Skip to main content
Log in

A review of molecular-beam epitaxy of wide bandgap complex oxide semiconductors

  • Invited Feature Paper-Review
  • Focus Issue: Ultra-wide Bandgap Materials, Devices, and Systems
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Much progress has been made in the area of wide bandgap semiconductors for applications in electronics and optoelectronics such as displays, power electronics, and solar cells. New materials are being sought after and considerable attention has been given to complex oxides, specifically those with the perovskite crystal structure. Molecular-beam epitaxy (MBE) has come to the forefront of this field for the thin film synthesis of these materials in a high-quality manner and achieves some of their best figures of merit. Here, we discuss the development of MBE from its beginnings as a method for III–V semiconductor growth to today for the growth of many contenders for next-generation electronics. Comparing MBE with other physical vapor deposition techniques, we identify the advantages of MBE as well as many of the challenges that still must be overcome should this technique be applied to other up-and-coming wide bandgap complex oxide semiconductors.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as this is review article and that there were no new datasets generated or analyzed.

References

  1. J. Shi, J. Zhang, L. Yang, M. Qu, D.C. Qi, K.H. Zhang, Wide bandgap oxide semiconductors: from materials physics to optoelectronic devices. Adv. Mater. 2006230 (2021).

  2. J. Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices. J. Vac. Sci. Technol. B 18(3), 1785 (2000)

    Article  CAS  Google Scholar 

  3. S. Fujita, Wide-bandgap semiconductor materials: for their full bloom. Jpn. J. Appl. Phys. 54(3), 030101 (2015)

    Article  CAS  Google Scholar 

  4. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264(5157), 413 (1994)

    Article  CAS  Google Scholar 

  5. J.G. Bednorz, K.A. Müller, Possible high Tc superconductivity in the Ba−La−Cu−O system. Z. Phys. B. 64(2), 189 (1986)

    Article  CAS  Google Scholar 

  6. S. Pei, J.D. Jorgensen, D.G. Hinks, P. Lightfoot, Y. Zheng, D.R. Richards, B. Dabrowski, A.W. Mitchell, Structure of BaBiO3−δ at high temperature. Mater. Res. Bull. 25(12), 1467 (1990)

    Article  CAS  Google Scholar 

  7. G.A. Smolenskiĭ, I.E. Chupis, Ferroelectromagnets. Soviet Physics Uspekhi. 25(7), 475 (1982)

    Article  Google Scholar 

  8. Y. Shi, Y. Guo, X. Wang, A.J. Princep, D. Khalyavin, P. Manuel, Y. Michiue, A. Sato, K. Tsuda, S. Yu, M. Arai, Y. Shirako, M. Akaogi, N. Wang, K. Yamaura, A.T. Boothroyd, A ferroelectric-like structural transition in a metal. Nat. Mater. 12(11), 1024 (2013)

    Article  CAS  Google Scholar 

  9. F. Baiutti, G. Christiani, G. Logvenov, Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy. Beilstein J. Nanotechnol. 5(1), 596 (2014)

    Article  Google Scholar 

  10. D.G. Schlom, Perspective: oxide molecular-beam epitaxy rocks! APL Mater. 3(6), 062403 (2015).

  11. M. Brahlek, A.S. Gupta, J. Lapano, J. Roth, H.T. Zhang, L. Zhang, R. Haislmaier, R. Engel-Herbert, Frontiers in the growth of complex oxide thin films: past, present, and future of hybrid MBE. Adv. Funct. Mater. 28(9), 1702772 (2018)

    Article  Google Scholar 

  12. A. Prakash, B. Jalan, Wide bandgap perovskite oxides with high room-temperature electron mobility. Adv. Mater. Interfaces. 6(15), 1900479 (2019)

    Article  Google Scholar 

  13. J. MacManus-Driscoll, M.P. Wells, C. Yun, J.-W. Lee, C.-B. Eom, D.G. Schlom, New approaches for achieving more perfect transition metal oxide thin films. APL Mater. 8(4), 040904 (2020)

    Article  CAS  Google Scholar 

  14. J.H.N. Divine, P. Kumah, L. Kornblum, Epitaxial oxides on semiconductors: from fundamentals to new devices. Adv. Funct. Mater. 30, 1901597 (2020)

    Article  Google Scholar 

  15. S.A. Chambers, T.C. Kaspar, A. Prakash, G. Haugstad, B. Jalan, Band alignment at epitaxial BaSnO3/SrTiO3 (001) and BaSnO3/LaAlO3 (001) heterojunctions. Appl. Phys. Lett. 108(15), 152104 (2016)

    Article  Google Scholar 

  16. O. Tufte, P. Chapman, Electron mobility in semiconducting strontium titanate. Phys. Rev. 155(3), 796 (1967)

    Article  CAS  Google Scholar 

  17. J.F. Schooley, W.R. Hosler, M.L. Cohen, Superconductivity in semiconducting SrTiO3. Phys. Rev. Lett. 12(17), 474 (1964)

    Article  CAS  Google Scholar 

  18. A. Ohtomo, H.Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427(6973), 423 (2004)

    Article  CAS  Google Scholar 

  19. M.C. Tarun, F.A. Selim, M.D. McCluskey, Persistent photoconductivity in strontium titanate. Phys. Rev. Lett. 111(18), 187403 (2013)

    Article  Google Scholar 

  20. H.J. Kim, U. Kim, H.M. Kim, T.H. Kim, H.S. Mun, B.-G. Jeon, K.T. Hong, W.-J. Lee, C. Ju, K.H. Kim, K. Char, High mobility in a stable transparent perovskite oxide. Appl. Phys. Express. 5(6), 061102 (2012)

    Article  Google Scholar 

  21. X. Luo, Y.S. Oh, A. Sirenko, P. Gao, T. Tyson, K. Char, S.-W. Cheong, High carrier mobility in transparent Ba1−xLaxSnO3 crystals with a wide band gap. Appl. Phys. Lett. 100(17), 172112 (2012)

    Article  Google Scholar 

  22. H. Mizoguchi, H.W. Eng, P.M. Woodward, Probing the electronic structures of ternary perovskite and pyrochlore oxides containing Sn4+ or Sb5+. Inorg. Chem. 43(5), 1667 (2004)

    Article  CAS  Google Scholar 

  23. T. Stanislavchuk, A. Sirenko, A. Litvinchuk, X. Luo and S.-W. Cheong, Electronic band structure and optical phonons of BaSnO3 and Ba0.97La0. 03SnO3 single crystals: theory and experiment. J. Appl. Phys. 112(4), 044108 (2012).

  24. C.A. Niedermeier, S. Rhode, K. Ide, H. Hiramatsu, H. Hosono, T. Kamiya, M.A. Moram, Electron effective mass and mobility limits in degenerate perovskite stannate BaSnO3. Phys. Rev. B. 95(16), 161202 (2017)

    Article  Google Scholar 

  25. S.J. Allen, S. Raghavan, T. Schumann, K.-M. Law, S. Stemmer, Conduction band edge effective mass of La-doped BaSnO3. Appl. Phys. Lett. 108(25), 252107 (2016)

    Article  Google Scholar 

  26. K. Krishnaswamy, B. Himmetoglu, Y. Kang, A. Janotti, C.G. Van de Walle, First-principles analysis of electron transport in BaSnO3. Phys. Rev. B. 95(20), 205202 (2017)

    Article  Google Scholar 

  27. J.E. Greene, Tracing the recorded history of thin-film sputter deposition: from the 1800s to 2017. J. Vac. Sci. Technol. A. 35(5), 05C204 (2017)

    Article  Google Scholar 

  28. W.R. Grove, On the electro-chemical polarity of gases. Philos. Trans. R. Soc. Lond. (142), 87 (1852).

  29. M. Faraday, Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. (147), 145 (1857).

  30. H.M. Smith, A. Turner, Vacuum deposited thin films using a ruby laser. Appl. Opt. 4(1), 147 (1965)

    Article  Google Scholar 

  31. P. Ganguly, C. Rao, Crystal chemistry and magnetic properties of layered metal oxides possessing the K2NiF4 or related structures. J. Solid State Chem. 53(2), 193 (1984)

    Article  CAS  Google Scholar 

  32. D. Dijkkamp, T. Venkatesan, X. Wu, S. Shaheen, N. Jisrawi, Y. Min-Lee, W. McLean, M. Croft, Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. Appl. Phys. Lett. 51(8), 619 (1987)

    Article  CAS  Google Scholar 

  33. M.-K. Wu, J.R. Ashburn, C. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y. Wang, A. Chu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58(9), 908 (1987)

    Article  CAS  Google Scholar 

  34. J.R. Arthur, Interaction of Ga and As2 molecular beams with GaAs surfaces. J. Appl. Phys. 39(8), 4032 (1968)

    Article  CAS  Google Scholar 

  35. A.Y. Cho, J.R. Arthur, Molecular beam epitaxy. Prog. Solid. State Ch. 10, 157 (1975)

    Article  Google Scholar 

  36. W.P. McCray, MBE deserves a place in the history books. Nat. Nanotechnol. 2(5), 259 (2007)

    Article  CAS  Google Scholar 

  37. P.F. Michel: Coating by cathode disintegration. 2,146,025 (7 Feb. 1939).

  38. B. Jalan, R. Engel-Herbert, N.J. Wright, S. Stemmer, Growth of high-quality SrTiO3 films using a hybrid molecular beam epitaxy approach. J. Vac. Sci. Technol. A. 27(3), 461 (2009)

    Article  CAS  Google Scholar 

  39. W. Nunn, A.K. Manjeshwar, J. Yue, A. Rajapitamahuni, T.K. Truttmann, B. Jalan, Novel synthesis approach for “Stubborn” metals and metal oxides. Proc. Natl. Acad. Sci. 118(32), e2105713118 (2021)

    Article  CAS  Google Scholar 

  40. C.-B. Eom, J. Lee, Metal-organic pulsed laser deposition for stoichiometric complex oxide thin films. (6 Oct. 2020).

  41. R. Dingle, H. Störmer, A. Gossard, W. Wiegmann, Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl. Phys. Lett. 33(7), 665 (1978)

    Article  CAS  Google Scholar 

  42. H.L. Stormer, Nobel lecture: the fractional quantum Hall effect. Rev. Mod. Phys. 71(4), 875 (1999)

    Article  CAS  Google Scholar 

  43. D.L. Smith, V.Y. Pickhardt, Molecular beam epitaxy of II-VI compounds. J. Appl. Phys. 46(6), 2366 (1975)

    Article  CAS  Google Scholar 

  44. S. Yoshida, S. Misawa, Y. Fujii, S. Takada, H. Hayakawa, S. Gonda, A. Itoh, Reactive molecular beam epitaxy of aluminium nitride. J. Vac. Sci. Technol. 16(4), 990 (1979)

    Article  CAS  Google Scholar 

  45. A. Koma, K. Sunouchi, T. Miyajima, Fabrication and characterization of heterostructures with subnanometer thickness. Microelectron. Eng. 2(1–3), 129 (1984)

    Article  CAS  Google Scholar 

  46. R. Betts, C. Pitt, Growth of thin-film lithium niobate by molecular beam epitaxy. Electron. Lett. 21(21), 960 (1985)

    Article  CAS  Google Scholar 

  47. J. Kwo, T. Hsieh, R. Fleming, M. Hong, S.H. Liou, B. Davidson, Feldman and LC: structural and superconducting properties of orientation-ordered Y1Ba2Cu3O7−x films prepared by molecular-beam epitaxy. Phys. Rev. B. 36(7), 4039 (1987)

    Article  CAS  Google Scholar 

  48. C. Webb, S.L. Weng, J. Eckstein, N. Missert, K. Char, D. Schlom, E. Hellman, M. Beasley, A. Kapitulnik, J. Harris Jr., Growth of high Tc superconducting thin films using molecular beam epitaxy techniques. Appl. Phys. Lett. 51(15), 1191 (1987)

    Article  CAS  Google Scholar 

  49. D.D. Berkley, B.R. Johnson, N. Anand, K.M. Beauchamp, L.E. Conroy, A.M. Goldman, J. Maps, K. Mauersberger, M.L. Mecartney, J. Morton, M. Tuominen, Y.J. Zhang, In situ formation of superconducting YBa2Cu3O7−x thin films using pure ozone vapor oxidation. Appl. Phys. Lett. 53(20), 1973 (1988)

    Article  CAS  Google Scholar 

  50. D.G. Schlom, A. Marshall, J. Sizemore, Z. Chen, J. Eckstein, I. Bozovic, K. Von Dessonneck, J. Harris Jr., J. Bravman, Molecular beam epitaxial growth of layered Bi-Sr-Ca-Cu-O compounds. J. Cryst. Growth. 102(3), 361 (1990)

    Article  CAS  Google Scholar 

  51. Y. Segawa, A. Ohtomo, M. Kawasaki, H. Koinuma, Z. Tang, P. Yu, G. Wong, Growth of ZnO thin film by laser MBE: lasing of exciton at room temperature. Phys. Status Solidi B. 202(2), 669 (1997)

    Article  CAS  Google Scholar 

  52. M. Johnson, S. Fujita, W. Rowland, W. Hughes, J. Cook, J. Schetzina, MBE growth and properties of ZnO on sapphire and SiC substrates. J. Electron. Mater. 25(5), 855 (1996)

    Article  CAS  Google Scholar 

  53. J. Falson, Y. Kozuka, M. Uchida, J.H. Smet, T.-H. Arima, A. Tsukazaki, M. Kawasaki, MgZnO/ZnO heterostructures with electron mobility exceeding 1×106 cm2/Vs. Sci. Rep. 6(1), 1 (2016)

    Article  Google Scholar 

  54. S. Migita, Y. Kasai, H. Ota, S. Sakai, Self-limiting process for the bismuth content in molecular beam epitaxial growth of Bi2Sr2CuOy thin films. Appl. Phys. Lett. 71(25), 3712 (1997)

    Article  CAS  Google Scholar 

  55. C.D. Theis, J. Yeh, D.G. Schlom, M. Hawley, G. Brown, Adsorption-controlled growth of PbTiO3 by reactive molecular beam epitaxy. Thin Solid Films 325(1–2), 107 (1998)

    Article  CAS  Google Scholar 

  56. C.D. Theis, J. Yeh, D.G. Schlom, M. Hawley, G. Brown, J. Jiang, X. Pan, Adsorption-controlled growth of Bi4Ti3O12 by reactive MBE. Appl. Phys. Lett. 72(22), 2817 (1998)

    Article  CAS  Google Scholar 

  57. G. Zhang, H. Qin, J. Teng, J. Guo, Q. Guo, X. Dai, Z. Fang, K. Wu, Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3. Appl. Phys. Lett. 95(5), 053114 (2009)

    Article  Google Scholar 

  58. A. Mellnik, J. Lee, A. Richardella, J. Grab, P. Mintun, M.H. Fischer, A. Vaezi, A. Manchon, E.-A. Kim, N. Samarth, Spin-transfer torque generated by a topological insulator. Nature 511(7510), 449 (2014)

    Article  CAS  Google Scholar 

  59. J.A. Mundy, C.M. Brooks, M.E. Holtz, J.A. Moyer, H. Das, A.F. Rébola, J.T. Heron, J.D. Clarkson, S.M. Disseler, Z. Liu, Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 537(7621), 523 (2016)

    Article  CAS  Google Scholar 

  60. H. Paik, Z. Chen, E. Lochocki, A. Seidner, A. Verma, N. Tanen, J. Park, M. Uchida, S. Shang, B.-C. Zhou, M. Brützam, R. Uecker, Z.-K. Liu, J. Debdeep, K.M. Shen, D.A. Muller, D.G. Schlom, Adsorption-controlled growth of La-doped BaSnO3 by molecular-beam epitaxy. APL Mater. 5(11), 116107 (2017)

    Article  Google Scholar 

  61. A. Prakash, P. Xu, A. Faghaninia, S. Shukla, J.W. Ager, C.S. Lo, B. Jalan, Wide bandgap BaSnO3 films with room temperature conductivity exceeding 104 S cm−1. Nat. Commun. 8(1), 1 (2017)

    Article  Google Scholar 

  62. W. Li, J. Shi, K.H. Zhang, J.L. MacManus-Driscoll, Defects in complex oxide thin films for electronics and energy applications: challenges and opportunities. Mater. Horiz. 7(11), 2832 (2020)

    Article  CAS  Google Scholar 

  63. V. Matias, R.H. Hammond, Ion beam induced crystalline texturing during thin film deposition. Surf. Coat. Technol. 264, 1 (2015)

    Article  CAS  Google Scholar 

  64. T. Ohnishi, K. Shibuya, T. Yamamoto, M. Lippmaa, Defects and transport in complex oxide thin films. J. Appl. Phys. 103(10), 103703 (2008)

    Article  Google Scholar 

  65. D.M. Dobkin, M.K. Zaraw, Principles of Chemical Vapor Deposition (Springer, City, 2003).

  66. J. Haeni, C. Theis, D. Schlom, W. Tian, X. Pan, H. Chang, I. Takeuchi, X.-D. Xiang, Epitaxial growth of the first five members of the Srn+1TinO3n+1 Ruddlesden-Popper homologous series. Appl. Phys. Lett. 78(21), 3292 (2001)

    Article  CAS  Google Scholar 

  67. W. Tian, J.H. Haeni, D.G. Schlom, E. Hutchinson, B.L. Sheu, M.M. Rosario, P. Schiffer, Y. Liu, M.A. Zurbuchen, X.Q. Pan, Epitaxial growth and magnetic properties of the first five members of the layered Srn+1RunO3n+1 oxide series. Appl. Phys. Lett. 90(2), 022507 (2007)

    Article  Google Scholar 

  68. C.-H. Lee, N.D. Orloff, T. Birol, Y. Zhu, V. Goian, E. Rocas, R. Haislmaier, E. Vlahos, J.A. Mundy, L.F. Kourkoutis, Y. Nie, M.D. Biegalski, J. Zhang, M. Bernhagen, N.A. Benedek, Y. Kim, J.D. Brock, R. Uecker, X.X. Xi, V. Gopalan, D. Nuzhnyy, S. Kamba, D.A. Muller, I. Takeuchi, J.C. Booth, C.J. Fennie, D.G. Schlom, Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature 502(7472), 532 (2013)

    Article  CAS  Google Scholar 

  69. R.C. Haislmaier, G. Stone, N. Alem, R. Engel-Herbert, Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy. Appl. Phys. Lett. 109(4), 043102 (2016)

    Article  Google Scholar 

  70. M.R. Barone, N.M. Dawley, H.P. Nair, B.H. Goodge, M.E. Holtz, A. Soukiassian, E.E. Fleck, K. Lee, Y. Jia, T. Heeg, R. Gatt, Y. Nie, D.A. Muller, L.F. Kourkoutis, D.G. Schlom, Improved control of atomic layering in perovskite-related homologous series. APL Mater. 9(2), 021118 (2021)

    Article  CAS  Google Scholar 

  71. C.-H. Lee, N.J. Podraza, Y. Zhu, R.F. Berger, S. Shen, M. Sestak, R.W. Collins, L.F. Kourkoutis, J.A. Mundy, H. Wang, Q. Mao, X. Xi, L.J. Brillson, J.B. Neaton, D.A. Muller, D.G. Schlom, Effect of reduced dimensionality on the optical band gap of SrTiO3. Appl. Phys. Lett. 102(12), 122901 (2013)

    Article  Google Scholar 

  72. Y.F. Nie, Y. Zhu, C.H. Lee, L.F. Kourkoutis, J.A. Mundy, J. Junquera, P. Ghosez, D.J. Baek, S. Sung, X.X. Xi, K.M. Shen, D.A. Muller, D.G. Schlom, Atomically precise interfaces from non-stoichiometric deposition. Nat. Commun. 5(1), 4530 (2014)

    Article  CAS  Google Scholar 

  73. U. Poppe, J. Schubert, R.R. Arons, W. Evers, C.H. Freiburg, W. Reichert, K. Schmidt, W. Sybertz, K. Urban, Direct production of crystalline superconducting thin films of YBa2Cu3O7 by high-pressure oxygen sputtering. Solid State Commun. 66(6), 661 (1988)

    Article  CAS  Google Scholar 

  74. A. Guarino, G. Patimo, A. Vecchione, T. Di Luccio, A. Nigro, Fabrication of superconducting Nd2−xCexCuO4±δ films by automated DC sputtering technique. Physica C 495, 146 (2013)

    Article  CAS  Google Scholar 

  75. M. Schmitz, A. Weber, O. Petracic, M. Waschk, P. Zakalek, S. Mattauch, A. Koutsioubas, T. Brückel, Strain and electric field control of magnetism in La1-xSrxMnO3 thin films on ferroelectric BaTiO3 substrates. N. J. Phys. 22(5), 053018 (2020)

    Article  CAS  Google Scholar 

  76. J.R. Contreras, H. Kohlstedt, A. Petraru, A. Gerber, B. Hermanns, H. Haselier, N. Nagarajan, J. Schubert, U. Poppe, C. Buchal, R. Waser, Improved PbZr0.52Ti0.48O3 film quality on SrRuO3/SrTiO3 substrates. J. Cryst. Growth. 277(1), 210 (2005)

    Article  Google Scholar 

  77. P.C. Feijoo, M.A. Pampillón, E.S. Andrés, J.L.G. Fierro, Nano-laminate vs. direct deposition of high permittivity gadolinium scandate on silicon by high pressure sputtering. Thin Solid Films 593, 62 (2015)

    Article  CAS  Google Scholar 

  78. A. Petraru, N.A. Pertsev, H. Kohlstedt, U. Poppe, R. Waser, A. Solbach, U. Klemradt, Polarization and lattice strains in epitaxial BaTiO3 films grown by high-pressure sputtering. J. Appl. Phys. 101(11), 114106 (2007)

    Article  Google Scholar 

  79. P. Ambwani, P. Xu, G. Haugstad, J.S. Jeong, R. Deng, K.A. Mkhoyan, B. Jalan, C. Leighton, Defects, stoichiometry, and electronic transport in SrTiO3-δ epilayers: a high pressure oxygen sputter deposition study. J. Appl. Phys. 120(5), 055704 (2016)

    Article  Google Scholar 

  80. K. Ganguly, P. Ambwani, P. Xu, J.S. Jeong, K.A. Mkhoyan, C. Leighton, B. Jalan, Structure and transport in high pressure oxygen sputter-deposited BaSnO3−δ. APL Mater. 3, 062509 (2015)

    Article  Google Scholar 

  81. W.M. Postiglione, K. Ganguly, H. Yun, J.S. Jeong, A. Jacobson, L. Borgeson, B. Jalan, K.A. Mkhoyan, C. Leighton, Structure-property relationships and mobility optimization in sputtered La-doped BaSnO3 films: Toward 100 cm2V-1s-1 mobility. Phys. Rev. Mater. 5(4), 044604 (2021)

    Article  CAS  Google Scholar 

  82. R. Zhang, X. Li, J. Bi, S. Zhang, S. Peng, Y. Song, Q. Zhang, L. Gu, J. Duan, Y. Cao, One-step epitaxy of high-mobility La-doped BaSnO3 films by high-pressure magnetron sputtering. APL Mater. 9(6), 061103 (2021)

    Article  CAS  Google Scholar 

  83. C.X. Zheng, K. Hannikainen, Y.R. Niu, J. Tersoff, D. Gomez, J. Pereiro, D.E. Jesson, Mapping the surface phase diagram of GaAs(001) using droplet epitaxy. Phys. Rev. Mater. 3(12), 124603 (2019)

    Article  CAS  Google Scholar 

  84. S.A. Chambers, Epitaxial growth and properties of thin film oxides. Surf. Sci. Rep. 39(5–6), 105 (2000)

    Article  CAS  Google Scholar 

  85. S. Thapa, R. Paudel, M.D. Blanchet, P.T. Gemperline, R.B. Comes, Probing surfaces and interfaces in complex oxide films via in situ X-ray photoelectron spectroscopy. J. Mater. Res. 36, 26 (2021)

    Article  CAS  Google Scholar 

  86. T. Orvis, T. Cao, M. Surendran, H. Kumarasubramanian, A.S. Thind, A. Cunniff, R. Mishra, J. Ravichandran, Direct observation and control of surface termination in perovskite oxide heterostructures. Nano Lett. 21(10), 4160 (2021)

    Article  CAS  Google Scholar 

  87. T. Orvis, H. Kumarasubramanian, M. Surendran, S. Kutagulla, A. Cunniff, J. Ravichandran, In situ monitoring of composition and sensitivity to growth parameters of pulsed laser deposition. ACS Appl. Electron. Mater. 3(3), 1422 (2021)

    Article  CAS  Google Scholar 

  88. Y. Watanabe, Y.F. Nishimura, R. Suzuki, H. Uehara, T. Nimura, A. Beniya, N. Isomura, K. Asakura, S. Takakusagi, Portable ultrahigh-vacuum sample storage system for polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy. J. Vac. Sci. Technol. A. 34(2), 023201 (2015)

    Article  Google Scholar 

  89. M. Klausmeier-Brown, J. Eckstein, I. Bozovic, G. Virshup, Accurate measurement of atomic beam flux by pseudo-double-beam atomic absorption spectroscopy for growth of thin-film oxide superconductors. Appl. Phys. Lett. 60(5), 657 (1992)

    Article  CAS  Google Scholar 

  90. C. Lu, M.J. Lightner, C.A. Gogol, Rate controlling and composition analysis of alloy deposition processes by electron impact emission spectroscopy (EIES). J. Vac. Sci. Technol. 14(1), 103 (1977)

    Article  CAS  Google Scholar 

  91. H. Yamamoto, K. Aoki, A. Tsukada, M. Naito, Growth of Ba1−xKxBiO3 thin films by molecular beam epitaxy. Physica C 412–414, 192 (2004)

    Article  Google Scholar 

  92. C. Lu, C.D. Blissett, G. Diehl, An electron impact emission spectroscopy flux sensor for monitoring deposition rate at high background gas pressure with improved accuracy. J. Vac. Sci. Technol. A. 26(4), 956 (2008)

    Article  CAS  Google Scholar 

  93. J. Haeni, C.D. Theis, D.G. Schlom, RHEED intensity oscillations for the stoichiometric growth of SrTiO3 thin films by reactive molecular beam epitaxy. J. Electroceram. 4(2), 385 (2000)

    Article  CAS  Google Scholar 

  94. D. Schlom, J. Haeni, J. Lettieri, C. Theis, W. Tian, J. Jiang, X. Pan, Oxide nano-engineering using MBE. Mater. Sci. Eng. B. 87(3), 282 (2001)

    Article  Google Scholar 

  95. R.A. Kubiak, S.M. Newstead, A.R. Powell, E.H.C. Parker, T.E. Whall, T. Naylor, K. Bowen, Improved flux control from the Sentinel III electron impact emission spectroscopy system. J. Vac. Sci. Technol. A. 9(4), 2423 (1991)

    Article  Google Scholar 

  96. C.D. Theis, D.G. Schlom, Epitaxial lead titanate grown by MBE. J. Cryst. Growth. 174(1–4), 473 (1997)

    Article  CAS  Google Scholar 

  97. B. Jalan, P. Moetakef, S. Stemmer, Molecular beam epitaxy of SrTiO3 with a growth window. Appl. Phys. Lett. 95(3), 032906 (2009)

    Article  Google Scholar 

  98. C.D. Theis, D.G. Schlom, Cheap and stable titanium source for use in oxide molecular beam epitaxy systems. J. Vac. Sci. Technol. A. 14(4), 2677 (1996)

    Article  CAS  Google Scholar 

  99. Y.S. Kim, N. Bansal, C. Chaparro, H. Gross, S. Oh, Sr flux stability against oxidation in oxide-molecular-beam-epitaxy environment: flux, geometry, and pressure dependence. J. Vac. Sci. Technol. A. 28(2), 271 (2010)

    Article  CAS  Google Scholar 

  100. T.A. Cain, A.P. Kajdos and S. Stemmer: La-doped SrTiO3 films with large cryogenic thermoelectric power factors. Appl. Phys. Lett. 102(18), 182101 (2013).

  101. Y. Kozuka, Y. Hikita, C. Bell, H. Hwang, Dramatic mobility enhancements in doped SrTiO3 thin films by defect management. Appl. Phys. Lett. 97(1), 012107 (2010)

    Article  Google Scholar 

  102. Y. Matsubara, K.S. Takahashi, Y. Tokura, M. Kawasaki, Single-crystalline BaTiO3 films grown by gas-source molecular beam epitaxy. Appl. Phys. Express. 7(12), 125502 (2014)

    Article  Google Scholar 

  103. P. Moetakef, J.Y. Zhang, S. Raghavan, A.P. Kajdos, S. Stemmer, Growth window and effect of substrate symmetry in hybrid molecular beam epitaxy of a Mott insulating rare earth titanate. J. Vac. Sci. Technol. A. 31(4), 041503 (2013)

    Article  Google Scholar 

  104. S. Raghavan, J.Y. Zhang, O.F. Shoron, S. Stemmer, Probing the metal-insulator transition in BaTiO3 by electrostatic doping. Phys. Rev. Lett. 117(3), 037602 (2016)

    Article  Google Scholar 

  105. J.A. Moyer, C. Eaton, R. Engel-Herbert, Highly conductive SrVO3 as a bottom electrode for functional perovskite oxides. Adv. Mater. 25(26), 3578 (2013)

    Article  CAS  Google Scholar 

  106. A. Prakash, J. Dewey, H. Yun, J.S. Jeong, K.A. Mkhoyan, B. Jalan, Hybrid molecular beam epitaxy for the growth of stoichiometric BaSnO3. J. Vac. Sci. Technol. A. 33(6), 060608 (2015)

    Article  Google Scholar 

  107. T. Wang, L.R. Thoutam, A. Prakash, W. Nunn, G. Haugstad, B. Jalan, Defect-driven localization crossovers in MBE-grown La-doped SrSnO3 films. Phys. Rev. Mater. 1(6), 061601 (2017)

    Article  Google Scholar 

  108. A. Prakash, P. Xu, X. Wu, G. Haugstad, X. Wang, B. Jalan, Adsorption-controlled growth and the influence of stoichiometry on electronic transport in hybrid molecular beam epitaxy-grown BaSnO3 films. J. Mater. Chem. C. 5(23), 5730 (2017)

    Article  CAS  Google Scholar 

  109. W. Braun, M. Jäger, G. Laskin, P. Ngabonziza, W. Voesch, P. Wittlich, J. Mannhart, In situ thermal preparation of oxide surfaces. APL Mater. 8(7), 071112 (2020)

    Article  CAS  Google Scholar 

  110. J.R. Rumble, CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2020)

    Google Scholar 

  111. D.A. Muller, N. Nakagawa, A. Ohtomo, J.L. Grazul, H.Y. Hwang, Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature 430(7000), 657 (2004)

    Article  CAS  Google Scholar 

  112. H. Yang, Y. Wang, H. Wang, Q. Jia, Oxygen concentration and its effect on the leakage current in BiFeO3 thin films. Appl. Phys. Lett. 96(1), 012909 (2010)

    Article  Google Scholar 

  113. S. Raghavan, T. Schumann, H. Kim, J.Y. Zhang, T.A. Cain, S. Stemmer, High-mobility BaSnO3 grown by oxide molecular beam epitaxy. APL Mater. 4(1), 016106 (2016)

    Article  Google Scholar 

  114. K. Ganguly, A. Prakash, B. Jalan, C. Leighton, Mobility-electron density relation probed via controlled oxygen vacancy doping in epitaxial BaSnO3. APL Mater. 5(5), 056102 (2017)

    Article  Google Scholar 

  115. D.G. Schlom, J.S. Harris, MBE growth of high-Tc superconductors, in molecular beam epitaxy - applications to key materials, edited by R. F. C. Farrow (Noyes, Park Ridge, City, 1995), pp. 505.

  116. D. Schlom, J. Eckstein, E. Hellman, S. Streiffer, J. Harris Jr., M. Beasley, J. Bravman, T. Geballe, C. Webb, K. Von Dessonneck, F. Turner, Molecular beam epitaxy of layered Dy-Ba-Cu-O compounds. Appl. Phys. Lett. 53(17), 1660 (1988)

    Article  CAS  Google Scholar 

  117. J.P. Locquet, E. Mächler, Characterization of a radio frequency plasma source for molecular beam epitaxial growth of high-Tc superconductor films. J. Vac. Sci. Technol. A. 10(5), 3100 (1992)

    Article  CAS  Google Scholar 

  118. Y. Gao, S.A. Chambers, Heteroepitaxial growth of α-Fe2O3, γ-Fe2O3 and Fe3O4 thin films by oxygen-plasma-assisted molecular beam epitaxy. J. Cryst. Growth. 174(1–4), 446 (1997)

    Article  CAS  Google Scholar 

  119. D. Lind, S. Berry, G. Chern, H. Mathias, L. Testardi, Growth and structural characterization of Fe3O4 and NiO thin films and superlattices grown by oxygen-plasma-assisted molecular-beam epitaxy. Phys. Rev. B. 45(4), 1838 (1992)

    Article  CAS  Google Scholar 

  120. N. Materer, R.S. Goodman, S.R. Leone, Comparison of electron cyclotron resonance and radio-frequency inductively coupled plasmas of Ar and N2: Neutral kinetic energies and source gas cracking. J. Appl. Phys. 83(4), 1917 (1998)

    Article  CAS  Google Scholar 

  121. K. Sakurai, D. Iwata, S. Fujita and S. Fujita, Growth of ZnO by molecular beam epitaxy using NO2 as oxygen source. Jpn. J. Appl. Phys. 38(Part 1, No. 4B), 2606 (1999).

  122. N. Izyumskaya, V. Avrutin, W. Schoch, A. El-Shaer, F. Reuß, T. Gruber, A. Waag, Molecular beam epitaxy of high-quality ZnO using hydrogen peroxide as an oxidant. J. Cryst. Growth. 269(2), 356 (2004)

    Article  CAS  Google Scholar 

  123. T. Schumann, S. Raghavan, K. Ahadi, H. Kim, S. Stemmer, Structure and optical band gaps of (Ba, Sr)SnO3 films grown by molecular beam epitaxy. J. Vac. Sci. Technol. A. 34(5), 050601 (2016)

    Article  Google Scholar 

  124. L. Zhang, R. Engel-Herbert, Growth of SrTiO3 on Si (001) by hybrid molecular beam epitaxy. Phys. Status Solidi RRL. 8(11), 917 (2014)

    Article  CAS  Google Scholar 

  125. T. Truttmann, A. Prakash, J. Yue, T.E. Mates, B. Jalan, Dopant solubility and charge compensation in La-doped SrSnO3 films. Appl. Phys. Lett. 115(15), 152103 (2019)

    Article  Google Scholar 

  126. T.K. Truttmann, F. Liu, J. Garcia-Barriocanal, R.D. James, B. Jalan, Strain relaxation via phase transformation in high-mobility SrSnO3 films. ACS Appl. Electron. Mater. 3(3), 1127 (2021)

    Article  CAS  Google Scholar 

  127. T. Wang, A. Prakash, Y. Dong, T. Truttmann, A. Bucsek, R. James, D.D. Fong, J.-W. Kim, P.J. Ryan, H. Zhou, T. Birol, B. Jalan, Engineering SrSnO3 phases and electron mobility at room temperature using epitaxial strain. ACS Appl. Mater. Interfaces. 10(50), 43802 (2018)

    Article  CAS  Google Scholar 

  128. E.S. Hellman, E.H. Hartford, Effects of oxygen on the sublimation of alkaline earths from effusion cells. J. Vac. Sci. Technol. B. 12(2), 1178 (1994)

    Article  CAS  Google Scholar 

  129. Y.-S. Kim, N. Bansal, S. Oh, Simple self-gettering differential-pump for minimizing source oxidation in oxide-MBE environment. J. Vac. Sci. Technol. A. 29(4), 041505 (2011)

    Article  Google Scholar 

  130. Y.-S. Kim, N. Bansal, S. Oh, Crucible aperture: an effective way to reduce source oxidation in oxide molecular beam epitaxy process. J. Vac. Sci. Technol. A. 28(4), 600 (2010)

    Article  CAS  Google Scholar 

  131. W. Braun, J. Mannhart, Film deposition by thermal laser evaporation. AIP Adv. 9(8), 085310 (2019)

    Article  Google Scholar 

  132. I. Sadeghi, K. Ye, M. Xu, J.M. LeBeau, R. Jaramillo, Making BaZrS3 chalcogenide perovskite thin films by molecular beam epitaxy. Adv. Funct. Mater. 2105563 (2021).

  133. M. Brahlek, G. Rimal, J.M. Ok, D. Mukherjee, A.R. Mazza, Q. Lu, H.N. Lee, T.Z. Ward, R.R. Unocic, G. Eres, S. Oh, Growth of metallic delafossite PdCoO2 by molecular beam epitaxy. Phys. Rev. Mater. 3(9), 093401 (2019)

    Article  CAS  Google Scholar 

  134. Y.F. Nie, P. King, C. Kim, M. Uchida, H. Wei, B.D. Faeth, J. Ruf, J. Ruff, L. Xie, X. Pan, C. Fennie, D. Schlom, K. Shen, Interplay of spin-orbit interactions, dimensionality, and octahedral rotations in semimetallic SrIrO3. Phys. Rev. Lett. 114(1), 016401 (2015)

    Article  CAS  Google Scholar 

  135. H.P. Nair, Y. Liu, J.P. Ruf, N.J. Schreiber, S.-L. Shang, D.J. Baek, B.H. Goodge, L.F. Kourkoutis, Z.-K. Liu, K.M. Shen, D.G. Schlom, Synthesis science of SrRuO3 and CaRuO3 epitaxial films with high residual resistivity ratios. APL Mater. 6(4), 046101 (2018)

    Article  Google Scholar 

  136. M. Uchida, T. Nomoto, M. Musashi, R. Arita, M. Kawasaki, Superconductivity in Uniquely Strained RuO2 Films. Phys. Rev. Lett. 125(14), 147001 (2020)

    Article  CAS  Google Scholar 

  137. J.P. Ruf, H. Paik, N.J. Schreiber, H.P. Nair, L. Miao, J.K. Kawasaki, J.N. Nelson, B.D. Faeth, Y. Lee, B.H. Goodge, B. Pamuk, C.J. Fennie, L.F. Kourkoutis, D.G. Schlom, K.M. Shen, Strain-stabilized superconductivity. Nat. Commun. 12(1), 1 (2021)

    Article  Google Scholar 

  138. J.C. Bean, E.A. Sadowski, Silicon MBE apparatus for uniform high-rate deposition on standard format wafers. J. Vac. Sci. Technol. 20(2), 137 (1982)

    Article  CAS  Google Scholar 

  139. T. Sonoda, M. Ito, M. Kobiki, K. Hayashi, S. Takamiya, S. Mitsui, Ultra-high throughput of GaAs and (AlGa)As layers grown by MBE with a specially designed MBE system. J. Cryst. Growth. 95(1–4), 317 (1989)

    Article  CAS  Google Scholar 

  140. K. Kushi, H. Sasamoto, D. Sugihara, S. Nakamura, A. Kikuchi, K. Kishino: High speed growth of device quality GaN and InGaN by RF-MBE. Mater. Sci. Eng., B. 59(1–3), 65 (1999).

  141. P. Vogt, F.V. Hensling, K. Azizie, C.S. Chang, D. Turner, J. Park, J.P. McCandless, H. Paik, B.J. Bocklund, G. Hoffman, O. Bierwagen, D. Jena, H.G. Xing, S. Mou, D.A. Muller, S.-L. Shang, Z.-K. Liu, D.G. Schlom, Adsorption-controlled growth of Ga2O3 by suboxide molecular-beam epitaxy. APL Mater. 9(3), 031101 (2021)

    Article  CAS  Google Scholar 

  142. J. Lapano, M. Brahlek, L. Zhang, J. Roth, A. Pogrebnyakov, R. Engel-Herbert, Scaling growth rates for perovskite oxide virtual substrates on silicon. Nature Commun. 10(1), 1 (2019)

    Article  CAS  Google Scholar 

  143. A.P.N. Tchiomo, W. Braun, B.P. Doyle, W. Sigle, P. van Aken, J. Mannhart, P. Ngabonziza, High-temperature-grown buffer layer boosts electron mobility in epitaxial La-doped BaSnO3/SrZrO3 heterostructures. APL Mater. 7(4), 041119 (2019)

    Article  Google Scholar 

  144. J. Shin, Y.M. Kim, Y. Kim, C. Park, K. Char, High mobility BaSnO3 films and field effect transistors on non-perovskite MgO substrate. Appl. Phys. Lett. 109(26), 262102 (2016)

    Article  Google Scholar 

  145. J. Shiogai, K. Nishihara, K. Sato, A. Tsukazaki, Improvement of electron mobility in La:BaSnO3 thin films by insertion of an atomically flat insulating (Sr, Ba)SnO3 buffer layer. AIP Adv. 6(6), 065305 (2016)

    Article  Google Scholar 

  146. H.J. Kim, U. Kim, T.H. Kim, J. Kim, H.M. Kim, B.-G. Jeon, W.-J. Lee, H.S. Mun, K.T. Hong, J. Yu, K. Char, K.H. Kim, Physical properties of transparent perovskite oxides (Ba, La)SnO3 with high electrical mobility at room temperature. Phys. Rev. B. 86(16), 165205 (2012)

    Article  Google Scholar 

  147. E. McCalla, D. Phelan, M.J. Krogstad, B. Dabrowski, C. Leighton, Electrical transport, magnetic, and thermodynamic properties of La-, Pr-, and Nd-doped BaSnO3-δ single crystals. Phys. Rev. Mater. 2(8), 084601 (2018)

    Article  CAS  Google Scholar 

  148. Z. Galazka, R. Uecker, K. Irmscher, D. Klimm, R. Bertram, A. Kwasniewski, M. Naumann, R. Schewski, M. Pietsch, U. Juda, A. Fiedler, M. Albrecht, S. Ganschow, T. Markurt, C. Guguschev, M. Bickermann, Melt growth and properties of bulk BaSnO3 single crystals. J. Condens. Matter Phys. 29(7), 075701 (2016)

    Article  Google Scholar 

  149. E.H. Mountstevens, J.P. Attfield, S.A.T. Redfern, Cation-size control of structural phase transitions in tin perovskites. J. Condens. Matter Phys. 15(49), 8315 (2003)

    Article  CAS  Google Scholar 

  150. R. Uecker, R. Bertram, M. Brützam, Z. Galazka, T.M. Gesing, C. Guguschev, D. Klimm, M. Klupsch, A. Kwasniewski, D.G. Schlom, Large-lattice-parameter perovskite single-crystal substrates. J. Cryst. Growth. 457, 137 (2017)

    Article  CAS  Google Scholar 

  151. C. Guguschev, D. Klimm, M. Brützam, T.M. Gesing, M. Gogolin, H. Paik, A. Dittmar, V.J. Fratello, D.G. Schlom, Single crystal growth and characterization of Ba2ScNbO6—a novel substrate for BaSnO3 films. J. Cryst. Growth. 528, 125263 (2019)

    Article  CAS  Google Scholar 

  152. S. Yu, D. Yoon, J. Son, Enhancing electron mobility in La-doped BaSnO3 thin films by thermal strain to annihilate extended defects. Appl. Phys. Lett. 108(26), 262101 (2016)

    Article  Google Scholar 

  153. H.J. Cho, T. Onozato, M. Wei, A. Sanchela, H. Ohta, Effects of vacuum annealing on the electron mobility of epitaxial La-doped BaSnO3 films. APL Mater. 7(2), 022507 (2018)

    Article  Google Scholar 

  154. H.M. Kim, U. Kim, C. Park, H. Kwon, K. Char, Thermally stable pn-junctions based on a single transparent perovskite semiconductor BaSnO3. APL Mater. 4(5), 056105 (2016)

    Article  Google Scholar 

  155. J. Wang, B. Luo, Electronic properties of p-type BaSnO3 thin films. Ceram. Int. 46(16, Part A), 25678 (2020).

  156. M. Glerup, K.S. Knight, F.W. Poulsen, High temperature structural phase transitions in SrSnO3 perovskite. Mater. Res. Bull. 40(3), 507 (2005)

    Article  CAS  Google Scholar 

  157. M.C.F. Alves, S. Boursicot, S. Ollivier, V. Bouquet, S. Députier, A. Perrin, I.T. Weber, A.G. Souza, I.M.G. Santos, M. Guilloux-Viry, Synthesis of SrSnO3 thin films by pulsed laser deposition: influence of substrate and deposition temperature. Thin Solid Films 519(2), 614 (2010)

    Article  CAS  Google Scholar 

  158. Q. Liu, J. Dai, X. Zhang, G. Zhu, Z. Liu, G. Ding, Perovskite-type transparent and conductive oxide films: Sb- and Nd-doped SrSnO3. Thin Solid Films 519(18), 6059 (2011)

    Article  CAS  Google Scholar 

  159. E. Baba, D. Kan, Y. Yamada, M. Haruta, H. Kurata, Y. Kanemitsu, Y. Shimakawa, Optical and transport properties of transparent conducting La-doped SrSnO3 thin films. J. Phys. D 48(45), 455106 (2015)

    Article  Google Scholar 

  160. Q. Liu, F. Jin, G. Gao, W. Wang, Ta doped SrSnO3 epitaxial films as transparent conductive oxide. J. Alloys Compd. 717, 62 (2017)

    Article  CAS  Google Scholar 

  161. Q. Gao, H. Chen, K. Li, Q. Liu, Band gap engineering and room-temperature ferromagnetism by oxygen vacancies in SrSnO3 epitaxial films. ACS Appl. Mater. Interfaces. 10(32), 27503 (2018)

    Article  CAS  Google Scholar 

  162. Q. Gao, K. Li, L. Zhao, K. Zhang, H. Li, J. Zhang, Q. Liu, Wide-range band-gap tuning and high electrical conductivity in La- and Pb-doped SrSnO3 epitaxial films. ACS Appl. Mater. Interfaces. 11(28), 25605 (2019)

    Article  CAS  Google Scholar 

  163. K. Li, Q. Gao, L. Zhao, Q. Liu, Electrical and optical properties of Nb-doped SrSnO3 epitaxial films deposited by pulsed laser deposition. Nanoscale Res. Lett. 15(1), 164 (2020)

    Article  Google Scholar 

  164. M. Wei, H.J. Cho, H. Ohta, Tuning of the optoelectronic properties for transparent oxide semiconductor ASnO3 by modulating the size of A-ions. ACS Appl. Electron. Mater. 2(12), 3971 (2020)

    Article  CAS  Google Scholar 

  165. M. Wei, A.V. Sanchela, B. Feng, Y. Ikuhara, H.J. Cho, H. Ohta, High electrical conducting deep-ultraviolet-transparent oxide semiconductor La-doped SrSnO3 exceeding ∼3000 S cm−1. Appl. Phys. Lett. 116(2), 022103 (2020)

    Article  Google Scholar 

  166. T.K. Truttmann, J.-J. Zhou, I.-T. Lu, A.K. Rajapitamahuni, F. Liu, M. Bernardi, T. Mates, B. Jalan: Combined Experimental-Theoretical Study of Electron Mobility-Limiting Mechanisms in SrSnO3. Unpublished manuscript (2021)

  167. K. Nam, J. Li, M. Nakarmi, J. Lin, H. Jiang, Achieving highly conductive AlGaN alloys with high Al contents. Appl. Phys. Lett. 81(6), 1038 (2002)

    Article  CAS  Google Scholar 

  168. B. Borisov, V. Kuryatkov, Y. Kudryavtsev, R. Asomoza, S. Nikishin, D. Song, M. Holtz and H. Temkin: Si-doped AlxGa1−xN (0.56⩽×⩽ 1) layers grown by molecular beam epitaxy with ammonia. Appl. Phys. Lett. 87(13), 132106 (2005).

  169. R. Collazo, S. Mita, J. Xie, A. Rice, J. Tweedie, R. Dalmau, Z. Sitar, Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications. Phys. Status Solidi C. 8(7–8), 2031 (2011)

    Article  CAS  Google Scholar 

  170. M. Nakarmi, K. Kim, K. Zhu, J. Lin and H. Jiang: Transport properties of highly conductive n-type Al-rich AlxGa1−xN (x⩾ 0.7). Appl. Phys. Lett. 85(17), 3769 (2004).

  171. I. Bryan, Z. Bryan, S. Washiyama, P. Reddy, B. Gaddy, B. Sarkar, M.H. Breckenridge, Q. Guo, M. Bobea, J. Tweedie, Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD. Appl. Phys. Lett. 112(6), 062102 (2018)

    Article  Google Scholar 

  172. T. Ive, O. Brandt, H. Kostial, K.J. Friedland, L. Däweritz, K.H. Ploog, Controlled n-type doping of AlN: Si films grown on 6H-SiC (0001) by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 86(2), 024106 (2005)

    Article  Google Scholar 

  173. M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, R. Schewski, G. Wagner, Si-and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates. ECS J. Solid State Sci. Technol. 6(2), Q3040 (2016)

    Article  Google Scholar 

  174. L.R. Thoutam, J. Yue, A. Prakash, T. Wang, K.E. Elangovan, B. Jalan, Electrostatic control of insulator-metal transition in La-doped SrSnO3 films. ACS Appl. Mater. Interfaces. 11(8), 7666 (2019)

    Article  CAS  Google Scholar 

  175. J. Yue, A. Prakash, M.C. Robbins, S.J. Koester, B. Jalan, Depletion mode MOSFET using La-doped BaSnO3 as a channel material. ACS Appl. Mater. Interfaces. 10(25), 21061 (2018)

    Article  CAS  Google Scholar 

  176. V.S.K. Chaganti, A. Prakash, J. Yue, B. Jalan, S.J. Koester, Demonstration of a depletion-mode SrSnO3 n-channel MESFET. IEEE Electron Device Lett. 39(9), 1381 (2018)

    Article  CAS  Google Scholar 

  177. V.S.K. Chaganti, T.K. Truttmann, F. Liu, B. Jalan, S.J. Koester, SrSnO3 field-effect transistors with recessed gate electrodes. IEEE Electron Device Lett. 41(9), 1428 (2020)

    Article  CAS  Google Scholar 

  178. J. Wen, V.S.K. Chaganti, T.K. Truttmann, F. Liu, B. Jalan, S.J. Koester, SrSnO3 metal-semiconductor field-effect transistor with GHz operation. IEEE Electron Device Lett. 42(1), 74 (2020)

    Article  Google Scholar 

  179. S. Wemple, Some transport properties of oxygen-deficient single-crystal potassium tantalate (KTaO3). Phys. Rev. 137(5A), A1575 (1965)

    Article  Google Scholar 

  180. K. Ueno, S. Nakamura, H. Shimotani, H. Yuan, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki, Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat. Nanotechnol. 6(7), 408 (2011)

    Article  CAS  Google Scholar 

  181. C. Liu, X. Yan, D. Jin, Y. Ma, H.-W. Hsiao, Y. Lin, T.M. Bretz-Sullivan, X. Zhou, J. Pearson, B. Fisher, J.S. Jiang, W. Han, J.-M. Zuo, J. Wen, D.D. Fong, J. Sun, H. Zhou, A. Bhattacharya, Two-dimensional superconductivity and anisotropic transport at KTaO3 (111) interfaces. Science 371, 716 (2021)

    Article  CAS  Google Scholar 

  182. F. Gitmans, Z. Sitar, P. Günter, Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy. Vacuum 46(8), 939 (1995)

    Article  CAS  Google Scholar 

  183. Patrick Gemperline, S. Thapa, S. Provence and R.B. Comes: Spin-Orbit Coupled 2-Dimensional Electron Gases in SrTaO3 Heterostructures. https://meetings.aps.org/Meeting/MAR21/Session/P55.12. (2021).

  184. L. Weston, L. Bjaalie, K. Krishnaswamy, C. Van de Walle, Origins of n-type doping difficulties in perovskite stannates. Phys. Rev. B. 97(5), 054112 (2018)

    Article  CAS  Google Scholar 

  185. Z. Yan, H. Takei, H. Kawazoe, Electrical conductivity in transparent ZnGa2O4: reduction and surface-layer structure transformation. J. Am. Ceram. Soc. 81(1), 180 (1998)

    Article  CAS  Google Scholar 

  186. S.K. Sampath, J.F. Cordaro, Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels. J. Am. Ceram. Soc. 81(3), 649 (1998)

    Article  CAS  Google Scholar 

  187. Z. Galazka, S. Ganschow, R. Schewski, K. Irmscher, D. Klimm, A. Kwasniewski, M. Pietsch, A. Fiedler, I. Schulze-Jonack, M. Albrecht, T. Schröder, M. Bickermann, Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals. APL Mater. 7(2), 022512 (2019)

    Article  Google Scholar 

  188. Z. Galazka, D. Klimm, K. Irmscher, R. Uecker, M. Pietsch, R. Bertram, M. Naumann, M. Albrecht, A. Kwasniewski, R. Schewski, M. Bickermann, MgGa2O4 as a new wide bandgap transparent semiconducting oxide: growth and properties of bulk single crystals. Phys. Status Solidi A. 212(7), 1455 (2015)

    Article  CAS  Google Scholar 

  189. B. Thielert, C. Janowitz, Z. Galazka, M. Mulazzi, Theoretical and experimental investigation of the electronic properties of the wide band-gap transparent semiconductor MgGa2O4. Phys. Rev. B. 97(23), 235309 (2018)

    Article  CAS  Google Scholar 

  190. Y. Jang, S. Hong, J. Seo, H. Cho, K. Char, Z. Galazka, Thin film transistors based on ultra-wide bandgap spinel ZnGa2O4. Appl. Phys. Lett. 116(20), 202104 (2020)

    Article  CAS  Google Scholar 

  191. M. Sousa, C. Rossel, C. Marchiori, H. Siegwart, D. Caimi, J.P. Locquet, D.J. Webb, R. Germann, J. Fompeyrine, K. Babich, J.W. Seo, C. Dieker, Optical properties of epitaxial SrHfO3 thin films grown on Si. J. Appl. Phys. 102(10), 104103 (2007)

    Article  Google Scholar 

  192. T. Tsurumi, T. Harigai, D. Tanaka, S.-M. Nam, H. Kakemoto, S. Wada, K. Saito, Artificial ferroelectricity in perovskite superlattices. Appl. Phys. Lett. 85(21), 5016 (2004)

    Article  CAS  Google Scholar 

  193. C. Rossel, B. Mereu, C. Marchiori, D. Caimi, M. Sousa, A. Guiller, H. Siegwart, R. Germann, J.P. Locquet, J. Fompeyrine, D.J. Webb, C. Dieker, J.W. Seo, Field-effect transistors with SrHfO3 as gate oxide. Appl. Phys. Lett. 89(5), 053506 (2006)

    Article  Google Scholar 

  194. Z. Zhong, P. Hansmann, Band alignment and charge transfer in complex oxide interfaces. Phys. Rev. X. 7(1), 011023 (2017)

    Google Scholar 

  195. R. Engel-Herbert, Y. Hwang, J. Cagnon, S. Stemmer, Metal-oxide-semiconductor capacitors with ZrO2 dielectrics grown on In0.53Ga0.47As by chemical beam deposition. Appl. Phys. Lett. 95(6), 062908 (2009)

    Article  Google Scholar 

  196. Y. Hwang, V. Chobpattana, J.Y. Zhang, J.M. LeBeau, R. Engel-Herbert, S. Stemmer, Al-doped HfO2/In0.53Ga0.47As metal-oxide-semiconductor capacitors. Appl. Phys. Lett. 98(14), 142901 (2011)

    Article  Google Scholar 

  197. A.P. Kajdos, D.G. Ouellette, T.A. Cain, S. Stemmer, Two-dimensional electron gas in a modulation-doped SrTiO3/Sr(Ti, Zr)O3 heterostructure. Appl. Phys. Lett. 103(8), 082120 (2013)

    Article  Google Scholar 

  198. H. Mizoguchi, P.M. Woodward, S.-H. Byeon, J.B. Parise, Polymorphism in NaSbO3: structure and bonding in metal oxides. J. Am. Chem. Soc. 126(10), 3175 (2004)

    Article  CAS  Google Scholar 

  199. K.H. Zhang, K. Xi, M.G. Blamire, R.G. Egdell, P-type transparent conducting oxides. J. Condens. Matter Phys. 28(38), 383002 (2016)

    Article  Google Scholar 

  200. D. Shin, J. Foord, R. Egdell, A. Walsh, Electronic structure of CuCrO2 thin films grown on Al2O3 (001) by oxygen plasma assisted molecular beam epitaxy. J. Appl. Phys. 112(11), 113718 (2012)

    Article  Google Scholar 

  201. G. Jellison Jr., I. Paulauskas, L. Boatner, D. Singh, Optical functions of KTaO3 as determined by spectroscopic ellipsometry and comparison with band structure calculations. Phys. Rev. B. 74(15), 155130 (2006)

    Article  Google Scholar 

  202. T. Zhang, K. Zhao, J. Yu, J. Jin, Y. Qi, H. Li, X. Hou, G. Liu, Photocatalytic water splitting for hydrogen generation on cubic, orthorhombic, and tetragonal KNbO3 microcubes. Nanoscale 5(18), 8375 (2013)

    Article  CAS  Google Scholar 

  203. E. Chikoidze, C. Sartel, I. Madaci, H. Mohamed, C. Vilar, B. Ballesteros, F. Belarre, E. del Corro, P. Vales-Castro, G. Sauthier, L. Li, M. Jennings, V. Sallet, Y. Dumont, A. Pérez-Tomás, p-type ultrawide-band-gap spinel ZnGa2O4: new perspectives for energy electronics. Cryst. Growth Des. 20(4), 2535 (2020)

    Article  CAS  Google Scholar 

  204. L. Bjaalie, B. Himmetoglu, L. Weston, A. Janotti, C. Van de Walle, Oxide interfaces for novel electronic applications. New J. Phys. 16(2), 025005 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Scott Chambers for helpful discussion and proof-reading. We also thank Justin Ramberger and Javier Garcia Barriocanal for their helpful discussion regarding electron-beam evaporation and ozone MBE, respectively. This review paper acknowledges support from the Air Force Office of Scientific Research (AFOSR) through Grant Nos. FA9550-19-1-0245 and FA9550-21-1-0025 and through NSF DMR-1741801. We also acknowledge support from the U.S. Department of Energy through DE-SC002021 and the University of Minnesota Center for Quantum Materials, under Award No. DE-SC0016371. The work also benefitted from the Norwegian Centennial Chair Program (NOCC) and Vannevar Bush Faculty Fellowship and the UMN MRSEC program under Award No. DMR- 2011401. W.N. thanks support from the UMN doctoral dissertation fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Jalan.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunn, W., Truttmann, T.K. & Jalan, B. A review of molecular-beam epitaxy of wide bandgap complex oxide semiconductors. Journal of Materials Research 36, 4846–4864 (2021). https://doi.org/10.1557/s43578-021-00377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00377-1

Navigation