Skip to main content
Log in

Ribosomal RNA of Metchnikovellids in Gregarine Transcriptomes and rDNA of Microsporidia Sensu Lato in Metagenomes

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Numerous nucleotide sequences of microsporidia sensu lato, mainly belonging to the “Cryptomycota” (Rozellida, Rozellomycota, Rozellosporidia, treated here as synonyms), are found in metagenomes, transcriptomes, and amplicon libraries used for metabarcoding. In this study, we describe rDNA sequences of hyperparasitic metchnikovellid microsporidia found in the transcriptomes of unicellular protists belonging to Apicomplexa (Alveolata). The transcriptome of the eugregarine Polyrhabdina sp. (GenBank SRX6640468) contains the cDNA of Metchnikovella incurvata, the transcriptome of the archigregarine Selenidium pygospionis (GenBank SRX6640459) contains the cDNA of Metchnikovella dogieli, and in the transcriptome of the blastogregarine Siedleckia cf. nematoides (GenBank SRX6640464) we find cDNAs originating from a yet undescribed species representing a novel metchnikovellid family. We have modeled the secondary structure of the “ITS2” region of identified and unidentified metchnikovellids taking into account the covariant nucleotide substitutions. Based on the predicted secondary structure of rRNA, mapping of reads from cDNA libraries, and the absence of the endoribonuclease Las1 (PF04031), we conclude that there is no ITS2 processing in metchnikovellids, and the mature “5.8S”- and “28S”-like (LSU) rRNA are covalently fused, similarly to the LSU rRNA in the other microsporidia sensu stricto. We discuss several previously proposed (Chytridiopsis typographi, BAQA065) and new candidates for the sister group of microsporidia sensu stricto, and compare the reduced rRNA genes of microsporidia and the lengthened rRNA genes with group I introns of parasitic and lichen fungi in the context of neutral and adaptive evolutionary processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Aleoshin, V.V., Mikhailov, K.V., and Karpov, S.A., On the origin and early evolution of fungi and microsporidia, in Sbornik nauchno-populyarnykh statei i fotomaterialov—pobeditelei konkursa RFFI 2015 goda (Collection of Popular Scientific Papers and Photographs of Competition Winners of the Russian Foundation of Basic Research in 2015), Moscow: Molnet, 2015, no. 18, pp. 215–223.

  2. Aleshin, V.V., Konstantinova, A.V., Mikhailov, K.V., Nikitin, M.A., and Petrov, N.B., Do we need many genes for phylogenetic inference? Biochemistry (Moscow), 2007, vol. 72, no. 12, pp. 1313–1323.

    CAS  PubMed  Google Scholar 

  3. Alkemar, G. and Nygård, O., A possible tertiary rRNA interaction between expansion segments ES3 and ES6 in eukaryotic 40S ribosomal subunits, RNA, 2003, vol. 9, no. 1, pp. 20–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 1997, vol. 25, no. 17, pp. 3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Antony, C.P., Kumaresan, D., Hunger, S., Drake, H.L., Murrell, J.C., and Shouche, Y.S., Microbiology of Lonar Lake and other soda lakes, ISME J., 2013, vol. 7, no. 3, pp. 468–476.

    Article  PubMed  CAS  Google Scholar 

  6. Arroyo, A.S., López-Escardó, D., Kim, E., Ruiz-Trillo, I., and Najle, S.R., Novel diversity of deeply branching Holomycota and unicellular holozoans revealed by metabarcoding in Middle Paraná River, Argentina, Front. Ecol. Evol., 2018, vol. 6, art. ID 99.

    Article  Google Scholar 

  7. Barandun, J., Hunziker, M., Vossbrinck, C.R., and Klinge, S., Evolutionary compaction and adaptation visualized by the structure of the dormant microsporidian ribosome, Nat. Microbiol., 2019, vol. 4, no. 11. pp. 1798–1804.

  8. Bass, D., Czech, L., Williams, B.A.P., Berney, C., Dunthorn, M., et al., Clarifying the relationships between Microsporidia and Cryptomycota, J. Eukaryotic Microbiol., 2018, vol. 65, no. 6, pp. 773–782.

    Article  Google Scholar 

  9. Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., et al., GenBank, Nucleic Acids Res., 2013, vol. 41, no. 1, pp. D36–D42.

    Article  CAS  PubMed  Google Scholar 

  10. Berney, C., Fahrni, J., and Pawlowski, J., How many novel eukaryotic ‘kingdoms’? Pitfalls and limitations of environmental DNA surveys, BMC Biol., 2004, vol. 2, art. ID 13.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bernhart, S.H., Hofacker, I.L., Will, S., Gruber, A.R., and Stadler, P.F., RNAalifold: improved consensus structure prediction for RNA alignments, BMC Bioinf., 2008, vol. 9, art. ID 474.

  12. Bhattacharya, D., Friedl, T., and Damberger, S., Nuclear-encoded rDNA group I introns: origin and phylogenetic relationships of insertion site lineages in the green algae, Mol. Biol. Evol., 1996, vol. 13, no. 7, pp. 978–989.

    Article  CAS  PubMed  Google Scholar 

  13. Bhattacharya, D., Friedl, T., and Helms, G., Vertical evolution and intragenic spread of lichen-fungal group I introns, J. Mol. Evol., 2002, vol. 55, no. 1, pp. 74–84.

    Article  CAS  PubMed  Google Scholar 

  14. Borner, J. and Burmester, T., Parasite infection of public databases: a data mining approach to identify apicomplexan contaminations in animal genome and transcriptome assemblies, BMC Genomics, 2017, vol. 18, no. 1, art. ID 100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Burki, F., Corradi, N., Sierra, R., Pawlowski, J., Meyer, G.R., et al., Phylogenomics of the intracellular parasite Mikrocytos mackini reveals evidence for a mitosome in Rhizaria, Curr. Biol., 2013, vol. 23, no. 16, pp. 1541–1547.

    Article  CAS  PubMed  Google Scholar 

  16. Burki, F., Kaplan, M., Tikhonenkov, D.V., Zlatogursky, V., Minh, B.Q., et al., Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista, Proc. R. Soc. B, 2016, vol. 283, no. 1823, art. ID 20152802.

  17. Carnegie, R.B., Meyer, G.R., Blackbourn, J., Cochennec-Laureau, N., Berthe, F.C., and Bower, S.M., Molecular detection of the oyster parasite Mikrocytos mackini, and a preliminary phylogenetic analysis, Dis. Aquat. Org., 2003, vol. 54, no. 3, pp. 219–227.

    Article  CAS  Google Scholar 

  18. Cavalier-Smith, T. and Chao, E.E., Phylogeny and classification of phylum Cercozoa (Protozoa), Protist, 2003, vol. 154, nos. 3–4, pp. 341–358.

    Article  PubMed  Google Scholar 

  19. Chaker-Margot M., Assembly of the small ribosomal subunit in yeast: mechanism and regulation, RNA, 2018, vol. 24, no. 7, pp. 881–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chalwatzis, N., Baur, A., Stetzer, E., Kinzelbach, R., and Zimmermann, F.K., Strongly expanded 18S rRNA genes correlated with a peculiar morphology in the insect order of Strepsiptera, Zoology, 1995, vol. 98, no. 2, pp. 115–126.

    CAS  Google Scholar 

  21. Chorev, M. and Carmel, L., The function of introns, Front. Genet., 2012, vol. 3, art. ID 55.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chouari, R., Leonard, M., Bouali, M., Guermazi, S., Rahli, N., et al., Eukaryotic molecular diversity at different steps of the wastewater treatment plant process reveals more phylogenetic novel lineages, World J. Microbiol. Biotechnol., 2017, vol. 33, no. 3, art. ID 44.

    Article  PubMed  CAS  Google Scholar 

  23. Christaki, U., Genitsaris, S., Monchy, S., Li, L.L., Rachik, S., et al., Parasitic eukaryotes in a meso-eutrophic coastal system with marked Phaeocystis globosa blooms, Front. Mar. Sci., 2017, vol. 4, art. ID 416.

    Article  Google Scholar 

  24. Chupov, V.S., Form of the lateral phylogenetic branch in plants, Usp. Sovrem. Biol., 2002, vol. 122, no. 3, pp. 227–238.

    Google Scholar 

  25. Coleman, A.W., Pan-eukaryote ITS2 homologies revealed by RNA secondary structure, Nucleic Acids Res., 2007, vol. 35, no. 10, pp. 3322–3329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coleman, A.W., Nuclear rRNA transcript processing versus internal transcribed spacer secondary structure, Trends Genet., 2015, vol. 31, no. 3, pp. 157–163.

    Article  CAS  PubMed  Google Scholar 

  27. Corsaro, D., Walochnik, J., Venditti, D., Müller, K.-D., Hauröder, B., and Michel, R., Rediscovery of Nucleophaga amoebae, a novel member of the Rozellomycota, Parasitol. Res., 2014a, vol. 113, no. 12, pp. 4491–4498.

    Article  PubMed  Google Scholar 

  28. Corsaro, D., Walochnik, J., Venditti, D., Steinmann, J., Müller, K.D., and Michel, R., Microsporidia-like parasites of amoebae belong to the early fungal lineage Rozellomycota, Parasitol. Res., 2014b, vol. 113, no. 5, pp. 1909–1918.

    Article  PubMed  Google Scholar 

  29. Corsaro, D., Michel, R., Walochnik, J., Venditti, D., Müller, K.D., et al., Molecular identification of Nucleophaga terricolae sp. nov. (Rozellomycota), and new insights on the origin of the microsporidia, Parasitol. Res., 2016, vol. 115, no. 8, pp. 3003–3011.

    Article  PubMed  Google Scholar 

  30. Corsaro, D., Wylezich, C., Venditti, D., Michel, R., Walochnik, J., and Wegensteiner, R., Filling gaps in the microsporidian tree: rDNA phylogeny of Chytridiopsis typographi (Microsporidia: Chytridiopsida), Parasitol. Res., 2019, vol. 118, no. 1, pp. 169–180.

    Article  PubMed  Google Scholar 

  31. Corsaro, D., Walochnik, J., Venditti, D., Hauröder, B., and Michel, R., Solving an old enigma: Morellospora saccamoebae gen. nov., sp. nov. (Rozellomycota), a Sphaerita-like parasite of free-living amoebae, Parasitol. Res., 2020, vol. 119, no. 3, pp. 925–934.

    Article  PubMed  Google Scholar 

  32. Cotto, I., Dai, Z., Huo, L., Anderson, C.L., Vilardi, K.J., et al., Long solids retention times and attached growth phase favor prevalence of comammox bacteria in nitrogen removal systems, Water Res., 2020, vol. 169, art. ID 115268.

    Article  CAS  PubMed  Google Scholar 

  33. Dawson, S.C. and Pace, N.R., Novel kingdom-level eukaryotic diversity in anoxic environments, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 12, pp. 8324–8329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Delalibera, I., Jr., Hajek, A.E., and Humber, R.A., Neozygites tanajoae sp. nov., a pathogen of the cassava green mite, Mycologia, 2004, vol. 96, no. 5, pp. 1002–1009.

    Article  PubMed  Google Scholar 

  35. DePriest, P.T. and Been, M.D., Numerous group I introns with variable distributions in the ribosomal DNA of a lichen fungus, J. Mol. Biol., 1992, vol. 228, no. 2, pp. 315–321.

    Article  CAS  PubMed  Google Scholar 

  36. De Rijk, P., Gatehouse, H.S., and De Wachter, R., The secondary structure of Nosema apis large subunit ribosomal RNA, Biochim. Biophys. Acta, Gene Struct. Expression, 1998, vol. 1442, nos. 1–2, pp. 326–328.

    Article  CAS  Google Scholar 

  37. De Rijk, P., Wuyts, J., and De Wachter, R., RnaViz 2: an improved representation of RNA secondary structure, Bioinformatics, 2003, vol. 19, no. 2, pp. 299–300.

    Article  CAS  PubMed  Google Scholar 

  38. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 2004, vol. 32, no. 5, pp. 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eichorst, S.A. and Kuske, C.R., Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing, Appl. Environ. Microbiol., 2012, vol. 78, no. 7, pp. 2316–2327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Engel, C., Sainsbury, S., Cheung A.C., Kostrewa, D., and Cramer, P., RNA polymerase I structure and transcription regulation, Nature, 2013, vol. 502, no. 7473, pp. 650–655.

    Article  CAS  PubMed  Google Scholar 

  41. Felsenstein, J., Cases in which parsimony or compatibility methods will be positively misleading, Syst. Biol., 1978, vol. 27, no. 4, pp. 401–410.

    Article  Google Scholar 

  42. Fernández-Tornero, C., RNA polymerase I activation and hibernation: unique mechanisms for unique genes, Transcription, 2018, vol. 9, no. 4, pp. 248–254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Filée, J., Tetart, F., Suttle, C.A., and Krisch, H.M., Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 35, pp. 12471–12476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Fitch, D.H., Bugaj-Gaweda, B., and Emmons, S.W., 18S ribosomal RNA gene phylogeny for some Rhabditidae related to Caenorhabditis, Mol. Biol. Evol., 1995, vol. 12, no. 2, pp. 346–358.

    CAS  PubMed  Google Scholar 

  45. Förster, J., Famili, I., Fu, P., Palsson, B.Ø., and Nielsen, J., Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network, Genome Res., 2003, vol. 13, no. 2, pp. 244–253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Freimoser, F.M., Cultivation, sporulation and phylogenetic analysis of Neozygites parvispora and Entomophthora thripidum, two fungal pathogens of thrips, PhD Thesis, Zürich: ETH Zürich, 2000, pp. 29–43. https://www.research-collection.ethz.ch/handle/20.5-00.11850/144847.

    Google Scholar 

  47. Galindo, L.J., Torruella, G., Moreira, D., Timpano, H., Paskerova, G., et al., Evolutionary genomics of Metchnikovella incurvata (Metchnikovellidae): an early branching microsporidium, Genome Biol. Evol., 2018, vol. 10, no. 10, pp. 2736–2748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gargas, A., DePriest, P.T., and Taylor, J.W., Positions of multiple insertions in SSU rDNA of lichen-forming fungi, Mol. Biol. Evol., 1995, vol. 12, no. 2, pp. 208–218.

    CAS  PubMed  Google Scholar 

  49. Gawryluk, R.M.R., Tikhonenkov, D.V., Hehenberger, E., Husnik, F., Mylnikov, A.P., and Keeling, P.J., Non-photosynthetic predators are sister to red algae, Nature, 2019, vol. 572, no. 7768, pp. 240–243.

    Article  CAS  PubMed  Google Scholar 

  50. Gleason, F.H., Lilje, O., Marano, A.V., Sime-Ngando, T., Sullivan, B.K., et al., Ecological functions of zoosporic hyperparasites, Front. Microbiol., 2014, vol. 5, art. ID 244.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gromov, B.V., Algae parasites from the Tsenovskii “monad” group of genera Aphelidium, Amoeboaphelidium, and Pseudaphelidium as members of a new class, Zool. Zh., 2000, vol. 79, no. 5, pp. 517–525.

    Google Scholar 

  52. Grossart, H.-P., Wurzbacher, C., James, T.Y., and Kagami, M., Discovery of dark matter fungi in aquatic ecosystems demands a reappraisal of the phylogeny and ecology of zoosporic fungi, Fungal Ecol., 2016, vol. 19, no. 1, pp. 28–38.

    Article  Google Scholar 

  53. Gruber, A.R., Bernhart, S.H., and Lorenz, R., The ViennaRNA web services, Methods Mol. Biol., 2015, vol. 1269, pp. 307–326.

    Article  CAS  PubMed  Google Scholar 

  54. Guillou, L., Viprey, M., Chambouvet, A., Welsh, R.M., Kirkham, A.R., et al., Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata), Environ. Microbiol., 2008, vol. 10, no. 12, pp. 3349–3365.

    Article  CAS  PubMed  Google Scholar 

  55. Haag, K.L., James, T.Y., Pombert, J.F., Larsson, R., Schaer, T.M., et al., Evolution of a morphological novelty occurred before genome compaction in a lineage of extreme parasites, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 43, pp. 15480–15485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hannen van, E.J., Mooij, W., van Agterveld, M.P., Gons, H.J., and Laanbroek, H.J., Detritus-dependent development of the microbial community in an experimental system: qualitative analysis by denaturing gradient gel electrophoresis, Appl. Environ. Microbiol., 1999, vol. 65, no. 6, pp. 2478–2484.

    Article  Google Scholar 

  57. Hartmann, M., Lee, S., Hallam, S.J., and Mohn, W.W., Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands, Environ. Microbiol., 2009, vol. 11, no. 12, pp. 3045–3062.

    Article  PubMed  Google Scholar 

  58. Hasegawa, H., Satô, M., Maeda, K., and Murayama, Y., Description of Riouxgolvania kapapkamui sp. n. (Nematoda: Muspiceoidea: Muspiceidae), a peculiar intradermal parasite of bats in Hokkaido, Japan, J. Parasitol., 2012, vol. 98, no. 5, pp. 995–1000.

    Article  PubMed  Google Scholar 

  59. Hendy, M.D. and Penny, D., A framework for the quantitative study of evolutionary trees, Syst. Zool., 1989, vol. 38, no. 4, pp. 277–290.

    Google Scholar 

  60. Hennig, W., Phylogenetic Systematics, Urbana: Univ. of Illinois Press, 1966.

    Google Scholar 

  61. Huss, V.A.R. and Bauer, C., A highly divergent 18S rRNA sequence identified by environmental PCR from an extremely acidic mining lake (pH 2.3) in Lusatia (Germany), 2011, no. FN546176.1. https://www.ncbi.nlm.nih. gov/nuccore/345107473.

  62. Ishida, S., Nozaki, D., Grossart, H.P., and Kagami, M., Novel basal, fungal lineages from freshwater phytoplankton and lake samples, Environ. Microbiol. Rep., 2015, vol. 7, no. 3, pp. 435–441.

    Article  PubMed  Google Scholar 

  63. Issi, I.V., Development of microsporidiology in Russia, Vestn. Zashch. Rast., 2020, vol. 103, no. 3, pp. 161–176.

    Google Scholar 

  64. Issi, I.V. and Voronin, V.N., Type Microsporidia Balbiani, 1882, in Protisty: rukovodstvo po zoologii (Protists: A Guide on Zoology), Alimov, A.F., Ed., St. Petersburg: Nauka, 2007, part 2, pp. 994–1045.

  65. James, T.Y., Kauff, F., Schoch, C.L., Matheny, P.B., Hofstetter, V., et al., Reconstructing the early evolution of Fungi using a six-gene phylogeny, Nature, 2006, vol. 443, no. 7113, pp. 818–822.

    Article  CAS  PubMed  Google Scholar 

  66. Jamy, M., Foster, R., Barbera, P., Czech, L., Kozlov, A., et al., Long-read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity, Mol. Ecol. Resour., 2019, vol. 20, no. 2, pp. 429–443.

    Article  PubMed  CAS  Google Scholar 

  67. Janouškovec, J., Tikhonenkov, D.V., Burki, F., Howe, A.T., Rohwer, F.L., et al., A new lineage of eukaryotes illuminates early mitochondrial genome reduction, Curr. Biol., 2017, vol. 27, no. 23, pp. 3717–3724.

    Article  PubMed  CAS  Google Scholar 

  68. Janouškovec, J., Paskerova, G.G., Miroliubova, T.S., Mikhailov, K.V., Birley, T., et al., Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles, eLife, 2019, vol. 8, art. ID e49662.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jones, M.D.M., Forn, I., Gadelha, C., Egan, M.J., Bass, D., et al., Discovery of novel intermediate forms redefines the fungal tree of life, Nature, 2011a, vol. 474, no. 7350, pp. 200–203.

    Article  CAS  PubMed  Google Scholar 

  70. Jones, M.D.M., Richards, T.A., Hawksworth, D.J., and Bass, D., Validation of the phylum name Cryptomycota phyl. nov. with notes on its recognition, IMA Fungus, 2011b, vol. 2, no. 2, pp. 173–175.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Joseph, N., Krauskopf, E., Vera, M.I., and Michot, B., Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast, Nucleic Acids Res., 1999, vol. 27, no. 23, pp. 4533–4540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Karpov, S.A. and Paskerova, G.G., The aphelids, intracellular parasitoids of algae, consume the host cytoplasm “from the inside,” Protistology, 2020, vol. 14, no. 4, pp. 258–263.

    Google Scholar 

  73. Karpov, S.A., Mikhailov, K.V., Mirzaeva, G.S., Mirabdullaev, I.M., Mamkaeva, K.A., et al., Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi, Protist, 2013, vol. 164, no. 2, pp. 195–205.

    Article  PubMed  Google Scholar 

  74. Karpov, S.A., Mamanazarova, K.S., Popova, O.V., Aleoshin, V.V., James, T.Y., et al., Monoblepharidomycetes diversity includes new parasitic and saprotrophic species with highly intronized rDNA, Fungal Biol., 2017, vol. 121, no. 8, pp. 729–741.

    Article  CAS  PubMed  Google Scholar 

  75. Karpov, S.A., Moreira, D., Mamkaeva, M.A., Popova, O.V., Aleoshin, V.V., and López-García, P., New member of Gromochytriales (Chytridiomycetes)–Apiochytrium granulosporum nov. gen. et sp., J. Eukaryotic Microbiol., 2019, vol. 66, no. 4, pp. 582–591.

    CAS  Google Scholar 

  76. Katiyar, S.K., Visvesvara, G.S., and Edlind, T.D., Comparisons of ribosomal RNA sequences from amitochondrial protozoa: implications for processing, mRNA binding and paromomycin susceptibility, Gene, 1995, vol. 152, no. 1, pp. 27–33.

    Article  CAS  PubMed  Google Scholar 

  77. Kim, E., Sprung, B., Duhamel, S., Filardi, C., and Kyoon Shin, M., Oligotrophic lagoons of the South Pacific Ocean are home to a surprising number of novel eukaryotic microorganisms, Environ. Microbiol., 2016, vol. 18, no. 12, pp. 4549–4563.

    Article  PubMed  Google Scholar 

  78. Kimura, M., The Neutral Theory of Molecular Evolution, Cambridge: Cambridge Univ. Press, 1983.

    Book  Google Scholar 

  79. Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Langmead, B. and Salzberg, S.L., Fast gapped-read alignment with Bowtie 2, Nat. Methods, 2012, vol. 9, no. 4, pp. 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lara, E., Moreira, D., and López-García, P., The environmental clade LKM11 and Rozella form the deepest branching clade of fungi, Protist, 2010, vol. 161, no. 1, pp. 116–121.

    Article  CAS  PubMed  Google Scholar 

  82. Larsson, J.I.R., Description of Chytridiopsis trichopterae n. sp. (Microspora, Chytridiopsidae), a microsporidian parasite of the caddis fly Polycentropus flavomaculatus (Trichoptera, Polycentropodidae), with comments on relationships between the families Chytridiopsidae and Metchnikovellidae, J. Eukaryotic Microbiol., 1993, vol. 40, no. 1, pp. 37–48.

    Article  Google Scholar 

  83. Larsson, J.I.R., The hyperparasitic microsporidium Amphiacantha longa Caullery et Mesnil, 1914 (Microspora: Metchnikovellidae)—description of the cytology, redescription of the species, emended diagnosis of the genus Amphiacantha and establishment of the new family Amphiacanthidae, Folia Parasitol., 2000, vol. 47, no. 4, pp. 241–256.

    Article  CAS  Google Scholar 

  84. Larsson, J.I.R., The primitive Microsporidia, in Microsporidia: Pathogens of Opportunity, Weiss, L.M. and Becnel, J.J., Eds., Oxford: Wiley-Blackwell, 2014, pp. 605–634.

    Google Scholar 

  85. Lazarus, K.L. and James, T.Y., Surveying the biodiversity of the Cryptomycota using a targeted PCR approach, Fungal Ecol., 2015, vol. 14, no. 1, pp. 62–70.

    Article  Google Scholar 

  86. Lee, J.C. and Gutell, R.R., A comparison of the crystal structures of the eukaryotic and bacterial SSU ribosomal RNAs reveals common structural features in the hypervariable regions, PLoS One, 2012, vol. 7, no. 5, art. ID e38203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lefèvre, E., Bardot, C., Noël, C., Carrias, J.F., Viscogliosi, E., et al., Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake, Environ. Microbiol., 2007, vol. 9, no. 1, pp. 61–71.

    Article  PubMed  CAS  Google Scholar 

  88. Lefèvre, E., Roussel, B., Amblard, C., and Sime-Ngando, T., The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton, PLoS One, 2008, vol. 3, no. 6, art. ID e2324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Leipe, D.D., Gunderson, J.H., Nerad, T.A., and Sogin, M.L., Small subunit ribosomal RNA+ of Hexamita inflata and the quest for the first branch in the eukaryotic tree, Mol. Biochem. Parasitol., 1993, vol. 59, no. 1, pp. 41–48.

    Article  CAS  PubMed  Google Scholar 

  90. Lepère, C., Boucher, D., Jardillier, L., Domaizon, I., and Debroas, D., Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin), Appl. Environ. Microbiol., 2006, vol. 72, no. 4, pp. 2971–2981.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Lepère, C., Domaizon, I., and Debroas, D., Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community, Appl. Environ. Microbiol., 2008, vol. 74, no. 10, pp. 2940–2949.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Letcher, P.M. and Powell, M.J., A taxonomic summary and revision of Rozella (Cryptomycota), IMA Fungus, 2018, vol. 9, pp. 383–399.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Letcher, P.M., Lopez, S., Schmieder, R., Lee, P.A., Behnke, C., et al., Characterization of Amoeboaphelidium protococcarum, an algal parasite new to the cryptomycota isolated from an outdoor algal pond used for the production of biofuel, PLoS One, 2013, vol. 8, no. 2, art. ID e56232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lipson, D.A., Kuske, C.R., Gallegos-Graves, L.V., and Oechel, W.C., Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrubland ecosystem, Global Change Biol., 2014, vol. 20, no. 8, pp. 2555–2565.

    Article  Google Scholar 

  95. López-García, P., Rodriguez-Valera, F., Pedrós-Alió, C., and Moreira, D., Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton, Nature, 2001, vol. 409, no. 6820, pp. 603–607.

    Article  PubMed  Google Scholar 

  96. Mahé, F., de Vargas, C., Bass, D., Czech, L., Stamatakis, A., et al., Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests, Nat. Ecol. Evol., 2017, vol. 1, no. 4, art. ID 91.

    Article  PubMed  Google Scholar 

  97. Mamkaev, Yu.V., Comparison of morphological differences in the lower and higher groups of the same phylogenetic branch, Zh. Obshch. Biol., 1968, vol. 29, no. 1, pp. 48–56.

    PubMed  Google Scholar 

  98. Marcy, Y., Ouverney, C., Bik, E.M., Lösekann, T., Ivanova, N., et al., Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth, Proc. Natl. Acad. Sci. U.S.A., 2007, vol. 104, no. 29, pp. 11889–11894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Matsubayashi, M., Shimada, Y., Li, Y.Y., Harada, H., and Kubota, K., Phylogenetic diversity and in situ detection of eukaryotes in anaerobic sludge digesters, PLoS One, 2017, vol. 12, no. 3, art. ID e0172888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. McGuire, K.L., Allison, S.D., Fierer, N., and Treseder, K., Ectomycorrhizal-dominated boreal and tropical forests have distinct fungal communities, but analogous spatial patterns across soil horizons, PLoS One, 2013, vol. 8, no. 7, art. ID e68278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Melnikov, S.V., Manakongtreecheep, K., Rivera, K.D., Makarenko, A., Pappin, D.J., and Söll, D., Muller’s ratchet and ribosome degeneration in the obligate intracellular parasites Microsporidia, Int. J. Mol. Sci., 2018a, vol. 19, no. 12, art. ID 4125.

    Article  PubMed Central  Google Scholar 

  102. Melnikov, S.V., Rivera, K.D., Ostapenko, D., Makarenko, A., Sanscrainte, N.D., et al., Error-prone protein synthesis in parasites with the smallest eukaryotic genome, Proc. Natl. Acad. Sci. U.S.A., 2018b, vol. 115, no. 27, pp. E6245–E6253.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mikhailov, K.V., Simdyanov, T.G., and Aleoshin, V.V., Genomic survey of a hyperparasitic microsporidian Amphiamblys sp. (Metchnikovellidae), Genome Biol. Evol., 2017, vol. 9, no. 3, pp. 454–467.

    CAS  PubMed  Google Scholar 

  104. Mitchell, A.L., Scheremetjew, M., Denise, H., Potter, S., Tarkowska, A., et al., EBI Metagenomics in 2017: enriching the analysis of microbial communities, from sequence reads to assemblies, Nucleic Acids Res., 2018, vol. 46, no. 1, pp. D726–D735.

    Article  CAS  PubMed  Google Scholar 

  105. Monchy, S., Sanciu, G., Jobard, M., Rasconi, S., Gerphagnon, M., et al., Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing, Environ. Microbiol., 2011, vol. 13, no. 6, pp. 1433–1453.

    Article  PubMed  Google Scholar 

  106. Moon-van der Staay, S.Y., De Wachter, R., and Vaulot, D., Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity, Nature, 2001, vol. 409, no. 6820, pp. 607–610.

    Article  CAS  PubMed  Google Scholar 

  107. Moss, T. and Stefanovsky, V.Y., At the center of eukaryotic life, Cell, 2002, vol. 109, no. 5, pp. 545–548.

    Article  CAS  PubMed  Google Scholar 

  108. Mueller, R.C., Moya-Balasch, M., and Kuske, C.R., Contrasting soil fungal community responses to experimental nitrogen addition using the large subunit rRNA taxonomic marker and cellobiohydrolase I functional marker, Mol. Ecol., 2014, vol. 23, no. 17, pp. 4406–4417.

  109. Najmi, S.M. and Schneider, D.A., Quorum sensing regulates rRNA synthesis in Saccharomyces cerevisiae, Gene, 2021, vol. 776, art. ID 145442.

  110. Nakai, R., Abe, T., Baba, T., Imura, S., Kagoshima, H., et al., Eukaryotic phylotypes in aquatic moss pillars inhabiting a freshwater lake in East Antarctica, based on 18S rRNA gene analysis, Polar Biol., 2012, vol. 35, no. 10, pp. 1495–1504.

    Article  Google Scholar 

  111. Nassonova, E.S., Bondarenko, N.I., Paskerova, G.G., Kovacikova, M., Frolova, E.V., and Smirnov, A.V., Evolutionary relationships of Metchnikovella dogieli Paskerova et al., 2016 (Microsporidia: Metchnikovellidae) revealed by multigene phylogenetic analysis, Parasitol. Res., 2021, vol. 120, no. 2, pp. 525–534.

    Article  PubMed  Google Scholar 

  112. Noack Watt, K.E., Achilleos, A., Neben, C.L., Merrill, A.E., and Trainor, P.A., The roles of RNA polymerase I and III subunits Polr1c and Polr1d in craniofacial development and in zebrafish models of Treacher Collins syndrome, PLoS Genet., 2016, vol. 12, no. 7, art. ID e1006187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Page, K.A. and Flannery, M.K., Microbial epiphytes of deep-water moss in Crater Lake, Oregon, Northwest Sci., 2018, vol. 92, no. 4, pp. 240–250.

    Article  Google Scholar 

  114. Paskerova, G.G., Frolova, E.V., Kováčiková, M., Panfilkina, T.S., Mesentsev, E.S., et al., Metchnikovella dogieli sp. n. (Microsporidia: Metchnikovellida), a parasite of archigregarines Selenidium sp. from polychaetes Pygospio elegans, Protistology, 2016a, vol. 10, no. 4, pp. 148–157.

    Article  Google Scholar 

  115. Paskerova, G.G., Miroliubova, T.S., Diakin, A., Kováčiková, M., Valigurová, A., et al., Fine structure and molecular phylogenetic position of two marine gregarines, Selenidium pygospionis sp. n. and S. pherusae sp. n., with notes on the phylogeny of Archigregarinida (Apicomplexa), Protist, 2016b, vol. 169, no. 6, pp. 826–852.

    Article  Google Scholar 

  116. Pawlowski, J., Bolivar, I., Guiard-Maffia, J., and Gouy, M., Phylogenetic position of foraminifera inferred from LSU rRNA gene sequences, Mol. Biol. Evol., 1994, vol. 11, no. 6, pp. 929–938.

    CAS  PubMed  Google Scholar 

  117. Pawlowski, J., Montoya-Burgos, J.I., Fahrni, J.F., Wüest, J., and Zaninetti, L., Origin of the Mesozoa inferred from 18S rRNA gene sequences, Mol. Biol. Evol., 1996, vol. 13, no. 8, pp. 1128–1132.

    Article  CAS  PubMed  Google Scholar 

  118. Peer van de, Y., Ben Ali, A., and Meyer, A., Microsporidia: accumulating molecular evidence that a group of amitochodriate and suspectedly primitive eukaryotes are just curious fungi, Gene, 2000, vol. 246, nos. 1–2, pp. 1–8.

    Article  Google Scholar 

  119. Petrov, A.S., Bernier, C.R., Gulen, B., Waterbury, C.C., Hershkovits, E., et al., Secondary structures of rRNAs from all three domains of life, PLoS One, 2014, vol. 9, no. 2, art. ID e88222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Peyretaillade, E., Biderre, C., Peyret, P., Duffieux, F., Méténier, G., et al., Microsporidian Encephalitozoon cuniculi, a unicellular eukaryote with an unusual chromosomal dispersion of ribosomal genes and a LSU rRNA reduced to the universal core, Nucleic Acids Res., 1998, vol. 26, no. 15, pp. 3513–3520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Quinlan, A.R. and Hall, I.M., BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, 2010, vol. 26, no. 6, pp. 841–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rambaut, A., FigTree v1.3.1, Edinburgh Institute of Evolutionary Biology, University of Edinburgh, 2010. http://tree.bio.ed.ac.uk/software/figtree/.

  123. Rogers, S.O., Integrated evolution of ribosomal RNAs, introns, and intron nurseries, Genetica, 2019, vol. 147, no. 2, pp. 103–119.

    Article  CAS  PubMed  Google Scholar 

  124. Rojas-Jimenez, K., Wurzbacher, C., Bourne, E.C., Chiuchiolo, A., Priscu, J.C., and Grossart, H.P., Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica, Sci. Rep., 2017, vol. 7, no. 1, art. ID 15348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Rojas-Jimenez, K., Rieck, A., Wurzbacher, C., Jürgens, K., Labrenz, M., and Grossart, H.P., A salinity threshold separating fungal communities in the Baltic Sea, Front. Microbiol., 2019, vol. 10, art. ID 680.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., et al., MrBayes 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space, Syst. Biol., 2012, vol. 61, no. 3, pp. 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Rotari, Y.M., Paskerova, G.G., and Sokolova, Y.Y., Diversity of metchnikovellids (Metchnikovellidae, Rudimicrosporea), hyperparasites of bristle worms (Annelida, Polychaeta) from the White Sea, Protistology, 2015, vol. 9, no. 1, pp. 50–59.

    Google Scholar 

  128. Rueckert, S., Simdyanov, T.G., Aleoshin, V.V., and Leander, B.S., Identification of a divergent environmental DNA sequence clade using the phylogeny of gregarine parasites (Apicomplexa) from crustacean hosts, PLoS One, 2011, vol. 6, no. 3, art. ID e18163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rueckert, S., Wakeman, K.C., and Leander, B.S., Discovery of a diverse clade of gregarine apicomplexans (Apicomplexa: Eugregarinorida) from Pacific eunicid and onuphid polychaetes, including descriptions of Paralecudina n. gen., Trichotokara japonica n. sp., and T. eunicae n. sp., J. Eukaryotic Microbiol., 2013, vol. 60, no. 2, pp. 121–136.

    Article  CAS  Google Scholar 

  130. Russell, J. and Zomerdijk, J.C.B.M., RNA-polymerase-I-directed rDNA transcription, life and works, Trends Biochem. Sci., 2005, vol. 30, no. 2, pp. 87–96.

    Article  CAS  PubMed  Google Scholar 

  131. Sanchez, L.R.S. and Cao, E.P., Metagenomic analysis reveals the presence of heavy metal response genes from cyanobacteria thriving in Balatoc Mines, Benguet Province, Philippines, Philipp. J. Sci., 2019, vol. 148, suppl. 1, pp. 71–82.

    Google Scholar 

  132. Schultz, J., Maisel, S., Gerlach, D., Műller, T., and Wolf, M., A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the eukaryote, RNA, 2005, vol. 11, no. 4, pp. 361–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Seenivasan, R., Sausen, N., Medlin, L.K., and Melkonian, M., Picomonas judraskeda gen. et sp. nov.: the first identified member of the Picozoa phylum nov., a widespread group of picoeukaryotes, formerly known as ‘picobiliphytes,’ PLoS One, 2013, vol. 8, no. 3, art. ID e59565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Semenov, M.V., Metabarcoding and metagenomics in soil ecology research: achievements, challenges, and prospects, Biol. Bull. Rev., 2021, vol. 11, no. 1, pp. 40–53.

    Article  Google Scholar 

  135. Sharrar, A.M., Crits-Christoph, A., Méheust, R., Diamond, S., Starr, E.P., and Banfield, J.F., Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type, mBio, 2020, vol. 11, no. 3, art. ID e00416-20.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Smith, M.E., Douhan, G.W., and Rizzo, D.M., Ectomycorrhizal community structure in a xeric Quercus woodland as inferred from rDNA sequence analysis of pooled EM roots and sporocarps, New Phytol., 2007, vol. 174, no. 4, pp. 847–863.

    Article  CAS  PubMed  Google Scholar 

  137. Smothers, J.F., von Dohlen, C.D., Smith, L.H., Jr., and Spall, R.D., Molecular evidence that the myxozoan protists are metazoans, Science, 1994, vol. 265, no. 5179, pp. 1719–1721.

    Article  CAS  PubMed  Google Scholar 

  138. Sokolova, Y.Y., Paskerova, G.G., Rotari, Y.M., Nassonova, E.S., and Smirnov, A.V., Fine structure of Metchnikovella incurvata Caullery and Mesnil 1914 (Microsporidia), a hyperparasite of gregarines Polyrhabdina sp. from the polychaete Pygospio elegans, Parasitology, 2013, vol. 140, no. 7, pp. 855–867.

    Article  CAS  PubMed  Google Scholar 

  139. Sprague, V., Classification and phylogeny of the microsporidia, in Comparative Pathobiology, Vol. 2: Systematics of the Microsporidia, Bulla, L.A. and Cheng, T.C., Eds., New York: Plenum, 1977, pp. 1–30.

  140. Stentiford, G.D., Ramilo, A., Abollo, E., Kerr, R., Bateman, K.S., et al., Hyperspora aquatica n. gen., n. sp. (Microsporidia), hyperparasitic in Marteilia cochillia (Paramyxida), is closely related to crustacean-infecting microspordian taxa, Parasitology, 2017, vol. 144, no. 2, pp. 186–199.

    Article  CAS  PubMed  Google Scholar 

  141. Stevenson, B.S. and Schmidt, T.M., Life history implications of rRNA gene copy number in Escherichia coli, Appl. Environ. Microbiol., 2004, vol. 70, no. 11, pp. 6670–6677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Strassert, J.F.H., Jamy, M., Mylnikov, A.P., Tikhonenkov, D.V., and Burki, F., New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the Eukaryote Tree of Life, Mol. Biol. Evol., 2019, vol. 36, no. 4, art. ID 757765.

    Article  CAS  Google Scholar 

  143. Tavaré, S., Some probabilistic and statistical problems in the analysis of DNA sequences, Lectures Math. Life Sci., 1986, vol. 17, pp. 57–86.

    Google Scholar 

  144. Taylor, D.L., Herriott, I.C., Long, J., and O’Neill, K., TOPO TA is A-OK: a test of phylogenetic bias in fungal environmental clone library construction, Environ. Microbiol., 2007, vol. 9, no. 5, pp. 1329–1334.

    Article  CAS  PubMed  Google Scholar 

  145. Taylor, D.L., Booth, M.G., McFarland, J.W., Herriott, I.C., Lennon, N.J., et al., Increasing ecological inference from high throughput sequencing of fungi in the environment through a tagging approach, Mol. Ecol. Resour., 2008, vol. 8, no. 4, pp. 742–752.

    Article  CAS  PubMed  Google Scholar 

  146. Taylor, D.L., Hollingsworth, T.N., McFarland, J.W., Lennon, N.J., Nusbaum, C., and Ruess, R.W., A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning, Ecol. Monogr., 2014, vol. 84, no. 1, pp. 3–20.

    Article  Google Scholar 

  147. Tedersoo, L., Bahram, M., Puusepp, R., Nilsson, R.H., and James, T.Y., Novel soil-inhabiting clades fill gaps in the fungal tree of life, Microbiome, 2017, vol. 5, no. 1, art. ID 42.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Tedersoo, L., Sánchez-Ramírez, S., Kõljalg, U., Bahram, M., Döring, M., et al., High-level classification of the fungi and a tool for evolutionary ecological analyses, Fungal Diversity, 2018, vol. 90, no. 1, pp. 135–159.

    Article  Google Scholar 

  149. Thornton, C.N., Tanner, W.D., VanDerslice, J.A., and Brazelton, W.J., Localized effect of treated wastewater effluent on the resistome of an urban watershed, Gigascience, 2020, vol. 9, no. 11, art. ID giaa125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Tikhonenkov, D.V., Mikhailov, K.V., Hehenberger, E., Karpov, S.A., Prokina, K.I., et al., New lineage of microbial predators adds complexity to reconstructing the evolutionary origin of animals, Curr. Biol., 2020a, vol. 30, no. 22, pp. 4500–4509.

    Article  CAS  PubMed  Google Scholar 

  151. Tikhonenkov, D.V., Strassert, J.F.H., Janouškovec, J., Mylnikov, A.P., Aleoshin, V.V., et al., Predatory colponemids are the sister group to all other alveolates, Mol. Phylogenet. Evol., 2020b, vol. 149, art. ID 106839.

    Article  PubMed  Google Scholar 

  152. Timling, I., Walker, D.A., Nusbaum, C., Lennon, N.J., and Taylor, D.L., Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic, Mol. Ecol., 2014, vol. 23, no. 13, pp. 3258–3272.

    Article  CAS  PubMed  Google Scholar 

  153. Tokarev, Y.S., Huang, W.F., Solter, L.F., Malysh, J.M., Becnel, J.J., and Vossbrinck, C.R., A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics, J. Invertebr. Pathol., 2020, vol. 169, art. ID 107279.

    Article  CAS  PubMed  Google Scholar 

  154. Torreira, E., Louro, J.A., Pazos, I., González-Polo, N., Gil-Carton, D., et al., The dynamic assembly of distinct RNA polymerase I complexes modulates rDNA transcription, eLife, 2017, vol. 6, art. ID e20832.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Transcription of Ribosomal RNA Genes by Eukaryotic RNA Polymerase I, Paule, M.R., Ed., Berlin: Springer-Verlag, 1998.

    Google Scholar 

  156. Trzebny, A., Slodkowicz-Kowalska, A., Becnel, J.J., Sanscrainte, N., and Dabert, M., A new method of metabarcoding Microsporidia and their hosts reveals high levels of microsporidian infections in mosquitoes (Culicidae), Mol. Ecol. Resour., 2020, vol. 20, pp. 1486–1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Usachev, K.S., Yusupov, M.M., and Validov, S.Z., Hibernation as a stage of ribosome functioning, Biochemistry (Moscow), 2020, vol. 85, no. 11, pp. 1434–1442.

    CAS  PubMed  Google Scholar 

  158. Vivier, E., Étude, au microscope électronique, de la spore de Metchnikovella hovassei n. sp.: appartenance des Metchnikovellidae aux Microsporidies, C. R. Hebd. Séan. Soc. Biol., 1965, vol. 260, no. 26, pp. 6982–6984.

    Google Scholar 

  159. Vossbrinck, C.R. and Woese, C.R., Eukaryotic ribosomes that lack a 5.8S RNA, Nature, 1986, vol. 320, no. 6059, pp. 287–288.

    Article  CAS  PubMed  Google Scholar 

  160. Vossbrinck, C.R., Maddox, J.V., Friedman, S., Debrunner-Vossbrinck, B.A., and Woese, C.R., Ribosomal RNA sequence suggests Microsporidia are extremely ancient eukaryotes, Nature, 1987, vol. 326, no. 6111, pp. 411–414.

    Article  CAS  PubMed  Google Scholar 

  161. Wadi, L. and Reinke, A.W., Evolution of microsporidia: an extremely successful group of eukaryotic intracellular parasites, PLoS Pathog., 2020, vol. 16, no. 2, art. ID e1008276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wagner, A., Energy constraints on the evolution of gene expression, Mol. Biol. Evol., 2005, vol. 22, no. 6, pp. 1365–1374.

    Article  CAS  PubMed  Google Scholar 

  163. Wakeman, K.C., Molecular phylogeny of marine gregarines (Apicomplexa) from the Sea of Japan and the Northwest Pacific including the description of three novel species of Selenidium and Trollidium akkeshiense n. gen. n. sp., Protist, 2020, vol. 171, no. 1, art. ID 125710.

    Article  CAS  PubMed  Google Scholar 

  164. Warner, J.R., The economics of ribosome biosynthesis in yeast, Trends Biochem. Sci., 1999, vol. 24, no. 11, pp. 437–440.

    Article  CAS  PubMed  Google Scholar 

  165. Weber, S.D., Hofmann, A., Wanner, G., Pilhofer, M., Agerer, R., et al., The diversity of fungi in aerobic sewage granules assessed by 18S rRNA gene and ITS sequence analyses, FEMS Microbiol. Ecol., 2009, vol. 68, no. 2, pp. 246–254.

    Article  CAS  PubMed  Google Scholar 

  166. Weiser, J., Contribution to the classification of microsporidia, Vestn. Cesk. Spol Zool., 1977, vol. 41, no. 4, pp. 308–321.

    Google Scholar 

  167. White, M.M., James, T.Y., O’Donnell, K., Cafaro, M.J., Tanabe, Y., and Sugiyama, J., Phylogeny of the Zygomycota based on nuclear ribosomal sequence data, Mycologia, 2006, vol. 98, no. 6, pp. 872–884.

    Article  PubMed  Google Scholar 

  168. Whiting, M.F., Carpenter, J.C., Wheeler, Q.D., and Wheeler, W.C., The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology, Syst. Biol., 1997, vol. 46, no. 1, pp. 1–68.

    CAS  PubMed  Google Scholar 

  169. Wijayawardene, N.N., Hyde, K.D., Al-Ani, L.K.T., Tedersoo, L., Haelewaters, D., et al., Outline of Fungi and fungus-like taxa, Mycosphere, 2020, vol. 11, no. 1, pp. 1060–1456.

    Article  Google Scholar 

  170. Wilms, R., Sass, H., Köpke, B., Köster, J., Cypionka, H., and Engelen, B., Specific bacterial, archaeal, and eukaryotic communities in tidal-flat sediments along a vertical profile of several meters, Appl. Environ. Microbiol., 2006, vol. 72, no. 4, pp. 2756–2764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wurzbacher, C., Rösel, S., Rychła, A., and Grossart, H.P., Importance of saprotrophic freshwater fungi for pollen degradation, PLoS One, 2014, vol. 9, no. 4, art. ID e94643.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Wuyts, J., De Rijk, P., van de Peer, Y., Pison, G., Rousseeuw, P., and De Wachter, R., Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA, Nucleic Acids Res., 2000, vol. 28, no. 23, pp. 4698–4708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wuyts, J., van de Peer, Y., and De Wachter, R., Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA, Nucleic Acids Res., 2001, vol. 29, no. 24, pp. 5017–5028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhou, X., Montalva, C., and Arismendi, N., Neozygites linanensis sp. nov., a fungal pathogen infecting bamboo aphids in southeast China, Mycotaxon, 2017, vol. 132, no. 2, pp. 305–315.

    Article  Google Scholar 

  175. Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res., 2003, vol. 31, no. 13, pp. 3406–3415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Prof. F.M. Freimozer for the kind advice.

Funding

The authors are grateful to the Russian Science Foundation for the support of the study of cDNA libraries of eugregarines, archigregarines, and blastogregarines (project no. 18-14-00123) and to the Russian Foundation for Basic Research for support of the work on determination of the diversity and phylogeny of unicellular consumers of unicellular organisms (project no. 18-04-01210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Aleoshin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on animal welfare. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, K.V., Nassonova, E.S., Shɨshkin, Y.A. et al. Ribosomal RNA of Metchnikovellids in Gregarine Transcriptomes and rDNA of Microsporidia Sensu Lato in Metagenomes. Biol Bull Rev 12, 213–239 (2022). https://doi.org/10.1134/S2079086422030069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086422030069

Navigation