Skip to main content
Log in

Theoretical characterization and computational discovery of ultra-wide-band-gap semiconductors with predictive atomistic calculations

  • Invited Feature Paper-Review
  • Focus Issue: Ultra-wide Bandgap Materials, Devices, and Systems
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

First-principles calculations based on density-functional theory have become an established theoretical characterization toolkit to understand and predict the structural and functional properties of materials. In this work, we review recent methodological developments and applications of density-functional theory techniques that relate to the study of ultra-wide-band-gap semiconductors. The topics we cover are directly relevant to the fabrication and operation of devices, such as the stability, synthesis, and doping of semiconductors, along with a survey of work relating to their charge and heat transport, optical properties, and carrier recombination. We further address how high-throughput calculations and materials-informatics techniques can aid the discovery of new ultra-wide-band-gap semiconducting materials with targeted functionalities. Our review highlights how density-functional theory techniques can work in tandem with experiment to advance the state of the art in ultra-wide-band-gap semiconductor research.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Copyright 2019, APS. Panel (b) reprinted with permission from Ref. [3], Copyright 2018, AIP Publishing.

Figure 3

Copyright 2017, Elsevier.

Figure 4

Copyright 2016, AIP Publishing. Panel (c) reprinted with permission from Ref. [40], Copyright 2011, AIP Publishing. Panel (d) reprinted with permission from Ref. [41], Copyright 2020, IOP Publishing. Panel (e) reprinted with permission from Ref. [42], Copyright 2015, AIP Publishing.

Figure 5

Copyright 2014, APS. Panel (b) reprinted with permission from Ref. [55], Copyright 2019, APS. Panel (c) reprinted with permission from Ref. [56], Copyright 2020, Wiley. Panel (d) adapted with permission from Ref. [57], Copyright 2017, APS.

Figure 6

Copyright 2019, APS. Panel (b) adapted reprinted with permission from Ref. [68], Copyright 2016, AIP Publishing. Panel (c) reprinted with permission from Ref. [69], Copyright 2020, AIP Publishing. Panel (d) reprinted with permission from Ref. [70], Copyright 2021, AIP Publishing.

Figure 7

Copyright 2021, Springer Nature. Panel (b) reprinted with permission from Ref. [88], Copyright 2012, APS. Panel (c) reprinted from Ref. [89]. Panel (d) reprinted with permission from Ref. [90], Copyright 2019, APS.

Figure 8

Copyright 2019, APS. Panel (b) reprinted with permission from Ref. [94], Copyright 2017, AIP Publishing. Panel (c) reprinted from Ref. [83].

Figure 9

Copyright 2019, AIP Publishing. Panel (b) reprinted with permission from Ref. [105], Copyright 2015, IOP Publishing. Panel (c) reprinted with permission from Ref. [106], Copyright 2019, AIP Publishing. Panel (d) reprinted with permission from Ref. [107], Copyright 2016, APS. Panel (e) reprinted from Ref. [108].

Figure 10

Copyright 2016, APS. Panel (b) reprinted from Ref. [125]. Panel (c) reprinted with permission from Ref. [126], Copyright 2015, APS.

Similar content being viewed by others

References

  1. J.Y. Tsao, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Johnson, K.A. Jones, R.J. Kaplar, S. Rajan, C.G. Van de Walle, E. Bellotti, C.L. Chua, R. Collazo, M.E. Coltrin, J.A. Cooper, K.R. Evans, S. Graham, T.A. Grotjohn, E.R. Heller, M. Higashiwaki, M.S. Islam, P.W. Juodawlkis, M.A. Khan, A.D. Koehler, J.H. Leach, U.K. Mishra, R.J. Nemanich, R.C.N. Pilawa-Podgurski, J.B. Shealy, Z. Sitar, M.J. Tadjer, A.F. Witulski, M. Wraback, J.A. Simmons, Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv. Electron. Mater. 4(1), 1 (2018)

    Article  Google Scholar 

  2. A. Kyrtsos, M. Matsubara, E. Bellotti, First-principles study of the impact of the atomic configuration on the electronic properties of AlxGa1-xN alloys. Phys. Rev. B 99, 035201 (2019)

    Article  CAS  Google Scholar 

  3. H. Peelaers, J.B. Varley, J.S. Speck, C.G. Van de Walle, Structural and electronic properties of Ga2O3-Al2O3 alloys. Appl. Phys. Lett. 112, 242101 (2018)

    Article  Google Scholar 

  4. F. Giustino, Materials Modelling Using Density Functional Theory: Properties and Predictions (Oxford University Press, New York, 2014)

    Google Scholar 

  5. N. Marzari, A. Ferretti, C. Wolverton, Electronic-structure methods for materials design. Nat. Mater. 20(6), 736 (2021)

    Article  CAS  Google Scholar 

  6. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. De Gironcoli, P. Delugas, R.A. Distasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.Y. Ko, A. Kokalj, E. Kücükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N.L. Nguyen, H.V. Nguyen, A. Otero-De-La-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A.P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

  7. A.H. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L. Baguet, J. Bieder, F. Bottin, J. Bouchet, E. Bousquet, F. Bruneval, G. Brunin, D. Caliste, M. Côté, J. Denier, C. Dreyer, P. Ghosez, M. Giantomassi, Y. Gillet, O. Gingras, D.R. Hamann, G. Hautier, F. Jollet, G. Jomard, A. Martin, H.P.C. Miranda, F. Naccarato, G. Petretto, N.A. Pike, V. Planes, S. Prokhorenko, T. Rangel, F. Ricci, G.M. Rignanese, M. Royo, M. Stengel, M. Torrent, M.J. Van Setten, B. Van Troeye, M.J. Verstraete, J. Wiktor, J.W. Zwanziger, X. Gonze, ABINIT: overview and focus on selected capabilities. J. Chem. Phys. 152, 124102 (2020)

    Article  CAS  Google Scholar 

  8. J. Hafner, Ab-initio simulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29, 2044 (2008)

    Article  CAS  Google Scholar 

  9. D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45(7), 566 (1980)

    Article  CAS  Google Scholar 

  10. J. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23(10), 5048 (1981)

    Article  CAS  Google Scholar 

  11. J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  CAS  Google Scholar 

  12. A. van de Walle, M. Asta, G. Ceder, The alloy theoretic automated toolkit: a user guide. Calphad 26(4), 539 (2002)

    Article  Google Scholar 

  13. J. Heyd, G.E. Scuseria, M. Ernzerhof, Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 124(21), 219906 (2006).

  14. L. Lymperakis, J. Neugebauer, Large anisotropic adatom kinetics on nonpolar GaN surfaces: consequences for surface morphologies and nanowire growth. Phys. Rev. B 79(24), 241308 (2009)

    Article  Google Scholar 

  15. R. King-Smith, D. Vanderbilt, Theory of polarization of crystalline solids. Phys. Rev. B 47(3), 1651 (1993)

    Article  CAS  Google Scholar 

  16. C.E. Dreyer, A. Janotti, C.G. Van de Walle, D. Vanderbilt, Correct implementation of polarization constants in wurtzite materials and impact on III-nitrides. Phys. Rev. X 6(2), 021038 (2016)

    Google Scholar 

  17. S.B. Cho, R. Mishra, Epitaxial engineering of polar ϵ-Ga2O3 for tunable two-dimensional electron gas at the heterointerface. Appl. Phys. Lett. 112, 162101 (2018)

    Article  Google Scholar 

  18. N.L. Adamski, C.E. Dreyer, C.G. Van de Walle, Giant polarization charge density at lattice-matched GaN/ScN interfaces. Appl. Phys. Lett. 115, 232103 (2019)

    Article  Google Scholar 

  19. C.M. Jones, C.H. Teng, Q. Yan, P.C. Ku, E. Kioupakis, Impact of carrier localization on recombination in InGaN quantum wells and the efficiency of nitride light-emitting diodes: insights from theory and numerical simulations. Appl. Phys. Lett. 111, 113501 (2017)

    Article  Google Scholar 

  20. K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso, S. De Gironcoli, T. Deutsch, J.K. Dewhurst, I. Di Marco, C. Draxl, M. Dułak, O. Eriksson, J.A. Flores-Livas, K.F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Grånäs, E.K.U. Gross, A. Gulans, F. Gygi, D.R. Hamann, P.J. Hasnip, N.A.W. Holzwarth, D. Iuşan, D.B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küçükbenli, Y.O. Kvashnin, I.L.M. Locht, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C.J. Pickard, W. Poelmans, M.I.J. Probert, K. Refson, M. Richter, G.M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M.J. Van Setten, V. Van Speybroeck, J.M. Wills, J.R. Yates, G.X. Zhang, S. Cottenier, Reproducibility in density functional theory calculations of solids. Science 351, 1415 (2016)

    Article  CAS  Google Scholar 

  21. J. Sun, A. Ruzsinszky, J. Perdew, Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015)

    Article  Google Scholar 

  22. K.A. Mengle, E. Kioupakis, Vibrational and electron-phonon coupling properties of β-Ga2O3 from first-principles calculations: impact on the mobility and breakdown field. AIP Adv. 9, 015313 (2019)

    Article  Google Scholar 

  23. J. Carrete, B. Vermeersch, A. Katre, A. van Roekeghem, T. Wang, G.K.H. Madsen, N. Mingo, almaBTE: a solver of the space–time dependent Boltzmann transport equation for phonons in structured materials. Comput. Phys. Commun. 220, 351 (2017)

    Article  CAS  Google Scholar 

  24. S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73(2), 515 (2001)

    Article  CAS  Google Scholar 

  25. C. Verdi, F. Giustino, Fröhlich electron-phonon vertex from first principles. Phys. Rev. Lett. 115, 176401 (2015)

    Article  Google Scholar 

  26. A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scr. Mater. 108, 1 (2015)

    Article  CAS  Google Scholar 

  27. J.H. Lloyd-Williams, B. Monserrat, Lattice dynamics and electron-phonon coupling calculations using nondiagonal supercells. Phys. Rev. B 92, 184301 (2015)

    Article  Google Scholar 

  28. L. Lindsay, A. Katre, A. Cepellotti, N. Mingo, Perspective on ab initio phonon thermal transport. J. Appl. Phys. 126, 050902 (2019)

    Article  Google Scholar 

  29. M.D. Santia, N. Tandon, J.D. Albrecht, Lattice thermal conductivity in β-Ga2O3 from first principles. Appl. Phys. Lett. 107, 041907 (2015)

    Article  Google Scholar 

  30. S. Mu, H. Peelaers, C.G. Van de Walle, Ab initio study of enhanced thermal conductivity in ordered AlGaO3 alloys. Appl. Phys. Lett. 115, 242103 (2019)

    Article  Google Scholar 

  31. L. Lindsay, D.A. Broido, T.L. Reinecke, First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Phys. Rev. Lett. 111, 025901 (2013)

    Article  CAS  Google Scholar 

  32. K. Chen, B. Song, N.K. Ravichandran, Q. Zheng, X. Chen, H. Lee, H. Sun, S. Li, G.A.G.U. Gamage, F. Tian, Z. Ding, Q. Song, A. Rai, H. Wu, P. Koirala, A.J. Schmidt, K. Watanabe, B. Lv, Z. Ren, L. Shi, D.G. Cahill, T. Taniguchi, D. Broido, G. Chen, Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367, 555 (2020)

    Article  CAS  Google Scholar 

  33. A.H. Romero, E.K.U. Gross, M.J. Verstraete, O. Hellman, Thermal conductivity in PbTe from first principles. Phys. Rev. B 91, 214310 (2015)

    Article  Google Scholar 

  34. F. Tian, B. Song, X. Chen, N.K. Ravichandran, Y. Lv, Z. Ding, J. Sun, G. Amila, G. Udalamatta, H. Sun, S. Chen, C. Chu, P.Y. Huang, D. Broido, L. Shi, Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582 (2018)

    Article  CAS  Google Scholar 

  35. S. Dagli, K.A. Mengle, E. Kioupakis, Thermal conductivity of AlN, GaN, and AlxGa1-xN alloys as a function of composition, temperature, crystallographic direction, and isotope disorder from first principles. arXiv 1910.05440 (2019).

  36. M. Simoncelli, N. Marzari, F. Mauri, Unified theory of thermal transport in crystals and glasses. Nat. Phys. 15(8), 809 (2019)

    Article  CAS  Google Scholar 

  37. R.J. Kaplar, O. Slobodyan, J.D. Flicker, M.A. Hollis, A new analysis of the dependence of critical electric field on semiconductor bandgap. ECS Meet. Abstr. MA2019-02, 1334 (2019).

  38. P. Rinke, M. Winkelnkemper, A. Qteish, D. Bimberg, J. Neugebauer, M. Scheffler, Consistent set of band parameters for the group-III nitrides AlN, GaN, and InN. Phys. Rev. B 77(7), 075202 (2008)

    Article  Google Scholar 

  39. K.A. Mengle, G. Shi, D. Bayerl, E. Kioupakis, First-principles calculations of the near-edge optical properties of β-Ga2O3. Appl. Phys. Lett. 109(21), 212104 (2016)

    Article  Google Scholar 

  40. P.G. Moses, M. Miao, Q. Yan, C.G. Van de Walle, Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN. J. Chem. Phys. 134(8), 084703 (2011)

    Article  Google Scholar 

  41. A. Kyrtsos, M. Matsubara, E. Bellotti, Band offsets of AlxGa1-xN alloys using first-principles calculations. J. Phys. Condens. Matter 32(36), 365504 (2020)

    Article  CAS  Google Scholar 

  42. S. Poncé, Y. Gillet, J. Laflamme Janssen, A. Marini, M. Verstraete, X. Gonze, Temperature dependence of the electronic structure of semiconductors and insulators. J. Chem. Phys. 143(10), 102813 (2015)

    Article  Google Scholar 

  43. M.L. Tiago, S. Ismail-Beigi, S.G. Louie, Effect of semicore orbitals on the electronic band gaps of Si, Ge, and GaAs within the GW approximation. Phys. Rev. B 69, 125212 (2004)

    Article  Google Scholar 

  44. J. Deslippe, G. Samsonidze, D.A. Strubbe, M. Jain, M.L. Cohen, S.G. Louie, BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183(6), 1269 (2012)

    Article  CAS  Google Scholar 

  45. D. Wing, J.B. Haber, R. Noff, B. Barker, D.A. Egger, A. Ramasubramaniam, S.G. Louie, J.B. Neaton, L. Kronik, Comparing time-dependent density functional theory with many-body perturbation theory for semiconductors: screened range-separated hybrids and the GW plus Bethe-Salpeter approach. Phys. Rev. Mater. 3, 064603 (2019)

    Article  CAS  Google Scholar 

  46. T. Rangel, M. Del Ben, D. Varsano, G. Antonius, F. Bruneval, F.H. da Jornada, M.J. van Setten, O.K. Orhan, D.D. O’Regan, A. Canning, A. Ferretti, A. Marini, G.M. Rignanese, J. Deslippe, S.G. Louie, J.B. Neaton, Reproducibility in G0W0 calculations for solids. Comput. Phys. Commun. 255, 107242 (2020)

    Article  CAS  Google Scholar 

  47. Q. Yan, P. Rinke, M. Scheffler, C.G. Van de Walle, Strain effects in group-III nitrides: deformation potentials for AlN, GaN, and InN. Appl. Phys. Lett. 95(12), 121111 (2009)

    Article  Google Scholar 

  48. C.G. Van de Walle, R. Martin, Theoretical study of band offsets at semiconductor interfaces. Phys. Rev. B 35, 8154 (1987)

    Article  Google Scholar 

  49. C.G. Van de Walle, J. Neugebauer, Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423(6940), 626 (2003)

    Article  Google Scholar 

  50. A. Schleife, F. Fuchs, C. Rödl, J. Furthmüller, F. Bechstedt, Branch-point energies and band discontinuities of III-nitrides and III-/II-oxides from quasiparticle band-structure calculations. Appl. Phys. Lett. 94(1), 012104 (2009)

    Article  Google Scholar 

  51. F. Giustino, S.G. Louie, M.L. Cohen, Electron-phonon renormalization of the direct band gap of diamond. Phys. Rev. Lett. 105(26), 265501 (2010)

    Article  Google Scholar 

  52. M. Zacharias, M. Scheffler, C. Carbogno, Fully anharmonic nonperturbative theory of vibronically renormalized electronic band structures. Phys. Rev. B 102(4), 045126 (2020)

    Article  CAS  Google Scholar 

  53. D. Chaudhuri, M. Odonovan, T. Streckenbach, O. Marquardt, P. Farrell, S.K. Patra, T. Koprucki, S. Schulz, Multiscale simulations of the electronic structure of III-nitride quantum wells with varied indium content: connecting atomistic and continuum-based models. J. Appl. Phys. 129(7), 073104 (2021)

    Article  CAS  Google Scholar 

  54. L. Gordon, J.L. Lyons, A. Janotti, C.G. VandeWalle, Hybrid functional calculations of DX centers in AlN and GaN. Phys. Rev. B 89(8), 085204 (2014)

    Article  Google Scholar 

  55. A. Pandey, X. Liu, Z. Deng, W.J. Shin, D.A. Laleyan, K. Mashooq, E.T. Reid, E. Kioupakis, P. Bhattacharya, Z. Mi, Enhanced doping efficiency of ultrawide band gap semiconductors by metal-semiconductor junction assisted epitaxy. Phys. Rev. Mater. 3, 053401 (2019)

    Article  CAS  Google Scholar 

  56. Y. Wu, D.A. Laleyan, Z. Deng, C. Ahn, A.F. Aiello, A. Pandey, X. Liu, P. Wang, K. Sun, E. Ahmadi, Y. Sun, M. Kira, P.K. Bhattacharya, E. Kioupakis, Z. Mi, controlling defect formation of nanoscale AlN: toward efficient current conduction of ultrawide-bandgap semiconductors. Adv. Electron. Mater. 6, 2000337 (2020)

    Article  CAS  Google Scholar 

  57. L. Weston, D. Wickramaratne, C.G. Van de Walle, Hole polarons and p -type doping in boron nitride polymorphs. Phys. Rev. B 96, 100102 (2017)

    Article  Google Scholar 

  58. E. Kioupakis, P. Rinke, C.G. Van de Walle, Determination of internal loss in nitride lasers from first principles. Appl. Phys. Express 3, 082101 (2010)

    Article  Google Scholar 

  59. J.L. Lyons, D. Wickramaratne, C.G. Van de Walle, A first-principles understanding of point defects and impurities in GaN. J. Appl. Phys. 129, 111101 (2021)

    Article  CAS  Google Scholar 

  60. C. Freysoldt, J. Neugebauer, C.G. Van de Walle, Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys. Rev. Lett. 102, 016402 (2009)

    Article  Google Scholar 

  61. Á. Szabó, N.T. Son, E. Janźn, A. Gali, Group-II acceptors in wurtzite AlN: a screened hybrid density functional study. Appl. Phys. Lett. 96, 192110 (2010)

    Article  Google Scholar 

  62. J.L. Lyons, A. Janotti, C.G. Van de Walle, Shallow versus deep nature of Mg acceptors in nitride semiconductors. Phys. Rev. Lett. 108(15), 156403 (2012)

    Article  Google Scholar 

  63. C. Stampfl, J. Neugebauer, C.G. Van de Walle, Doping of AlxGa1-xN alloys. Mater. Sci. Eng. B 59(1–3), 253 (1999)

    Article  Google Scholar 

  64. Z. Bryan, I. Bryan, B.E. Gaddy, P. Reddy, L. Hussey, M. Bobea, W. Guo, M. Hoffmann, R. Kirste, J. Tweedie, M. Gerhold, D.L. Irving, Z. Sitar, R. Collazo, Fermi level control of compensating point defects during metalorganic chemical vapor deposition growth of Si-doped AlGaN. Appl. Phys. Lett. 105(22), 222101 (2014)

    Article  Google Scholar 

  65. P. Reddy, M.P. Hoffmann, F. Kaess, Z. Bryan, I. Bryan, M. Bobea, A. Klump, J. Tweedie, R. Kirste, S. Mita, M. Gerhold, R. Collazo, Z. Sitar, Point defect reduction in wide bandgap semiconductors by defect quasi Fermi level control. J. Appl. Phys. 120, 185704 (2016)

    Article  Google Scholar 

  66. M.W. Swift, H. Peelaers, S. Mu, J.J.L. Morton, C.G. Van de Walle, First-principles calculations of hyperfine interaction, binding energy, and quadrupole coupling for shallow donors in silicon. npj Comput. Mater. 6, 181 (2020)

    Article  CAS  Google Scholar 

  67. S. Poncé, D. Jena, F. Giustino, Route to high hole mobility in GaN via reversal of crystal-field splitting. Phys. Rev. Lett. 123, 096602 (2019)

    Article  Google Scholar 

  68. K. Ghosh, U. Singisetti, Ab initio calculation of electron-phonon coupling in monoclinic β-Ga2O3 crystal. Appl. Phys. Lett. 109, 072102 (2016)

    Article  Google Scholar 

  69. N. Pant, Z. Deng, E. Kioupakis, High electron mobility of AlxGa1-xN evaluated by unfolding the DFT band structure. Appl. Phys. Lett. 117, 242105 (2020)

    Article  CAS  Google Scholar 

  70. N. Sanders, E. Kioupakis, Phonon- and defect-limited electron and hole mobility of diamond and cubic boron nitride: a critical comparison. Appl. Phys. Lett. 119, 062101 (2021)

    Article  CAS  Google Scholar 

  71. O.D. Restrepo, K. Varga, S.T. Pantelides, First-principles calculations of electron mobilities in silicon: phonon and Coulomb scattering. Appl. Phys. Lett. 94, 212103 (2009)

    Article  Google Scholar 

  72. F. Giustino, J.R. Yates, I. Souza, M.L. Cohen, S.G. Louie, Electron-phonon interaction via electronic and lattice Wannier functions: superconductivity in boron-doped diamond reexamined. Phys. Rev. Lett. 98(4), 047005 (2007)

    Article  Google Scholar 

  73. S. Poncé, E.R. Margine, F. Giustino, Towards predictive many-body calculations of phonon-limited carrier mobilities in semiconductors. Phys. Rev. B 97, 121201 (2018)

    Article  Google Scholar 

  74. J.J. Zhou, J. Park, I. Te Lu, I. Maliyov, X. Tong, M. Bernardi, PERTURBO: a software package for ab initio electron–phonon interactions, charge transport and ultrafast dynamics. Comput. Phys. Commun. 264, 107970 (2021)

    Article  CAS  Google Scholar 

  75. G. Brunin, H.P.C. Miranda, M. Giantomassi, M. Royo, M. Stengel, M.J. Verstraete, X. Gonze, G.M. Rignanese, G. Hautier, Electron-phonon beyond Fröhlich: dynamical quadrupoles in polar and covalent solids. Phys. Rev. Lett. 125, 136601 (2020)

    Article  CAS  Google Scholar 

  76. V.A. Jhalani, J.J. Zhou, J. Park, C.E. Dreyer, M. Bernardi, Piezoelectric electron-phonon interaction from ab initio dynamical quadrupoles: impact on charge transport in Wurtzite GaN. Phys. Rev. Lett. 125, 136602 (2020)

    Article  CAS  Google Scholar 

  77. S. Poncé, W. Li, S. Reichardt, F. Giustino, First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials. Reports Prog. Phys. 83, 036501 (2020)

    Article  Google Scholar 

  78. V. Lordi, P. Erhart, D. Åberg, Charge carrier scattering by defects in semiconductors. Phys. Rev. B 81, 235204 (2010)

    Article  Google Scholar 

  79. I. Te Lu, J.J. Zhou, M. Bernardi, Efficient ab initio calculations of electron-defect scattering and defect-limited carrier mobility. Phys. Rev. Mater. 3, 033804 (2019)

    Article  CAS  Google Scholar 

  80. F. Murphy-Armando, S. Fahy, First-principles calculation of alloy scattering in GexSi1-x. Phys. Rev. Lett. 97, 096606 (2006)

    Article  CAS  Google Scholar 

  81. S. Poncé, D. Jena, F. Giustino, Hole mobility of strained GaN from first principles. Phys. Rev. B 100, 085204 (2019)

    Article  Google Scholar 

  82. Y. Kang, K. Krishnaswamy, H. Peelaers, C.G. Van de Walle, Fundamental limits on the electron mobility of β-Ga2O3. J. Phys. Condens. Matter 29, 234001 (2017)

    Article  Google Scholar 

  83. S. Poncé, F. Giustino, Structural, electronic, elastic, power, and transport properties of β−Ga2O3 from first principles. Phys. Rev. Res. 2, 033102 (2020)

    Article  Google Scholar 

  84. G.D. Barmparis, Y.S. Puzyrev, X.G. Zhang, S.T. Pantelides, Theory of inelastic multiphonon scattering and carrier capture by defects in semiconductors: application to capture cross sections. Phys. Rev. B 92, 214111 (2015)

    Article  Google Scholar 

  85. J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge University Press, Cambridge, 2003), pp. 312–344

    Google Scholar 

  86. E. Matioli, T. Palacios, Room-temperature ballistic transport in iii-nitride heterostructures. Nano Lett. 15(2), 1070 (2015)

    Article  CAS  Google Scholar 

  87. C. Franchini, M. Reticcioli, M. Setvin, U. Diebold, Polarons in materials. Nat. Rev. Mater. 6, 560 (2021)

    Article  CAS  Google Scholar 

  88. J.B. Varley, A. Janotti, C. Franchini, C.G. Van de Walle, Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Phys. Rev. B 85(8), 081109 (2012)

    Article  Google Scholar 

  89. S. Kokott, S.V. Levchenko, P. Rinke, M. Scheffler, First-principles supercell calculations of small polarons with proper account for long-range polarization effects. New J. Phys. 20, 033023 (2018)

    Article  Google Scholar 

  90. W.H. Sio, C. Verdi, S. Poncé, F. Giustino, Polarons from First Principles, without Supercells. Phys. Rev. Lett. 122, 246403 (2019)

    Article  CAS  Google Scholar 

  91. Y.K. Frodason, K.M. Johansen, L. Vines, J.B. Varley, Self-trapped hole and impurity-related broad luminescence in β-Ga2O3. J. Appl. Phys. 127, 075701 (2020)

    Article  Google Scholar 

  92. W.H. Sio, C. Verdi, S. Poncé, F. Giustino, Ab initio theory of polarons: Formalism and applications. Phys. Rev. B 99(23), 235139 (2019)

    Article  CAS  Google Scholar 

  93. J. Fang, M.V. Fischetti, R.D. Schrimpf, R.A. Reed, E. Bellotti, S.T. Pantelides, Electron transport properties of AlxGa1-xN/GaN transistors based on first-principles calculations and Boltzmann-equation Monte Carlo simulations. Phys. Rev. Appl. 11, 044045 (2019)

    Article  CAS  Google Scholar 

  94. K. Ghosh, U. Singisetti, Ab initio velocity-field curves in monoclinic β-Ga2O3. J. Appl. Phys. 122, 035702 (2017)

    Article  Google Scholar 

  95. N. Marzari, A.A. Mostofi, J.R. Yates, I. Souza, D. Vanderbilt, Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84(4), 1419 (2012)

    Article  CAS  Google Scholar 

  96. S. Poncé, E.R. Margine, C. Verdi, F. Giustino, EPW: Electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Comput. Phys. Commun. 209, 116 (2016)

    Article  Google Scholar 

  97. T. Kotani, M. van Schilfgaarde, Impact ionization rates for Si, GaAs, InAs, ZnS, and GaN in the GW approximation. Phys. Rev. B 81, 125201 (2010)

    Article  Google Scholar 

  98. K. Ghosh, U. Singisetti, Impact ionization in β-Ga2O3. J. Appl. Phys. 124(8), 085707 (2018)

    Article  Google Scholar 

  99. Y. Sun, S.A. Boggs, R. Ramprasad, The intrinsic electrical breakdown strength of insulators from first principles. Appl. Phys. Lett. 101(13), 132906 (2012)

    Article  Google Scholar 

  100. X. Tong, M. Bernardi, Toward precise simulations of the coupled ultrafast dynamics of electrons and atomic vibrations in materials. Phys. Rev. Res. 3, 023072 (2021)

    Article  CAS  Google Scholar 

  101. J.M. Rondinelli, E. Kioupakis, Predicting and designing optical properties of inorganic materials. Annu. Rev. Mater. Res. 45(1), 491 (2015)

    Article  CAS  Google Scholar 

  102. M. Rohlfing, S.G. Louie, Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62(8), 4927 (2000)

    Article  CAS  Google Scholar 

  103. D. Sangalli, A. Ferretti, H. Miranda, C. Attaccalite, I. Marri, E. Cannuccia, P. Melo, M. Marsili, F. Paleari, A. Marrazzo, G. Prandini, P. Bonfà, M.O. Atambo, F. Affinito, M. Palummo, A. Molina-Sánchez, C. Hogan, M. Grüning, D. Varsano, A. Marini, Many-body perturbation theory calculations using the yambo code. J. Phys. Condens. Matter 31, 325902 (2019)

    Article  CAS  Google Scholar 

  104. X. Zhang, S. Achilles, J. Winkelmann, R. Haas, A. Schleife, E. Di Napoli, Solving the Bethe-Salpeter equation on massively parallel architectures. Comput. Phys. Commun. 267, 108081 (2020)

    Article  Google Scholar 

  105. J.B. Varley, A. Schleife, Bethe-Salpeter calculation of optical-absorption spectra of In2O3 and Ga2O3. Semicond. Sci. Technol. 30(2), 024010 (2015)

    Article  CAS  Google Scholar 

  106. D. Bayerl, E. Kioupakis, Room-temperature stability of excitons and transverse-electric polarized deep-ultraviolet luminescence in atomically thin GaN quantum wells. Appl. Phys. Lett. 115, 131101 (2019)

    Article  Google Scholar 

  107. M. Zacharias, F. Giustino, One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization. Phys. Rev. B 94(7), 075125 (2016)

    Article  Google Scholar 

  108. A. Schleife, M.D. Neumann, N. Esser, Z. Galazka, A. Gottwald, J. Nixdorf, R. Goldhahn, M. Feneberg, Optical properties of In2O3 from experiment and first-principles theory: influence of lattice screening. New J. Phys. 20, 053016 (2018)

    Article  Google Scholar 

  109. X. Zhang, A. Schleife, Nonequilibrium BN-ZnO: Optical properties and excitonic effects from first principles. Phys. Rev. B 97, 125201 (2018)

    Article  CAS  Google Scholar 

  110. D. Bayerl, S. Islam, C.M. Jones, V. Protasenko, D. Jena, E. Kioupakis, Deep ultraviolet emission from ultra-thin GaN/AlN heterostructures. Appl. Phys. Lett. 109(24), 241102 (2016)

    Article  Google Scholar 

  111. A. Aiello, Y. Wu, A. Pandey, P. Wang, W. Lee, D. Bayerl, N. Sanders, Z. Deng, J. Gim, K. Sun, R. Hovden, E. Kioupakis, Z. Mi, P. Bhattacharya, Deep ultraviolet luminescence due to extreme confinement in monolayer GaN/Al(Ga)N nanowire and planar heterostructures. Nano Lett. 19, 7852 (2019)

    Article  CAS  Google Scholar 

  112. B. Arnaud, S. Lebègue, P. Rabiller, M. Alouani, Huge excitonic effects in layered hexagonal boron nitride. Phys. Rev. Lett. 96, 026402 (2006)

    Article  CAS  Google Scholar 

  113. L. Schué, L. Sponza, A. Plaud, H. Bensalah, K. Watanabe, T. Taniguchi, F. Ducastelle, A. Loiseau, J. Barjon, Bright luminescence from indirect and strongly bound excitons in h-BN. Phys. Rev. Lett. 122, 067401 (2019)

    Article  Google Scholar 

  114. A. Marini, Ab initio finite-temperature excitons. Phys. Rev. Lett. 101(10), 106405 (2008)

    Article  Google Scholar 

  115. J. Noffsinger, E. Kioupakis, C.G. Van de Walle, S.G. Louie, M.L. Cohen, Phonon-assisted optical absorption in silicon from first principles. Phys. Rev. Lett. 108, 167402 (2012)

    Article  Google Scholar 

  116. M. Zacharias, F. Giustino, Theory of the special displacement method for electronic structure calculations at finite temperature. Phys. Rev. Res. 2, 013357 (2020)

    Article  CAS  Google Scholar 

  117. B. Monserrat, C.E. Dreyer, K.M. Rabe, Phonon-assisted optical absorption in BaSnO3 from first principles. Phys. Rev. B 97, 104310 (2018)

    Article  CAS  Google Scholar 

  118. E. Cannuccia, B. Monserrat, C. Attaccalite, Theory of phonon-assisted luminescence in solids: application to hexagonal boron nitride. Phys. Rev. B 99(8), 081109 (2019)

    Article  CAS  Google Scholar 

  119. F. Paleari, H.P.C. Miranda, A. Molina-Sánchez, L. Wirtz, Exciton-phonon coupling in the ultraviolet absorption and emission spectra of bulk hexagonal boron nitride. Phys. Rev. Lett. 122(18), 187401 (2019)

    Article  CAS  Google Scholar 

  120. F. Bechstedt, Many-Body Approach to Electronic Excitations (Springer, Berlin, Heidelberg, 2015)

    Book  Google Scholar 

  121. M.R. Filip, J.B. Haber, J.B. Neaton, Phonon screening of excitons in semiconductors: halide Perovskites and beyond. Phys. Rev. Lett. 127, 067401 (2021)

    Article  CAS  Google Scholar 

  122. T.A. Huang, M. Zacharias, D.K. Lewis, F. Giustino, S. Sharifzadeh, Exciton-phonon interactions in monolayer germanium selenide from first principles. J. Phys. Chem. Lett. 12(15), 3802 (2021)

    Article  CAS  Google Scholar 

  123. Y.-H. Chan, D.Y. Qiu, F.H. da Jornada, S.G. Louie, Giant exciton-enhanced shift currents and direct current conduction with subbandgap photo excitations produced by many-electron interactions. Proc. Natl. Acad. Sci. 118(25), e1906938118 (2021)

    Article  CAS  Google Scholar 

  124. A. Alkauskas, C.E. Dreyer, J.L. Lyons, C.G. Van de Walle, Role of excited states in Shockley-Read-Hall recombination in wide-band-gap semiconductors. Phys. Rev. B 93, 201304 (2016)

    Article  Google Scholar 

  125. E. Kioupakis, Q. Yan, D. Steiauf, C.G. Van de Walle, Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices. New J. Phys. 15, 125006 (2013)

    Article  Google Scholar 

  126. E. Kioupakis, D. Steiauf, P. Rinke, K.T. Delaney, C.G. Van de Walle, First-principles calculations of indirect Auger recombination in nitride semiconductors. Phys. Rev. B 92, 035207 (2015)

    Article  Google Scholar 

  127. L. Shi, L.W. Wang, Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors. Phys. Rev. Lett. 109, 245501 (2012)

    Article  Google Scholar 

  128. A. Alkauskas, Q. Yan, C.G. Van de Walle, First-principles theory of nonradiative carrier capture via multiphonon emission. Phys. Rev. B 90(7), 075202 (2014)

    Article  CAS  Google Scholar 

  129. C.E. Dreyer, A. Alkauskas, J.L. Lyons, J.S. Speck, C.G. Van de Walle, Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters. Appl. Phys. Lett. 108(14), 141101 (2016)

    Article  Google Scholar 

  130. D. Wickramaratne, J.X. Shen, C.E. Dreyer, M. Engel, M. Marsman, G. Kresse, S. Marcinkevičius, A. Alkauskas, C.G. Van de Walle, Iron as a source of efficient Shockley-Read-Hall recombination in GaN. Appl. Phys. Lett. 109, 162107 (2016)

    Article  Google Scholar 

  131. J.-X. Shen, D. Wickramaratne, C.E. Dreyer, A. Alkauskas, E. Young, J.S. Speck, C.G. Van de Walle, Calcium as a nonradiative recombination center in InGaN. Appl. Phys. Express 10, 021001 (2017)

    Article  Google Scholar 

  132. E. Kioupakis, P. Rinke, K.T. Delaney, C.G. Van de Walle, Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes. Appl. Phys. Lett. 98(16), 161107 (2011)

    Article  Google Scholar 

  133. V.A. Jhalani, H.Y. Chen, M. Palummo, M. Bernardi, Precise radiative lifetimes in bulk crystals from first principles: the case of wurtzite gallium nitride. J. Phys. Condens. Matter 32, 084001 (2020)

    Article  CAS  Google Scholar 

  134. M. Govoni, I. Marri, S. Ossicini, Auger recombination in Si and GaAs semiconductors: ab initio results. Phys. Rev. B 84, 075215 (2011)

    Article  Google Scholar 

  135. A. Mcallister, D. Bayerl, E. Kioupakis, Radiative and Auger recombination processes in indium nitride. Appl. Phys. Lett. 112, 251108 (2018)

    Article  Google Scholar 

  136. A. McAllister, D. Åberg, A. Schleife, E. Kioupakis, Auger recombination in sodium-iodide scintillators from first principles. Appl. Phys. Lett. 106(14), 141901 (2015)

    Article  Google Scholar 

  137. A. Polkovnikov, G. Zegrya, Phys. Rev. B 58, 4039 (1998)

    Article  CAS  Google Scholar 

  138. F. Bertazzi, X. Zhou, M. Goano, G. Ghione, E. Bellotti, Auger recombination in InGaN/GaN quantum wells: a full-Brillouin-zone study. Appl. Phys. Lett. 103, 081106 (2013)

    Article  Google Scholar 

  139. J.M. Mcmahon, D.S.P. Tanner, E. Kioupakis, S. Schulz, Atomistic analysis of radiative recombination rate, Stokes shift, and density of states in c-plane InGaN/GaN quantum wells. Appl. Phys. Lett. 116, 181104 (2020)

    Article  CAS  Google Scholar 

  140. P. Motamarri, S. Das, S. Rudraraju, K. Ghosh, D. Davydov, V. Gavini, DFT-FE – A massively parallel adaptive finite-element code for large-scale density functional theory calculations. Comput. Phys. Commun. 246, 106853 (2020)

    Article  CAS  Google Scholar 

  141. J.P. Philbin, E. Rabani, Electron-hole correlations govern auger recombination in nanostructures. Nano Lett. 18(12), 7889 (2018)

    Article  CAS  Google Scholar 

  142. S. Lyu, D. Skachkov, K. Kash, E.W. Blanton, W.R.L. Lambrecht, Band gaps, band-offsets, disorder, stability region, and point defects in II-IV-N2 semiconductors. Phys. Status Solidi 216, 1800875 (2019)

    Article  Google Scholar 

  143. K. Dabsamut, A. Boonchun, W.R.L. Lambrecht, First-principles study of n- and p-type doping opportunities in LiGaO2. J. Phys. D 53, 274002 (2020)

    Article  CAS  Google Scholar 

  144. A. Goyal, V. Stevanović, Metastable rocksalt ZnO is p-type dopable. Phys. Rev. Mater. 2, 084603 (2018)

    Article  CAS  Google Scholar 

  145. S. Chae, K.A. Mengle, K. Bushick, J. Lee, N. Sandaers, Z. Deng, Z. Mi, P.F.P. Poudeu, H. Paik, J.T. Heron, E. Kioupakis, Towards the predictive discovery of ambipolarly dopable ultra-wide-band-gap semiconductors: the case of rutile GeO2. Appl. Phys. Lett. 118, 260501 (2021)

    Article  CAS  Google Scholar 

  146. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013)

    Article  Google Scholar 

  147. G. Hautier, Finding the needle in the haystack: materials discovery and design through computational ab initio high-throughput screening. Comput. Mater. Sci. 163, 108 (2019)

    Article  CAS  Google Scholar 

  148. P. Gorai, R.W. McKinney, N.M. Haegel, A. Zakutayev, V. Stevanovic, A computational survey of semiconductors for power electronics. Energy Environ. Sci. 12(11), 3338 (2019)

    Article  CAS  Google Scholar 

  149. S. Kim, M. Lee, C. Hong, Y. Yoon, H. An, D. Lee, W. Jeong, D. Yoo, Y. Kang, Y. Youn, S. Han, A band-gap database for semiconducting inorganic materials calculated with hybrid functional. Sci. Data 7, 387 (2020)

    Article  CAS  Google Scholar 

  150. A.M. Ganose, J. Park, A. Faghaninia, R. Woods-Robinson, K.A. Persson, A. Jain, Efficient calculation of carrier scattering rates from first principles. Nat. Commun. 12, 2222 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported as part of the Computational Materials Sciences Program funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0020129. K.B. also acknowledges that this material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Department of Energy Computational Science Graduate Fellowship under Award Number DE-SC0020347. W.L. was partially supported by the Kwanjeong Educational Foundation Scholarship. N.P. gratefully acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) Postgraduate Doctoral Scholarship. S.C. acknowledges the support provided by the Rackham Predoctoral Fellowship.

Funding

Basic Energy Sciences, DE-SC0020129, Emmanouil Kioupakis, Advanced Scientific Computing Research, DE-SC0020347, Kyle Bushick, Natural Sciences and Engineering Research Council of Canada, Horace H. Rackham School of Graduate Studies, University of Michigan

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Kioupakis.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kioupakis, E., Chae, S., Bushick, K. et al. Theoretical characterization and computational discovery of ultra-wide-band-gap semiconductors with predictive atomistic calculations. Journal of Materials Research 36, 4616–4637 (2021). https://doi.org/10.1557/s43578-021-00437-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00437-6

Keywords

Navigation