Zool., 1968, vol. 167, no. 3, pp. 333–352.

    Article  Google Scholar 

  57. Wyttenbach, C.R., Crowell, S., and Suddith, R.L., Variations in the mode of stolon growth among different genera of colonial hydroids, and their evolutionary implications, J. Morphol., 1973, vol. 139, no. 3, pp. 363–375.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Marfenin.

Additional information

Translated by A. Lisenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marfenin, N.N., Dementyev, V.S. Growth, Coenosarc Pulsations, and Hydroplasm Movement in the Colonial Hydroid Dynamena pumila (L., 1758) Placed in Flow-Through and Nonflow Cuvettes. Biol Bull Rev 9, 52–61 (2019). https://doi.org/10.1134/S2079086419010055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086419010055

Navigation