Skip to main content

Benthic Meiofauna in the Aegean Sea

  • Chapter
  • First Online:
The Handbook of Environmental Chemistry

Abstract

Meiofauna refers to a discrete, microscopically-sized group of organisms that have evolved to inhabit almost all aquatic environments and thrive in marine soft sediments. They include the most abundant and phyleticaly diverse metazoan on earth, with several phyla existing only in meiofaunal size. In spite of the fact that Mediterranean meiofauna has been investigated since 1845, information from the Aegean Sea appeared more than a century later. Nonetheless, meiofauna research in the Aegean Sea has flourished over the last three decades, establishing the important role of this previously neglected component of benthic research in the Eastern Mediterranean. In this chapter we summarise the most important findings of metazoan meiobenthic research in the Aegean Sea. We review spatial and temporal aspects of meiofaunal communities and discuss their bathymetric trends and the effect major environmental drivers, such as food, may have on meiobenthos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mare MF (1942) A study of a marine benthic community with special reference to the micro-organisms. J Mar Biol Assoc UK 25:517–554

    Google Scholar 

  2. McIntyre AD (1969) Ecology of marine meiobenthos. Biol Rev 44:245–290

    Google Scholar 

  3. Warwick RM (2014) Meiobenthos and macrobenthos are discrete entities and not artefacts of sampling a size continuum: comment on Bett (2013). Mar Ecol Prog Ser 505:295–298

    Google Scholar 

  4. Warwick RM (2018) The contrasting histories of marine and freshwater meiobenthic research – a result of differing life histories and adaptive strategies? J Exp Mar Biol Ecol 502:4–11

    Google Scholar 

  5. Giere O (2009) Meiobenthology: the microscopic motile fauna of aquatic sediments. Springer, Berlin

    Google Scholar 

  6. WoRMS Editorial Board (2020) World register of marine species. http://www.marinespecies.org at VLIZ. Accessed 22 Oct 2020. https://doi.org/10.14284/170

  7. Telford MJ, Budd GE, Philippe H (2015) Phylogenomic insights into animal evolution. Curr Biol 25:R876–R887

    Google Scholar 

  8. Giribet G, Edgecombe GD (2019) The phylogeny and evolutionary history of arthropods. Curr Biol 29:R592–R602

    Google Scholar 

  9. Laumer CE et al (2019) Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc R Soc B Biol Sci 286:20190831

    Google Scholar 

  10. Laumer CE et al (2015) Spiralian phylogeny informs the evolution of microscopic lineages. Curr Biol 25:2000–2006

    Google Scholar 

  11. Leasi F et al (2018) Biodiversity estimates and ecological interpretations of meiofaunal communities are biased by the taxonomic approach. Commun Biol 1:1

    Google Scholar 

  12. Lampadariou N, Ingels J, Schratzberger M, Thistle D (2018) “Meiofauna research approaching 2020: knowledge gaps and new avenues”, an introduction to the special meiofauna issue resulting from IςIMCo, the 16th international Meiofauna conference. J Exp Mar Biol Ecol 502:1–3

    Google Scholar 

  13. Dujardin F (1845) Histoire naturelle de Helminthes ou vers intestinaux. Librairie encyclopedique de Roret, Paris

    Google Scholar 

  14. Claus CFW (1866) Die copepoden-fauna von Nizza: Ein Beitrag zur charakteristik der formen und deren Abänderungen “im sinne Darwin’s”, vol 9. Elwert

    Google Scholar 

  15. Filipjev L (1918) Free-living marine nematodes of the Sevastopol Area. Trans Zool Lab Sevastopol Biol Station Russ Acad Sci Ser II 4(I & II)

    Google Scholar 

  16. Monard A (1928) Les harpacticoides marins de Banyuls. Arch Zool Exp Gen 67:259–443

    Google Scholar 

  17. Delamare-Deboutteville C (1960) Biologie des eaux souterraines littorales et continentales. Hermann, Paris

    Google Scholar 

  18. Remane A (1927) Gastrotricha. In: Grimpe W (ed) Die Tierwelt der Nord- und Ostsee. Akademische Verlagsgesellschaft, Leipzig, pp 1–56

    Google Scholar 

  19. Remane A (1929) Rotadoria. In: Grimpe W (ed) Die Tierwelt der Nord- und Ostsee. Akademische Verlagsgesellschaft, Leipzig, pp 1–156

    Google Scholar 

  20. Remane A (1936) Monobryozoon ambulans, n.g. n.sp. ein eigenartiges Bryozoon des Meeresandes. Zool Anz 113:161–167

    Google Scholar 

  21. Swedmark B (1964) The interstitial fauna of marine sand. Biol Rev 39:1–42

    Google Scholar 

  22. Kowalewsky A (1901) Les Hedylides, études anatomiques, vol 12 Memoires de l’Academie des Science, St. Petersburg, pp 1–32

    Google Scholar 

  23. Kisseleva MI (1961) The qualitative and quantitative distribution of the benthos in the predardanellian region of the Aegean Sea. Proc USSR Acad Sci 14:135–146

    Google Scholar 

  24. Kisseleva MI (1963) The qualitative and quantitative distribution of the benthos in the Aegean Sea. Proc USSR Acad Sci 16:192–200

    Google Scholar 

  25. Kisseleva MI (1968) Le développement du benthos dans les mers du bassin méditerranéen. Rapp Comm int Mer Medit 19(2):103–105

    Google Scholar 

  26. Kisseleva MI, Tchukhtchin VD (1965) Certain data on the quantitative development of the macro and meribenthos in the eastern part of the Mediterranean sea. Proc USSR Acad Sci 192:324–335

    Google Scholar 

  27. Koukouras A (1979) Bionomic study of the macrofauna of the mediolittoral soft substratum in Strymonikos and Thermaikos gulfs. PhD dissertation, University of Thessaloniki, Thessaloniki

    Google Scholar 

  28. Dinet A (1976) Etude quantitative du méiobenthos dans le secteur Nord de la mer Egée. Acta Adriat 18(5):83–88

    Google Scholar 

  29. Eleftheriou A (1979) Meiobenthic studies along the Saronikos coast. Report, EPCPA – W.H.O., Athens

    Google Scholar 

  30. Roidou E, Eleftheriou A (1989) The meiofauna of the north eastern Mediterranean sea. Preliminary observations from the Aegean and Cretan Sea. In: 7th International Meiofauna Conference, pp 1–10

    Google Scholar 

  31. Zachariadi T, Panagiotidis P, Gialamas B (1990) Comparison of meiofauna from natural and disturbed sediments under in situ experimental conditions. Preliminary results. In: Proceedings of the 3rd National Symposium on Oceanography and Fisheries, pp 530–536

    Google Scholar 

  32. Zachariadi T, Panagiotidis P (1993) Meiobenthos from Thermaikos gulf. Preliminary results. In: Proceedings of the 4th National Symposium in Oceanography and Fisheries, pp 242–245

    Google Scholar 

  33. Otegui A, Papadopoulou KN, Karakassis I (1993) Preliminary study of the meiofauna communities of Iraklion harbour and the effects of organic pollution. In: Proceedings of the 4th National Symposium in Oceanography and Fisheries, pp 246–249

    Google Scholar 

  34. Lampadariou N (1993) Meiobenthos of the littoral zone from the Gulf of Heraklion with a special emphasis on nematodes. MSc dissertation, University of Crete, Heraklion

    Google Scholar 

  35. Hummon WD, Roidou E (1994) Marine Gastrotricha of Greece. A preliminary report. Biol Gallo-Helenica 22:279–289

    Google Scholar 

  36. Rieder K (2001) Spatial and temporal variabilities of nematodes in the eulittoral zone of a sandy beach on northern Crete, Greece. Diploma dissertation, University of Rostock, Rostock

    Google Scholar 

  37. Sevastou K, Lampadariou N, Eleftheriou A (2011) Meiobenthic diversity in space and time: the case of harpacticoid copepods in two Mediterranean microtidal sandy beaches. J Sea Res 66:205–214

    Google Scholar 

  38. Yıldız NÖ, Sørensen MV, Karaytuğ S (2016) A new species of Cephalorhyncha Adrianov, 1999 (Kinorhyncha: Cyclorhagida) from the Aegean coast of Turkey. Helgol Mar Res 70:24

    Google Scholar 

  39. Thiermann F, Windoffer R, Giere O (1994) Selected meiofauna around shallow water hydrothermal vents off Milos (Greece): ecological and ultrastructural aspects. Vie et Milieu 44(3/4):215–226

    Google Scholar 

  40. Thiermann F, Akoumianaki I, Hughes JA, Giere O (1997) Benthic fauna of a shallow-water gaseohydrothermal vent area in the Aegean Sea (Milos, Greece). Mar Biol 128:149–159

    Google Scholar 

  41. Doulgeraki S, Lampadariou N, Sinis A (2006) Meiofaunal community structure in three Mediterranean coastal lagoons (North Aegean Sea). J Mar Biol Assoc UK 86:209–220

    Google Scholar 

  42. Karaytuğ S, Sak S (2006) A contribution to the marine harpacticoid (Crustacea, Copepoda) fauna of Turkey. Su Ürünleri Dergisi, vol 23

    Google Scholar 

  43. Sönmez S, Sak S, Karaytuğ S (2014) Marine interstitial and phytal Miraciidae Dana, 1846 (Crustacea: Copepoda: Harpacticoida) inhabiting along the mediolittoral zone of Turkish coasts. J Anatolian Nat Sci 5(1):52–87

    Google Scholar 

  44. Kuru S, Sönmez S, Karaytuğ S (2019) A new species of the genus Echinolaophonte Nicholls, 1941 (Copepoda, Harpacticoida, Laophontidae) from the Aegean Sea coast of Turkey. Turk J Zool 43

    Google Scholar 

  45. Keklikoglou K et al (2019) “Simple” can be good, too: testing three hard bottom sampling methods on macrobenthic and meiobenthic assemblages. J Mar Biol Assoc UK 99(4):777–784. https://doi.org/10.1017/S0025315418000863

  46. Lampadariou N, Austen MC, Robertson N, Vlachonis G (1997) Analysis of meiobenthic community structure in relation to pollution and disturbance in Iraklion harbour, Greece. Vie et Milieu 47(1):9–24

    Google Scholar 

  47. Lampadariou N, Hatziyanni E, Tselepides A (2005) Meiofaunal community structure in Thermaikos gulf: response to intense trawling pressure. Cont Shelf Res 25:2554–2569

    Google Scholar 

  48. Lampadariou N, Karakassis I, Teraschke S, Arlt G (2005) Changes in benthic meiofaunal assemblages in the vicinity of fish farms in the Eastern Mediterranean. Vie et Milieu 55:61–69

    Google Scholar 

  49. Papadopoulou KN, Karakassis I, Otegui A (1998) Harbour meiofaunal communities and organic enrichment effects. Fresenius Environ Bull 7:34–41

    Google Scholar 

  50. Karaytuğ S, Koçak C (2018) Faunistic assessment of the marine Harpacticoida (Crustacea: Copepoda) fauna of Turkey with remarks on harpacticoid diversity in the eastern Mediterranean Sea. Mar Biodivers 48:273–280

    Google Scholar 

  51. Triantaphyllou MV, Tsourou T, Koukousioura O, Dermitzakis MD (2005) Foraminiferal and ostracod ecological patterns in coastal environments of SE Andros Island (Middle Aegean Sea, Greece). Rev Micropaleontol 48:279–302

    Google Scholar 

  52. Danovaro R et al (1995) Meiofauna of the deep eastern Mediterranean Sea: distribution, and abundance in relation to bacterial biomass, organic matter composition and other environmental factors. Prog Oceanogr 36:329–341

    Google Scholar 

  53. Danovaro R, Fabiano M, Albertelli G, Della Croce N (1995) Vertical distribution of meiobenthos in bathyal sediments of the eastern Mediterranean Sea: relationship with labile organic matter and bacterial biomasses. P S Z N I Mar Ecol 16:103–116

    Google Scholar 

  54. Lampadariou N, Tselepides A (2006) Spatial variability of meiofaunal communities at areas of contrasting depth and productivity in the Aegean Sea (NE Mediterranean). Prog Oceanogr 69:19–36

    Google Scholar 

  55. Lampadariou N, Sevastou K, Podaras D, Tselepides A (2017) Insights into the benthic communities response to the inflow of Black Sea mesotrophic waters in the North Aegean Sea. Cont Shelf Res 149:162–173

    Google Scholar 

  56. Lampadariou N, Tselepides A, Eleftheriou A (2005) Meiofauna in the Aegean Sea. In: Papathanassiou E, Zenetos A (eds) State of the Hellenic marine environment. HCMR Publications, Athens, pp 220–225

    Google Scholar 

  57. Lampadariou N, Tselepides A, Hatziyanni E (2009) Deep-sea meiofaunal and foraminiferal communities along a gradient of primary productivity in the eastern Mediterranean Sea. Sci Mar 73:337–345

    Google Scholar 

  58. Sevastou K, Lampadariou N, Polymenakou PN, Tselepides A (2013) Benthic communities in the deep Mediterranean Sea: exploring microbial and meiofaunal patterns in slope and basin ecosystems. Biogeosciences 10(7):4861–4878. https://doi.org/10.5194/bg-10-4861-2013

  59. Mirto S, Arigò C, Genovese L, Pusceddu A, Gambi C, Danovaro R (2014) Nematode assemblage response to fish-farm impact in vegetated (Posidonia oceanica) and non-vegetated habitats. Aquac Environ Interact 5(1):17–28

    Google Scholar 

  60. Sevastou K (2005) On the ecology of meiofauna of the sandy shores of Crete. Distribution patterns of meiobenthic copepods over space and time. PhD dissertation, University of Crete, Heraklion

    Google Scholar 

  61. Schratzberger M, Lampadariou N, Somerfield PJ, Vandepitte L, Vanden Berghe E (2009) The impact of seabed disturbance on nematode communities: linking field and laboratory observations. Mar Biol 156:709–724

    Google Scholar 

  62. Soetaert K et al (2009) Factors affecting nematode biomass, length and width from the shelf to the deep sea. Mar Ecol Prog Ser 392:123–132

    Google Scholar 

  63. Danovaro R et al (2010) Deep-Sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS One 5:e11832. https://doi.org/10.1371/journal.pone.0011832

  64. Vanreusel A et al (2010) The contribution of deep-sea macrohabitat heterogeneity to global nematode diversity. Mar Ecol 31(1):6–20. https://doi.org/10.1111/j.1439-0485.2009.00352.x

  65. Chardy P, Laubier L, Reyss D, Sibuet M (1973) Dragages profonds en mer Égée - données préliminaires. Rapp Comm Int Mer Medit 22(4):107–108

    Google Scholar 

  66. Lampadariou N (2001) Study of the meiobenthic ecosystem of the Aegean Sea with a special emphasis on nematodes. PhD dissertation, University of Crete, Heraklion

    Google Scholar 

  67. Castel J (1992) The meiofauna of coastal lagoon ecosystems and their importance in the food web. Vie et Milieu 42(2):125–135

    Google Scholar 

  68. McArthur VE, Koutsoubas D, Lampadariou N, Dounas C (2000) The meiofaunal community structure of a Mediterranean lagoon (Gialova lagoon, Ionian Sea). Helgol Mar Res 54:7–17

    Google Scholar 

  69. Buchholz TG, Lampadariou N (2002) Changes in composition and diversity of the Malia Bay nematode community (Crete, Greece) in relationship to sediment parameters. In: Bright M, Dworschak PC, Stachowitsch M (eds) The Vienna School of Marine Biology: a tribute to Jorg Ott. Facultas Universitatsverlag, Wien, pp 33–52

    Google Scholar 

  70. Kourelea E, Vafidis D, Chintiroglou CC, Trontsios G, Chicharo L (2004) Temporal variations in fine sand assemblages in the North Aegean Sea (Eastern Mediterranean). Int Rev Hydrobiol 89(2):175–187

    Google Scholar 

  71. Lampadariou N, Eleftheriou A (2018) Seasonal dynamics of meiofauna from the oligotrophic continental shelf of Crete (Aegean Sea, eastern Mediterranean). J Exp Mar Biol Ecol 502:91–104

    Google Scholar 

  72. Rosli N, Leduc D, Rowden AA, Probert PK (2018) Review of recent trends in ecological studies of deep-sea meiofauna, with focus on patterns and processes at small to regional spatial scales. Mar Biodivers 48(1):13–34. https://doi.org/10.1007/s12526-017-0801-5

  73. Danovaro R, Tselepides A, Otegui A, Della Croce N (2000) Dynamics of meiofaunal assemblages on the continental shelf and deep-sea sediments of the Cretan Sea (NE Mediterranean): relationships with seasonal changes in food supply. Prog Oceanogr 46:367–400

    Google Scholar 

  74. Stobbe K (2001) Temporal and spatial variabilities of harpacticoid copepods in the eulittoral zone of a sandy beach on Crete, Greece. Diploma dissertation, University of Rostock, Rostock

    Google Scholar 

  75. Danovaro R, Gambi C, Lampadariou N, Tselepides A (2008) Deep-sea nematode biodiversity in the Mediterranean basin: testing for longitudinal, bathymetric and energetic gradients. Ecography 31:231–244

    Google Scholar 

  76. Gambi C, Lampadariou N, Danovaro R (2010) Latitudinal, longitudinal and bathymetric patterns of abundance, biomass of metazoan meiofauna: importance of the rare taxa and anomalies in the deep Mediterranean Sea. Adv Oceanogr Limnol 1(1):167–197

    Google Scholar 

  77. Danovaro R, Fabiano M (1995) Meiofaunal abundance and distribution in bathyal sediments of the Mediterranean Sea: an overview. Biol Mar Mediterr 2(2):217–225

    Google Scholar 

  78. Danovaro R, Dinet A, Duineveld G, Tselepides A (1999) Benthic response to particulate fluxes in different trophic environments: a comparison between the Gulf of Lions-Catalan Sea (western-Mediterranean) and the Cretan Sea (eastern Mediterranean). Prog Oceanogr 44:287–312

    Google Scholar 

  79. Tyler PA (1988) Seasonality in the deep-sea. Oceanogr Mar Biol Ann Rev 26:227–258

    Google Scholar 

  80. Rex MA, Etter RJ (2010) Deep-sea biodiversity: pattern and scale. Harvard University Press, Cambridge

    Google Scholar 

  81. Hicks GRF, Coull BC (1983) The ecology of marine meiobenthic harpacticoid copepods. Oceanogr Mar Biol Ann Rev 21:67–175

    Google Scholar 

  82. Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Oceanogr Mar Biol Ann Rev 23:399–489

    Google Scholar 

  83. Pfannkuche O (1993) Benthic response to the sedimentation of particulate organic matter at the BIOTRANS station, 47°N, 20°W. Deep-Sea Res II 40:135–149

    Google Scholar 

  84. Vincx M et al (1994) Meiobenthos of the deep Northeast Atlantic. Adv Mar Biol 30:1–88

    Google Scholar 

  85. Gooday AJ, Pfannkuche O, Lambshead PJD (1996) An apparent lack of response by metazoan meiofauna to phytodetritus deposition to the bathyal North-Eastern Atlantic. J Mar Biol Assoc UK 76(2):297–310

    Google Scholar 

  86. Soyer J (1971) Bionomie benthique du plateau continental de la côte catalane française. V. Densités et biomasses du meiobenthos. Vie et Milieu 12(ser B):351–424

    Google Scholar 

  87. Hulings NC (1974) A temporal study of Lebanese sand beach meiofauna. Cah Biol Mar 15:319–335

    Google Scholar 

  88. de Bovée F (1981) Ecologie et dynamique des nématodes d’une vase sublittorale (Banyuls-sur-mer). PhD dissertation, University of P. & M. Curie, Paris

    Google Scholar 

  89. Dinet A, Nodot C, Vitiello P, Vivier MH (1982) Impact d’un effluent thermique sur une communauté de Copépodes Harpacticoides benthiques. Tethys 10:355–363

    Google Scholar 

  90. Heip C, Smol N (1976) Influence of temperature on the reproductive potential of two brackish-water Harpacticoids (Crustacea, Copepoda). Mar Biol 35:327–334

    Google Scholar 

  91. Feller RJ (1980) Development of the sand-dwelling meiobenthic harpacticoid copepod Huntemannia jadensis Poppe in the laboratory. J Exp Mar Biol Ecol 46:1–15

    Google Scholar 

  92. Palmer MA, Coull BC (1980) The prediction of development rate and the effect of temperature for the meiobenthic copepod, Microarthridion littorale (Poppe). J Exp Mar Biol Ecol 48:73–83

    Google Scholar 

  93. Herman PMJ, Heip C (1988) On the use of meiofauna in ecological monitoring: who needs taxonomy? Mar Pollut Bull 19(1):665–668

    Google Scholar 

  94. Hill MO (1973) Diversity and evenness: a notation and its consequences. Ecology 54:427–431. https://doi.org/10.2307/1934352

  95. Wieser W (1955) Eine Sammlung mariner Nematoden aus Piraeus (Griechenland). Osterreichische Zool Zeitschrift 6(3/5):597–631

    Google Scholar 

  96. Lampadariou N (2002) Species diversity patterns of free-living marine nematodes in the Aegean Sea. Biomare 3:11. http://www.biomareweb.org/3.8.html

  97. Chao A et al (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67

    Google Scholar 

  98. Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1451–1456

    Google Scholar 

  99. Lambshead PJD, Tietjen J, Ferrero T, Jensen P (2000) Latitudinal diversity gradients in the deep sea with special reference to North Atlantic nematodes. Mar Ecol Prog Ser 194:159–167

    Google Scholar 

  100. Lambshead PJD et al (2002) Latitudinal diversity patterns of deep-sea marine nematodes and organic fluxes: a test from the central equatorial Pacific. Mar Ecol Prog Ser 236:129–135

    Google Scholar 

  101. Leduc D, Rowden AA, Bowden DA, Probert PK, Pilditch CA, Nodder SD (2012) Unimodal relationship between biomass and species richness of deep-sea nematodes: implications for the link between productivity and diversity. Mar Ecol Prog Ser 454:53–64

    Google Scholar 

  102. Alper A, Karaytuğ S, Serdar SAK (2010) Interstitial and phytal Harpacticoida (Crustacea: Copepoda) inhabiting the mediolittoral zone of the Datça-Bozburun Peninsulas (Muğla, Turkey). SDU J Sci 5:16–28

    Google Scholar 

  103. Alper A, Sönmez S, Sak S, Karaytuğ S (2015) Marine harpacticoid (Copepoda, Harpacticoida) fauna of the Dilek Peninsula (Aydın, Turkey). Turk J Zool 39:580–586

    Google Scholar 

  104. Yildiz NÖ, Karaytuğ S (2018) Harpacticoida (Crustacea: Copepoda) of the three islands on Aegean Sea (Turkey) with eight new records. Mediterranean Fisher Aquacult Res 1:57–65

    Google Scholar 

  105. Köroğlu NÖ, Kuru S, Karaytuğ S (2015) Marine darcythompsoniids of the Turkish coasts with a description of Leptocaris emekdasi sp. nov. (Copepoda: Harpacticoida: Darcythompsoniidae) from the Aegean coast of Turkey. Mar Biodivers 45:383–390

    Google Scholar 

  106. Sönmez S, Karaytuğ S, Serdar SAK, Alper A (2018) Variations in Afrolaophonte pori Masry, 1970 (Copepoda: Harpacticoida: Laophontidae): a contribution towards the revision of the genus. Turk J Zool 42:29–45

    Google Scholar 

  107. Bergin F et al (2006) The response of benthic foraminifera and ostracoda to heavy metal pollution in Gulf of Izmir (Eastern Aegean Sea). Estuar Coast Shelf Sci 66(3–4):368–386

    Google Scholar 

  108. Sönmez S, Köroğlu NÖ, Karaytuğ S (2016) First record of the family Echinoderidae Zelinka, 1894 (Kinorhyncha: Cyclorhagida) from Turkish marine waters. Biharean Biol 10:5

    Google Scholar 

  109. Danovaro R, Dell’Anno A, Fabiano M, Pusceddu A, Tselepides A (2001) Deep-sea ecosystem response to climate changes: the eastern Mediterranean case study. Trends Ecol Evol 16(9):505–510

    Google Scholar 

  110. Danovaro R, Dell’Anno A, Pusceddu A (2004) Biodiversity response to climate change in a warm deep sea. Ecol Lett 7:821–828

    Google Scholar 

  111. Pusceddu A et al (2010) Ecosystem effects of dense water formation on deep Mediterranean Sea ecosystems: an overview. Adv Oceanogr Limnol 1(1):67–83

    Google Scholar 

  112. Koukousioura O, Dimiza MD, Triantaphyllou MV, Hallock P (2011) Living benthic foraminifera as an environmental proxy in coastal ecosystems: a case study from the Aegean Sea (Greece, NE Mediterranean). J Mar Syst 88:489–501

    Google Scholar 

  113. Dimiza MD et al (2016) The Foram Stress Index: a new tool for environmental assessment of soft-bottom environments using benthic foraminifera. A case study from the Saronikos Gulf, Greece, Eastern Mediterranean. Ecol Indic 60:611–621

    Google Scholar 

  114. Hatziyanni E (2003) Study of the ecology of meiobenthos with a special reference to foraminifera at the bathyal and abyssal zone of the eastern Mediterranean Sea. PhD dissertation, University of Crete, Heraklion

    Google Scholar 

  115. Triantaphyllou MV, Koukousioura O, Dimiza MD (2009) The presence of Indo-Pacific symbiont-bearing foraminifer Amphistegina lobifera in Greek coastal ecosystems (Aegean Sea, Eastern Mediterranean). Mediterr Mar Sci 10:73–85

    Google Scholar 

  116. Koukousioura O, Dimiza MD, Triantaphyllou MV (2010) Alien foraminifers from Greek coastal areas (Aegean Sea, eastern Mediterranean). Mediterr Mar Sci 11(1):155–172

    Google Scholar 

  117. Schratzberger M, Ingels J (2018) Meiofauna matters: the roles of meiofauna in benthic ecosystems. J Exp Mar Biol Ecol 502:12–25

    Google Scholar 

  118. Giere O (2019) Perspectives in meiobenthology: reviews, reflections and conclusions. Springer, Berlin

    Google Scholar 

  119. Coll M et al (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5:e11842. https://doi.org/10.1371/journal.pone.0011842

  120. Lee MSY (2000) A worrying systematic decline. Trends Ecol Evol 15(8):346. https://doi.org/10.1016/S0169-5347(00)01907-8

  121. Fonseca G, Fontaneto D, Di Domenico M (2018) Addressing biodiversity shortfalls in meiofauna. J Exp Mar Biol Ecol 502:26–38

    Google Scholar 

  122. Zogaris S, Dimitriou E Surrounding the Aegean: terrestrial and freshwater ecoregions, flora and fauna. In: Anagnostou C, Kostianoy A, Marioloakos I, Panayyotidis P, Soilemezidou M, Tsaltas G (eds) The Aegean Sea environment: the natural system. Handbook of environmental chemistry (HEC), vol I. Springer, Berlin

    Google Scholar 

  123. Sevastou K, Lampadariou N (2019) Meiofauna as a tool within the framework of European directives: setting the basis for its use in Greece. In: Adao H et al (eds) Book of Abstracts, Seventeenth International Meiofauna Conference, Evora, Portugal

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor A. Eleftheriou and Mrs. M. Eleftheriou for the critical reading of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Sevastou .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sevastou, K., Lampadariou, N. (2021). Benthic Meiofauna in the Aegean Sea. In: The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/698_2020_691

Download citation

  • DOI: https://doi.org/10.1007/698_2020_691

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics