Skip to main content

Social Stress and Aggression in Murine Models

  • Chapter
  • First Online:
Neuroscience of Social Stress

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 54))

Abstract

Throughout life, animals engage in a variety of social interactions ranging from the affiliative mother–offspring interaction and juvenile play to aggressive conflict. Deprivation of the appropriate social interaction during early development is stressful and disrupts the development of appropriate social behaviors and emotional responses later in life. Additionally, agonistic encounters can induce stress responses in both dominant and subordinate individuals. This review focuses on the social stress that escalates aggressive behavior of animals and discusses the known neurobiological and physiological mechanisms underlying the link between social stress and aggression. Social instigation, a brief exposure to a rival without physical contact, induces aggressive arousal in dominant animals and escalates aggressive behaviors in the following agonistic encounter. Furthermore, the experience of winning an aggressive encounter is known to be as rewarding as addictive drugs, and the experience of repeatedly winning induces addiction-like behavioral and neurobiological changes and leads to abnormal aggressive behaviors. Social isolation stress in early development from neonatal to juvenile and adolescent periods also affects aggressive behavior, but these effects largely depend on the strain, sex, and species as well as the stage of development in which isolation stress is experienced. In conclusion, understanding neurobiological mechanisms underlying the link between social stress and aggression will provide an important insight for the development of more effective and tolerable treatments for maladaptive aggression in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert DJ, Jonik RH, Watson NV, Moe IV, Walsh ML (1991) Aggression by a female rat cohabitating with a sterile male: termination of pseudopregnancy does not abolish aggression. Physiol Behav 50:519–523

    Article  CAS  PubMed  Google Scholar 

  • Aleyasin H, Flanigan ME, Golden SA, Takahashi A, Menard C, Pfau ML, Multer J, Pina J, McCabe KA, Bhatti N, Hodes GE, Heshmati M, Neve RL, Nestler EJ, Heller EA, Russo SJ (2018) Cell-type-specific role of Δfosb in nucleus accumbens in modulating intermale aggression. J Neurosci 38:5913–5924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amiri S, Haj-Mirzaian A, Amini-Khoei H, Razmi A, Shirzadian A, Rahimi-Balaei M, Olson CO, Mohsenzadeh A, Rastegar M, Zarrindast MR, Ghazi-Khansari M (2017) Protective effects of gabapentin against the seizure susceptibility and comorbid behavioral abnormalities in the early socially isolated mice. Eur J Pharmacol 797:106–114

    Article  CAS  PubMed  Google Scholar 

  • Avgustinovich DF, Gorbach OV, Kudryavtseva NN (1997) Comparative analysis of anxiety-like behavior in partition and plus-maze tests after agonistic interactions in mice. Physiol Behav 61:37–43

    Article  CAS  PubMed  Google Scholar 

  • Avitsur R, Kinsey SG, Bidor K, Bailey MT, Padgett DA, Sheridan JF (2007) Subordinate social status modulates the vulnerability to the immunological effects of social stress. Psychoneuroendocrinology 32:1097–1105

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandler R (1982) Neural control of aggressive behaviour. Trend Neurosci 5:390–394

    Article  Google Scholar 

  • Bannai M, Fish EW, Faccidomo S, Miczek KA (2007) Anti-aggressive effects of agonists at 5-HT1B receptors in the dorsal raphe nucleus of mice. Psychopharmacology 193:295–304

    Article  CAS  PubMed  Google Scholar 

  • Bartolomucci A, Palanza P, Costoli T, Savani E, Laviola G, Parmigiani S, Sgoifo A (2003) Chronic psychosocial stress persistently alters autonomic function and physical activity in mice. Physiol Behav 80:57–67

    Article  CAS  PubMed  Google Scholar 

  • Benekareddy M, Stachniak TJ, Bruns A, Knoflach F, von Kienlin M, Künnecke B, Ghosh A (2018) Identification of a corticohabenular circuit regulating socially directed behavior. Biol Psychiatry 83:607–617

    Article  PubMed  Google Scholar 

  • Berdoy M, Drickamer LC (2007) Comparative social organization and life history of Rattus and Mus. In: Rodent Societies. The University of Chicago Press, pp 380–392

    Google Scholar 

  • Berkowitz L (1993) Aggression: its causes, consequencecs and control. Temple University Press, Philadelphia

    Google Scholar 

  • Bibancos T, Jardim DL, Aneas I, Chiavegatto S (2007) Social isolation and expression of serotonergic neurotransmission-related genes in several brain areas of male mice. Genes Brain Behav 6:529–539

    Article  CAS  PubMed  Google Scholar 

  • Biro L, Toth M, Sipos E, Bruzsik B, Tulogdi A, Bendahan S, Sandi C, Haller J (2017) Structural and functional alterations in the prefrontal cortex after post-weaning social isolation: relationship with species-typical and deviant aggression. Brain Struct Funct 222:1861–1875

    Article  PubMed  Google Scholar 

  • Biro L, Sipos E, Bruzsik B, Farkas I, Zelena D, Balazsfi D, Toth M, Haller J (2018) Task division within the prefrontal cortex: distinct neuron populations selectively control different aspects of aggressive behavior via the hypothalamus. J Neurosci 38:4065–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boccia ML, Pedersen CA (2001) Brief vs. long maternal separations in infancy: contrasting relationships with adult maternal behavior and lactation levels of aggression and anxiety. Psychoneuroendocrinology 26:657–672

    Article  CAS  PubMed  Google Scholar 

  • Bortolato M, Chen K, Godar SC, Chen G, Wu W, Rebrin I, Farrell MR, Scott AL, Wellman CL, Shih JC (2011) Social deficits and perseverative behaviors, but not overt aggression, in MAO-A hypomorphic mice. Neuropsychopharmacology 36:2674–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brain P (1975) What does individual housing mean to a mouse? Life Sci 16:187–200

    Article  CAS  PubMed  Google Scholar 

  • Brain PF (1980) Adaptive aspects of hormonal correlates of attack and defense : a study in ethobiology. Recent Prog Brain Res 53:391–413

    Article  CAS  Google Scholar 

  • Brunelli SA, Shair HN, Hofer MA (1994) Hypothermic vocalizations of rat pups (Rattus norvegicus) elicit and direct maternal search behavior. J Comp Psychol 108:298–303

    Article  CAS  PubMed  Google Scholar 

  • Brunner HG, Nelen M, Breakefield XO, Ropers HH, Van Oost BA (1993a) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase a. Science 262:578–580

    Article  CAS  PubMed  Google Scholar 

  • Brunner HG, Nelen MR, van Zandvoort P, Abeling NGGM, van Gennip AH, Wolters EC, Kuiper MA, Ropers HH, Van Oost BA (1993b) X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am J Hum Genet 52:1032–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burke AR, Miczek KA (2014) Stress in adolescence and drugs of abuse in rodent models: role of dopamine, CRF, and HPA axis. Psychopharmacology 231:1557–1580

    Article  CAS  PubMed  Google Scholar 

  • Buwalda B, Kole MH, Veenema AH, Huininga M, de Boer SF, Korte SM, Koolhaas JM (2005) Long-term effects of social stress on brain and behavior: a focus on hippocampal functioning. Neurosci Biobehav Rev 29:83–97

    Article  PubMed  Google Scholar 

  • Byrd AL, Manuck SB (2014) MAOA, childhood maltreatment, and antisocial behavior: meta-analysis of a gene-environment interaction. Biol Psychiatry 75:9–17

    Article  CAS  PubMed  Google Scholar 

  • Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S, Müller U, Aguet M, Babinet C, Shih JC (1995) Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 268:1763–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caspi A, McCray J, Moffitt TE, Mill J, Martin J, Craig IW, Taylor A, Poulton R (2002) Role of genotype in the cycle of violence in maltreated children. Science 297:851–854

    Article  CAS  PubMed  Google Scholar 

  • Chang CH, Gean PW (2019) The ventral hippocampus controls stress-provoked impulsive aggression through the ventromedial hypothalamus in post-weaning social isolation mice. Cell Rep 28:1195–1205.e3

    Article  CAS  PubMed  Google Scholar 

  • Chang CH, Hsiao YH, Chen YW, Yu YJ, Gean PW (2015) Social isolation-induced increase in NMDA receptors in the hippocampus exacerbates emotional dysregulation in mice. Hippocampus 25:474–485

    Article  CAS  PubMed  Google Scholar 

  • Chang CH, Su CL, Gean PW (2018) Mechanism underlying NMDA blockade-induced inhibition of aggression in post-weaning socially isolated mice. Neuropharmacology 143:95–105

    Article  CAS  PubMed  Google Scholar 

  • Chang C-H, Kuek EJW, Su C-L, Gean P-W (2020) MicroRNA-206 regulates stress-provoked aggressive behaviors in post-weaning social isolation mice. Mol Ther Nucleic Acids 20:812–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou MY, Amo R, Kinoshita M, Cherng BW, Shimazaki H, Agetsuma M, Shiraki T, Aoki T, Takahoko M, Yamazaki M, Higashijima S, Okamoto H (2016) Social conflict resolution regulated by two dorsal habenular subregions in zebrafish. Science 352:87–90

    Article  CAS  PubMed  Google Scholar 

  • Couppis MH, Kennedy CH (2008) The rewarding effect of aggression is reduced by nucleus accumbens dopamine receptor antagonism in mice. Psychopharmacology 197:449–456

    Article  CAS  PubMed  Google Scholar 

  • Covington HE, Miczek KA (2005) Intense cocaine self-administration after episodic social defeat stress, but not after aggressive behavior: dissociation from corticosterone activation. Psychopharmacology 183:331–340

    Article  CAS  PubMed  Google Scholar 

  • Covington HE, Newman EL, Tran S, Walton L, Hayek W, Leonard MZ, DeBold JF, Miczek KA (2018) The urge to fight: persistent escalation by alcohol and role of NMDA receptors in mice. Front Behav Neurosci 12:206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covington HE, Newman EL, Leonard MZ, Miczek KA (2019) Translational models of adaptive and excessive fighting: An emerging role for neural circuits in pathological aggression. F1000Research 8(F1000 Faculty Rev):963

    Article  Google Scholar 

  • Crowcroft P (1966) Mice all over. Foulis, London

    Google Scholar 

  • Dang Y-H, Liu P, Ma R, Chu Z, Liu Y-P, Wang J-B, Ma X-C, Gao C-G (2015) HINT1 is involved in the behavioral abnormalities induced by social isolation rearing. Neurosci Lett 607:40–45

    Article  CAS  PubMed  Google Scholar 

  • De Almeida RMM, Miczek KA (2002) Aggression escalated by social instigation or by discontinuation of reinforcement (“frustration”) in mice: inhibition by anpirtoline: a 5-HT1B receptor agonist. Neuropsychopharmacology 27:171–181

    Article  PubMed  Google Scholar 

  • de Boer SF, Caramaschi D, Natarajan D, Koolhaas JM (2009) The vicious cycle towards violence: focus on the negative feedback mechanisms of brain serotonin neurotransmission. Front Behav Neurosci 3:52

    PubMed  PubMed Central  Google Scholar 

  • de Boer SF, Buwalda JM, Koolhaas JM (2016) Aggressive behavior and social stress. In: Stress: concepts, cognition, emotion, and behavior handbook of stress series, vol 1. Elsevier, pp 293–303

    Google Scholar 

  • Dhabhar FS, McEwen BS (1999) Enhancing versus suppressive effects of stress hormones on skin immune function. Proc Natl Acad Sci U S A 96:1059–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dölen G, Darvishzadeh A, Huang KW, Malenka RC (2013) Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas LA, Varlinskaya EI, Spear LP (2004) Rewarding properties of social interactions in adolescent and adult male and female rats: impact of social versus isolate housing of subjects and partners. Dev Psychobiol 45:153–162

    Article  PubMed  Google Scholar 

  • Ely DL, Henry JP (1978) Neuroendocrine response patterns in dominant and subordinate mice. Horm Behav 10:156–169

    Article  CAS  PubMed  Google Scholar 

  • Faccidomo S, Bannai M, Miczek KA (2008) Escalated aggression after alcohol drinking in male mice: dorsal raphé and prefrontal cortex serotonin and 5-HT(1B) receptors. Neuropsychopharmacology 33:2888–2899

    Article  CAS  PubMed  Google Scholar 

  • Falkner AL, Grosenick L, Davidson TJ, Deisseroth K, Lin D (2016) Hypothalamic control of male aggression-seeking behavior. Nat Neurosci 19:596–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fergusson DM, Boden JM, Horwood LJ, Miller AL, Kennedy MA (2011) MAOA, abuse exposure and antisocial behaviour: 30-year longitudinal study. Br J Psychiatry 198:457–463

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrari PF, van Erp AMM, Tornatzky W, Miczek KA (2003) Accumbal dopamine and serotonin in anticipation of the next aggressive episode in rats. Eur J Neurosci 17:371–378

    Article  CAS  PubMed  Google Scholar 

  • Fish EW, Faccidomo S, Miczek KA (1999) Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT(1B) receptor agonist CP-94,253. Psychopharmacology 146:391–399

    Article  CAS  PubMed  Google Scholar 

  • Fish EW, De Bold JF, Miczek KA (2002) Aggressive behavior as a reinforcer in mice: activation by allopregnanolone. Psychopharmacology 163:459–466

    Article  CAS  PubMed  Google Scholar 

  • Fish EW, DeBold JF, Miczek KA (2005) Escalated aggression as a reward: corticosterone and GABAA receptor positive modulators in mice. Psychopharmacology 182:116–127

    Article  CAS  PubMed  Google Scholar 

  • Flanigan ME, Aleyasin H, Li L, Burnett CJ, Chan KL, LeClair KB, Lucas EK, Matikainen-Ankney B, Durand-de Cuttoli R, Takahashi A, Menard C, Pfau ML, Golden SA, Bouchard S, Calipari ES, Nestler EJ, DiLeone RJ, Yamanaka A, Huntley GW, Clem RL, Russo SJ (2020) Orexin signaling in GABAergic lateral habenula neurons modulates aggressive behavior in male mice. Nat Neurosci 23:638–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fokkema DS, Koolhaas JM (1985) Acute and conditioned blood pressure changes in relation to social and psychosocial stimuli in rats. Physiol Behav 34:33–38

    Article  CAS  PubMed  Google Scholar 

  • Fokkema DS, Smit K, van der Gugten J, Koolhaas JM (1988) A coherent pattern among social behavior, blood pressure, corticosterone and catecholamine measures in individual male rats. Physiol Behav 42:485–489

    Article  CAS  PubMed  Google Scholar 

  • Fontenot J, Loetz EC, Ishiki M, Bland ST (2018) Monoacylglycerol lipase inhibition alters social behavior in male and female rats after post-weaning social isolation. Behav Brain Res 341:146–153

    Article  CAS  PubMed  Google Scholar 

  • Fortes PM, Albrechet-Souza L, Vasconcelos M, Ascoli BM, Menegolla AP, de Almeida RMM (2017) Social instigation and repeated aggressive confrontations in male Swiss mice: analysis of plasma corticosterone, CRF and BDNF levels in limbic brain areas. Trends Psychiatry Psychother 39:98–105

    Article  PubMed  Google Scholar 

  • Fuxe K, Cintra A, Agnati LF, Härfstrand A, Wikstrom AC, Okret S, Zoli M, Miller LS, Greene JL, Gustafsson JÅ (1987) Studies on the cellular localization and distribution of glucocorticoid receptor and estrogen receptor immunoreactivity in the central nervous system of the rat and their relationship to the monoaminergic and peptidergic neurons of the brain. J Steroid Biochem 27:159–170

    Article  CAS  PubMed  Google Scholar 

  • Fuxjager MJ, Forbes-Lorman RM, Coss DJ, Auger CJ, Auger P, Marler C (2010) Winning territorial disputes selectively enhances androgen sensitivity in neural pathways related to motivation and social aggression. Proc Natl Acad Sci 107:12393–12398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner CR (1985) Distress vocalization in rat pups a simple screening method for anxiolytic drugs. J Pharmacol Methods 14:181–187

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg BE, Allee WC (1942) Some effects of conditioning on social dominance and subordination in inbred strains of mice. Physiol Zool 15:485–506

    Article  Google Scholar 

  • Godar SC, Mosher LJ, Scheggi S, Devoto P, Moench KM, Strathman HJ, Jones CM, Frau R, Melis M, Gambarana C, Wilkinson B, Demontis MG, Fowler SC, Coba MP, Cara L (2019) Gene-environment interactions in antisocial behavior are mediated by early-life 5-HT2A receptor activation. Neuropharmacology 159:107513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golden SA, Heshmati M, Flanigan M, Christoffel DJ, Guise K, Pfau ML, Aleyasin H, Menard C, Zhang H, Hodes GE, Bregman D, Khibnik L, Tai J, Rebusi N, Krawitz B, Chaudhury D, Walsh JJ, Han MH, Shapiro ML, Russo SJ (2016) Basal forebrain projections to the lateral habenula modulate aggression reward. Nature 534:688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golden SA, Aleyasin H, Heins R, Flanigan M, Heshmati M, Takahashi A, Russo SJ, Shaham Y (2017a) Persistent conditioned place preference to aggression experience in adult male sexually-experienced CD-1 mice. Genes Brain Behav 16:44–55

    Article  CAS  PubMed  Google Scholar 

  • Golden SA, Heins C, Venniro M, Caprioli D, Zhang M, Epstein DH, Shaham Y (2017b) Compulsive addiction-like aggressive behavior in mice. Biol Psychiatry 82:239–248

    Article  PubMed  PubMed Central  Google Scholar 

  • Golden SA, Jin M, Heins C, Venniro M, Michaelides M, Shaham Y (2019a) Nucleus accumbens Drd1-expressing neurons control aggression self-administration and aggression seeking in mice. J Neurosci 39:2482–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golden SA, Jin M, Shaham Y (2019b) Animal models of (or for) aggression reward, addiction, and relapse: behavior and circuits. J Neurosci 39:3996–4008

    Article  PubMed  PubMed Central  Google Scholar 

  • Grant EC, Mackintosh JH (1963) A comparison of the social postures of some common laboratory rodents. Behaviour 21:246–259

    Article  Google Scholar 

  • Haller J, Barna I, Baranyi M (1995) Hormonal and metabolic responses during psychosocial stimulation in aggressive and nonaggressive rats. Psychoneuroendocrinology 20:65–74

    Article  CAS  PubMed  Google Scholar 

  • Haller J, Albert I, Makara GB (1997) Acute behavioural effects of corticosterone lack specificity but show marked context-dependency. J Neuroendocrinol 9:515–518

    Article  CAS  PubMed  Google Scholar 

  • Haller J, Halasz J, Mikics É, Kruk MR, Makara GB (2000a) Ultradian corticosterone rhythm and the propensity to behave aggressively in male rats. J Neuroendocrinol 12:937–940

    Article  CAS  PubMed  Google Scholar 

  • Haller J, Millar S, Van De Schraaf JVJ, De Kloet RE, Kruk MR (2000b) The active phase-related increase in corticosterone and aggression are linked. J Neuroendocrinol 12:431–436

    Article  CAS  PubMed  Google Scholar 

  • Haller J, Harold G, Sandi C, Neumann ID (2014) Effects of adverse early-life events on aggression and anti-social behaviours in animals and humans. J Neuroendocrinol 26:724–738

    Article  CAS  PubMed  Google Scholar 

  • Hashikawa K, Hashikawa Y, Tremblay R, Zhang J, Feng JE, Sabol A, Piper WT, Lee H, Rudy B, Lin D (2017) Esr1+ cells in the ventromedial hypothalamus control female aggression. Nat Neurosci 20:1580–1590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haspel T (1995) Beta-blockers and the treatment of aggression. Harv Rev Psychiatry 2:274–281

    Article  CAS  PubMed  Google Scholar 

  • Hayden-Hixson DM, Ferris CF (1991) Steroid-specific regulation of agonistic responding in the anterior hypothalamus of male hamsters. Physiol Behav 50:793–799

    Article  CAS  PubMed  Google Scholar 

  • Hodes GE, Pfau ML, Leboeuf M, Golden SA, Christoffel DJ, Bregman D, Rebusi N, Heshmati M, Aleyasin H, Warren BL, Lebonté B, Horn S, Lapidus KA, Stelzhammer V, Wong EH, Bahn S, Krishnan V, Bolaños-Guzman CA, Murrough JW, Merad M, Russo SJ (2014) Individual differences in the peripheral immune system promote resilience versus susceptibility to social stress. Proc Natl Acad Sci 111:16136–16141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofer MA (1970) Physiological responses of infant rats to separation from their mothers. Science 168:871–873

    Article  CAS  PubMed  Google Scholar 

  • Ibi D, Takuma K, Koike H, Mizoguchi H, Tsuritani K, Kuwahara Y, Kamei H, Nagai T, Yoneda Y, Nabeshima T, Yamada K (2008) Social isolation rearing-induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotion-related behaviors in juvenile mice. J Neurochem 105:921–932

    Article  CAS  PubMed  Google Scholar 

  • Jacobs BL, Cohen A (1976) Differential behavioral effects of lesions of the median or dorsal raphe nuclei in rats: open field and pain-elicited aggression. J Comp Physiol Psychol 90:102–108

    Article  CAS  PubMed  Google Scholar 

  • Karpova NN, Pickenhagen A, Lindholm J, Tiraboschi E, Kulesskaya N, Ágústsdóttir A, Antila H, Popova D, Akamine Y, Sullivan R, Hen R, Drew LJ, Castrén E (2011) Fear erasure in mice requires synergy between antidepressant drugs and extinction training. Science 334:1731–1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelsey JE, Cassidy D (1976) The reinforcing properties of aggressive vs nonaggressive social interactions in isolated male ICR mice (Mus musculus). Aggress Behav 2:275–284

    Article  Google Scholar 

  • Kember RL, Dempster EL, Lee THA, Schalkwyk LC, Mill J, Fernandes C (2012) Maternal separation is associated with strain-specific responses to stress and epigenetic alterations to Nr3c1, Avp, and Nr4a1 in mouse. Brain Behav 2:455–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim-Cohen J, Caspi A, Taylor A, Williams B, Newcombe R, Craig IW, Moffitt TE (2006) MAOA, maltreatment, and gene-environment interaction predicting children’s mental health: new evidence and a meta-analysis. Mol Psychiatry 11:903–913

    Article  CAS  PubMed  Google Scholar 

  • King JA (1957) Relationships between early social experience and adult aggressive behavior in inbred mice. J Genet Psychol 90:151–166

    Article  CAS  PubMed  Google Scholar 

  • Knutson JF, Kane N (1980) The effects of social isolation on two shock-induced aggressive responses in rats. Anim Learn Behav 8:167–170

    Article  Google Scholar 

  • Köbach A, Elbert T (2015) Sensitive periods for developing a robust trait of appetitive aggression. Front Psych 6:144

    Google Scholar 

  • Koolhaas JM, de Boer SF, Coppens CM, Buwalda B (2010) Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Front Neuroendocrinol 31:307–321

    Article  CAS  PubMed  Google Scholar 

  • Koolhaas JM, Bartolomucci A, Buwalda B, de Boer SF, Flügge G, Korte SM, Meerlo P, Murison R, Olivier B, Palanza P, Richter-Levin G, Sgoifo A, Steimer T, Stiedl O, van Dijk G, Wöhr M, Fuchs E (2011) Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev 35:1291–1301

    Article  CAS  PubMed  Google Scholar 

  • Koprowska M, Romaniuk A (1997) Behavioral and biochemical alterations in median and dorsal raphe nuclei lesioned cats. Pharmacol Biochem Behav 56:529–540

    Article  CAS  PubMed  Google Scholar 

  • Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, Laplant Q, Graham A, Lutter M, Lagace DC, Ghose S, Reister R, Tannous P, Green TA, Neve RL, Chakravarty S, Kumar A, Eisch AJ, Self DW, Lee FS, Tamminga CA, Cooper DC, Gershenfeld HK, Nestler EJ (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404

    Article  CAS  PubMed  Google Scholar 

  • Kruk MR, Van der Poel AM, Meelis W, Hermans J, Mostert PG, Mos J, Lohman AH (1983) Discriminant analysis of the localization of aggression-inducing electrode placements in the hypothalamus of male rats. Brain Res 260:61–79

    Article  CAS  PubMed  Google Scholar 

  • Kruk MR, Meelis W, Halász J, Haller J (2004) Fast positive feedback between the adrenocortical stress response and a brain mechanism involved in aggressive behavior. Behav Neurosci 118:1062–1070

    Article  CAS  PubMed  Google Scholar 

  • Kudryavtseva NN (1991) A sensory contact model for the study of aggressive and submissive behavior in male mice. Aggress Behav 17:285–291

    Article  Google Scholar 

  • Kudryavtseva NN (2000) Agonistic behavior: a model, experimental studies, and perspectives. Neurosci Behav Physiol 30:293–305

    Article  CAS  PubMed  Google Scholar 

  • Kudryavtseva NN (2004) Lorenz was right! Or does aggressive energy accumulate? Russ J Genet 40:656–662

    Article  CAS  Google Scholar 

  • Kudryavtseva NN, Bakshtanovskaya IV, Koryakina LA (1991) Social model of depression in mice of C57BL/6J strain. Pharmacol Biochem Behav 38:315–320

    Article  CAS  PubMed  Google Scholar 

  • Kudryavtseva NN, Bondar NP, Avgustinovich DF (2002) Association between experience of aggression and anxiety in male mice. Behav Brain Res 133:83–93

    Article  PubMed  Google Scholar 

  • Kudryavtseva NN, Bondar NP, Avgustinovich DF (2004) Effects of repeated experience of aggression on the aggressive motivation and development of anxiety in male mice. Neurosci Behav Physiol 34:721–730

    Article  CAS  PubMed  Google Scholar 

  • Kudryavtseva NN, Smagin DA, Kovalenko IL, Vishnivetskaya GB (2014) Repeated positive fighting experience in male inbred mice. Nat Protoc 9:2705–2717

    Article  PubMed  Google Scholar 

  • Kundakovic M, Lim S, Gudsnuk K, Champagne FA (2013) Sex-specific and strain-dependent effects of early life adversity on behavioral and epigenetic outcomes. Front Psych 4:78

    Google Scholar 

  • Lagerspetz K (1969) Aggression and aggressiveness in laboratory mice. In: Grattini S, Sigg EB (eds) Aggressive behavior. Wiley, New York

    Google Scholar 

  • Lagerspetz K, Hautojärvi S (1967) The effect of prior aggressive or sexual arousal on subsequent aggressive or sexual reactions in male mice. Scand J Psychol 8:1–6

    Article  CAS  PubMed  Google Scholar 

  • Laviola G, Macrì S, Morley-Fletcher S, Adriani W (2003) Risk-taking behavior in adolescent mice: psychobiological determinants and early epigenetic influence. In: Neuroscience and biobehavioral reviews. Elsevier, pp 19–31

    Google Scholar 

  • Lehmann J, Feldon J (2000) Long-term biobehavioral effects of maternal separation in the rat: consistent or confusing? Rev Neurosci 11:383–408

    Article  CAS  PubMed  Google Scholar 

  • Leshner AI, Korn SJ, Mixon JF, Rosenthal C, Besser AK (1980) Effects of corticosterone on submissiveness in mice: some temporal and theoretical considerations. Physiol Behav 24:283–288

    Article  CAS  PubMed  Google Scholar 

  • Levine S (2005) Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology 30:939–946

    Article  PubMed  Google Scholar 

  • Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ (2011) Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindzey G, Winston H, Manosevitz M (1961) Social dominance in inbred mouse strains. Nature 191:474–476

    Article  CAS  PubMed  Google Scholar 

  • Lischinsky JE, Lin D (2020) Neural mechanisms of aggression across species. Nat Neurosci 23:1317–1328

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, Sharma S, Pearson D, Plotsky PM, Meaney MJ (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic- pituitary-adrenal responses to stress. Science 277:1659–1662

    Article  CAS  PubMed  Google Scholar 

  • Liu ZW, Yu Y, Lu C, Jiang N, Wang XP, Xiao SY, Liu XM (2019) Postweaning isolation rearing alters the adult social, sexual preference and mating behaviors of male CD-1 mice. Front Behav Neurosci 13:1–12

    Article  Google Scholar 

  • Locci A, Geoffroy P, Miesch M, Mensah-Nyagan AG, Pinna G (2017) Social isolation in early versus late adolescent mice is associated with persistent behavioral deficits that can be improved by neurosteroid-based treatment. Front Cell Neurosci 11:1–11

    Article  CAS  Google Scholar 

  • Lorenz K (1966) On aggression. Harcourt Methuen, New York

    Google Scholar 

  • Maier SF, Drugan RC, Grau JW (1982) Controllability, coping behavior, and stress-induced analgesia in the rat. Pain 12:47–56

    Article  PubMed  Google Scholar 

  • McEwen BS (1998) Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci 840:33–44

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS (2016) Central role of the brain in stress and adaptation: Allostasis, biological embedding, and cumulative change. In: Stress: concepts, cognition, emotion, and behavior handbook of stress series, vol 1. Elsevier, pp 39–55

    Google Scholar 

  • Meaney MJ, Sapolsky RM, McEwen BS (1985) The development of the glucocorticoid receptor system in the rat limbic brain. I. Ontogeny and autoregulation. Dev Brain Res 18:159–164

    Article  CAS  Google Scholar 

  • Meisel RL, Joppa MA (1994) Conditioned place preference in female hamsters following aggressive or sexual encounters. Physiol Behav 56:1115–1118

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, O’Donnell JM (1978) Intruder-evoked aggression in isolated and nonisolated mice: effects of psychomotor stimulants and L-dopa. Psychopharmacology 57:47–55

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, Weerts EM, Vivian JA, Barros HM (1995) Aggression, anxiety and vocalizations in animals: GABAA and 5-HT anxiolytics. Psychopharmacology 121:38–56

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, Covington HE 3rd, Nikulina EM Jr, Hammer RP (2004) Aggression and defeat: persistent effects on cocaine self-administration and gene expression in peptidergic and aminergic mesocorticolimbic circuits. Neurosci Biobehav Rev 27:787–802

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, Yap JJ, Covington HE (2008) Social stress, therapeutics and drug abuse: preclinical models of escalated and depressed intake. Pharmacol Ther 120:102–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikics É, Kruk MR, Haller J (2004) Genomic and non-genomic effects of glucocorticoids on aggressive behavior in male rats. Psychoneuroendocrinology 29:618–635

    Article  CAS  PubMed  Google Scholar 

  • Mikics É, Guirado R, Umemori J, Tóth M, Biró L, Miskolczi C, Balázsfi D, Zelena D, Castrén E, Haller J, Karpova NN (2018) Social learning requires plasticity enhanced by fluoxetine through prefrontal Bdnf-TrkB signaling to limit aggression induced by post-weaning social isolation. Neuropsychopharmacology 43:235–245

    Article  CAS  PubMed  Google Scholar 

  • Millstein RA, Holmes A (2007) Effects of repeated maternal separation on anxiety- and depression-related phenotypes in different mouse strains. Neurosci Biobehav Rev 31:3–17

    Article  PubMed  Google Scholar 

  • Mos J, Olivier B, Poth M, Van Oorschot R, Van Aken H (1993) The effects of dorsal raphe administration of eltoprazine, TFMPP and 8-OH-DPAT on resident intruder aggression in the rat. Eur J Pharmacol 238:411–415

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Kikusui T, Takeuchi Y, Mori Y (2008) Changes in social instigation- and food restriction-induced aggressive behaviors and hippocampal 5HT1B mRNA receptor expression in male mice from early weaning. Behav Brain Res 187:442–448

    Article  CAS  PubMed  Google Scholar 

  • Neumann ID, Wigger A, Krömer S, Frank E, Landgraf R, Bosch OJ (2005) Differential effects of periodic maternal separation on adult stress coping in a rat model of extremes in trait anxiety. Neuroscience 132:867–877

    Article  CAS  PubMed  Google Scholar 

  • Newman EL, Covington HE, Suh J, Bicakci MB, Ressler KJ, DeBold JF, Miczek KA (2019) Fighting females: neural and behavioral consequences of social defeat stress in female mice. Biol Psychiatry 86:657–668

    Article  PubMed  PubMed Central  Google Scholar 

  • Noirot E (1972) Ultrasounds and maternal behavior in small rodents. Dev Psychobiol 5:371–387

    Article  CAS  PubMed  Google Scholar 

  • Oyegbile TO, Marler C (2005) Winning fights elevates testosterone levels in California mice and enhances future ability to win fights. Horm Behav 48:259–267

    Article  CAS  PubMed  Google Scholar 

  • Pacák K, Palkovits M (2001) Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr Rev 22:502–548

    Article  PubMed  Google Scholar 

  • Panksepp J (1981) The ontogeny of play in rats. Dev Psychobiol 14:327–332

    Article  CAS  PubMed  Google Scholar 

  • Panksepp JB, Lahvis GP (2007) Social reward among juvenile mice. Genes Brain Behav 6:661–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parmigiani S, Brain PF (1983) Effects of residence, aggressive experience and intruder familiarity on attack shown by male mice. Behav Process 8:45–57

    Article  CAS  Google Scholar 

  • Payne AP, Swanson HH (1970) Agonistic behaviour between pairs of hamsters of the same and opposite sex in a neutral observation area. Behaviour 36:260–269

    CAS  PubMed  Google Scholar 

  • Pellis S, Pellis V (2009) The playful brain. OneWorld Publications, Oxford

    Google Scholar 

  • Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A (2003) In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Natl Acad Sci U S A 100:2035–2040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potegal M (1991) Attack priming and satiation in female golden hamsters: tests of some alternatives to the aggression arousal interpretation. Aggress Behav 17:327–335

    Article  Google Scholar 

  • Potegal M, Einon D (1989) Aggressive behaviors in adult rats deprived of playfighting experience as juveniles. Dev Psychobiol 22:159–172

    Article  CAS  PubMed  Google Scholar 

  • Potegal M, Popken J (1985) The time course of attack priming effects in female golden hamsters. Behav Process 11:199–208

    Article  CAS  Google Scholar 

  • Potegal M, TenBrink L (1984) Behavior of attack-primed and attack-satiated female golden hamsters (Mesocricetus auratus). J Comp Psychol 98:66–75

    Article  Google Scholar 

  • Potegal M, Ferris CF, Hebert M, Meyerhoff J, Skaredoff L (1996a) Attack priming in female Syrian golden hamsters is associated with a c-fos-coupled process within the corticomedial amygdala. Neuroscience 75:869–880

    Article  CAS  PubMed  Google Scholar 

  • Potegal M, Hebert M, DeCoster M, Meyerhoff JL (1996b) Brief, high-frequency stimulation of the corticomedial amygdala induces a delayed and prolonged increase of aggressiveness in male Syrian golden hamsters. Behav Neurosci 110:401–412

    Article  CAS  PubMed  Google Scholar 

  • Proulx CD, Hikosaka O, Malinow R (2014) Reward processing by the lateral habenula in normal and depressive behaviors. Nat Neurosci 17:1146–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quadros IM, Hwa LS, Shimamoto A, Carlson J, Debold JF, Miczek KA (2014) Prevention of alcohol-heightened aggression by CRF-R1 antagonists in mice: critical role for DRN-PFC serotonin pathway. Neuropsychopharmacology 39:2874–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raab A, Dantzer R, Michaud B, Mormede P, Taghzouti K, Simon H, Le Moal M (1986) Behavioural, physiological and immunological consequences of social status and aggression in chronically coexisting resident-intruder dyads of male rats. Physiol Behav 36:223–228

    Article  CAS  PubMed  Google Scholar 

  • Reul JMHM, De Kloet ER (1986) Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. J Steroid Biochem 24:269–272

    Article  CAS  PubMed  Google Scholar 

  • Ribble DO, Salvioni M (1990) Social organization and nest co-occupancy in Peromyscus californicus, a monogamous rodent. Behav Ecol Sociobiol 26:9–15

    Article  Google Scholar 

  • Russo SJ, Murrough JW, Han MH, Charney DS, Nestler EJ (2012) Neurobiology of resilience. Nat Neurosci 15:1475–1484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sales G, Pye D (1974) Ultrasonic communication by animals. Chapman and Hall, London

    Book  Google Scholar 

  • Sapolsky RM (1982) The endocrine stress-response and social status in the wild baboon. Horm Behav 16:279–292

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM (1990) Adrenocortical function, social rank, and personality among wild baboons. Biol Psychiatry 28:862–878

    Article  CAS  PubMed  Google Scholar 

  • Sapolsky RM (2015) Stress and the brain: individual variability and the inverted-U. Nat Neurosci 18:1344–1346

    Article  CAS  PubMed  Google Scholar 

  • Schuurman T (1980) Hormonal correlates of agonistic behavior in adult male rats. Prog Brain Res 53:415–420

    Article  CAS  PubMed  Google Scholar 

  • Schwartzer JJ, Ricci LA, Melloni RH (2013) Prior fighting experience increases aggression in Syrian hamsters: implications for a role of dopamine in the winner effect. Aggress Behav 39:290–300

    Article  PubMed  Google Scholar 

  • Scott JP (1966) Agonistic behavior of mice and rats: a review. Am Zool 6:683–701

    Article  CAS  PubMed  Google Scholar 

  • Scott AL, Bortolato M, Chen K, Shih JC (2008) Novel monoamine oxidase A knock out mice with human-like spontaneous mutation. Neuroreport 19:739–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:32

    Article  Google Scholar 

  • Shimizu K, Kurosawa N, Seki K (2016) The role of the AMPA receptor and 5-HT3 receptor on aggressive behavior and depressive-like symptoms in chronic social isolation-reared mice. Physiol Behav 153:70–83

    Article  CAS  PubMed  Google Scholar 

  • Sijbesma H, Schipper J, de Kloet ER, Mos J, van Aken H, Olivier B (1991) Postsynaptic 5-HT1 receptors and offensive aggression in rats: a combined behavioural and autoradiographic study with eltoprazine. Pharmacol Biochem Behav 38:447–458

    Article  CAS  PubMed  Google Scholar 

  • Špinka M, Newberry RC, Bekoff M (2001) Mammalian play: training for the unexpected. Q Rev Biol 76:141–168

    Article  PubMed  Google Scholar 

  • St. John RD, Corning PA (1973) Maternal aggression in mice. Behav Biol 9:635–639

    Article  CAS  PubMed  Google Scholar 

  • Stanton ME, Gutierrez YR, Levine S (1988) Maternal deprivation potentiates pituitary-adrenal stress responses in infant rats. Behav Neurosci 102:692–700

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Yap JJ, Bohager DZ, Faccidomo S, Clayton T, Cook JM, Miczek KA (2009) Glutamatergic and GABAergic modulations of ultrasonic vocalizations during maternal separation distress in mouse pups. Psychopharmacology 204:61–71

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Kwa C, Debold JF, Miczek KA (2010a) GABAA receptors in the dorsal raphé nucleus of mice: escalation of aggression after alcohol consumption. Psychopharmacology 211:467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi A, Shimamoto A, Boyson CO, DeBold JF, Miczek KA (2010b) GABAB receptor modulation of serotonin neurons in the dorsal raphé nucleus and escalation of aggression in mice. J Neurosci 30:11771–11780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi A, Schilit AN, Kim J, Debold JF, Koide T, Miczek KA (2012) Behavioral characterization of escalated aggression induced by GABAB receptor activation in the dorsal raphe nucleus. Psychopharmacology 224:155–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi A, Nagayasu K, Nishitani N, Kaneko S, Koide T (2014) Control of intermale aggression by medial prefrontal cortex activation in the mouse. PLoS One 9:e94657

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi A, Lee RX, Iwasato T, Itohara S, Arima H, Bettler B, Miczek KA, Koide T (2015) Glutamate input in the dorsal raphe nucleus as a determinant of escalated aggression in male mice. J Neurosci 35:6452–6463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi A, Flanigan ME, McEwen BS, Russo SJ (2018) Aggression, social stress, and the immune system in humans and animal models. Front Behav Neurosci 12:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi A, Aleyasin H, Stavarache MA, Li L, Cathomas F, Parise LF, Lin H, Burnett CJ, Flanigan ME, Brancato A, Menard C, Pfau ML, Kana V, Wang J, Hodes GE, Sasaki T, Kaplitt MG, Ogawa S, McEwen BS, Russo SJ (2021) Neuromodulatory effect of interleukin 1β in the dorsal raphe nucleus on individual differences in aggression. Mol Psychiatry. In press

    Google Scholar 

  • Tellegen A, Horn JM (1972) Primary aggressive motivation in three inbred strains of mice. J Comp Physiol Psychol 78:297–304

    Article  CAS  PubMed  Google Scholar 

  • Tellegen A, Horn JM, Legrand RG (1969) Opportunity for aggression as a reinforcer in mice. Psychon Sci 14:104–105

    Article  Google Scholar 

  • Tornatzky W, Miczek KA (1993) Long-term impairment of autonomic circadian rhythms after brief intermittent social stress. Physiol Behav 53:983–993

    Article  CAS  PubMed  Google Scholar 

  • Tóth M, Halász J, Mikics E, Barsy B, Haller J (2008) Early social deprivation induces disturbed social communication and violent aggression in adulthood. Behav Neurosci 122:849–854

    Article  PubMed  Google Scholar 

  • Tóth M, Mikics E, Tulogdi A, Aliczki M, Haller J (2011) Post-weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses. Horm Behav 60:28–36

    Article  CAS  PubMed  Google Scholar 

  • Tóth M, Tulogdi A, Biro L, Soros P, Mikics E, Haller J (2012) The neural background of hyper-emotional aggression induced by post-weaning social isolation. Behav Brain Res 233:120–129

    Article  PubMed  Google Scholar 

  • Trezza V, Damsteegt R, Vanderschuren LJMJ (2009) Conditioned place preference induced by social play behavior: parametrics, extinction, reinstatement and disruption by methylphenidate. Eur Neuropsychopharmacol 19:659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda MC, Yamaguchi N, Ogawa S (2011) Early life stress disrupts peripubertal development of aggression in male mice. Neuroreport 22:259–263

    Article  PubMed  Google Scholar 

  • Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10:397–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Poll NE, De Jonge F, Van Oyen HG, Van Pelt J (1982) Aggressive behaviour in rats: effects of winning or losing on subsequent aggressive interactions. Behav Process 7:143–155

    Article  Google Scholar 

  • van den Berg CL, Hol T, Van Ree JM, Spruijt BM, Everts H, Koolhaas JM (1999) Play is indispensable for an adequate development of coping with social challenges in the rat. Dev Psychobiol 34:129–138

    Article  PubMed  Google Scholar 

  • van der Vegt BJ, Lieuwes N, van de Wall EHEM, Kato K, Moya-Albiol L, Martínez-Sanchis S, de Boer SF, Koolhaas JM (2003) Activation of serotonergic neurotransmission during the performance of aggressive behavior in rats. Behav Neurosci 117:667–674

    Article  PubMed  Google Scholar 

  • Van Erp AMM, Miczek KA (2000) Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. J Neurosci 20:9320–9325

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanderschuren LJMJ, Niesink RJM, Van Ree JM (1997) The neurobiology of social play behavior in rats. Neurosci Biobehav Rev 21:309–326

    Article  CAS  PubMed  Google Scholar 

  • Veenema AH (2009) Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Front Neuroendocrinol 30:497–518

    Article  CAS  PubMed  Google Scholar 

  • Veenema AH, Neumann ID (2009) Maternal separation enhances offensive play-fighting, basal corticosterone and hypothalamic vasopressin mRNA expression in juvenile male rats. Psychoneuroendocrinology 34:463–467

    Article  CAS  PubMed  Google Scholar 

  • Veenema AH, Blume A, Niederle D, Buwalda B, Neumann ID (2006) Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. Eur J Neurosci 24:1711–1720

    Article  PubMed  Google Scholar 

  • Veenema AH, Bredewold R, Neumann ID (2007) Opposite effects of maternal separation on intermale and maternal aggression in C57BL/6 mice: link to hypothalamic vasopressin and oxytocin immunoreactivity. Psychoneuroendocrinology 32:437–450

    Article  CAS  PubMed  Google Scholar 

  • Vergnes M, Depaulis A, Boehrer A (1986) Parachlorophenylalanine-induced serotonin depletion increases offensive but not defensive aggression in male rats. Physiol Behav 36:653–658

    Article  CAS  PubMed  Google Scholar 

  • Von Frijtag JC, Schot M, Van Den Bos R, Spruijt BM (2002) Individual housing during the play period results in changed responses to and consequences of a psychosocial stress situation in rats. Dev Psychobiol 41:58–69

    Article  Google Scholar 

  • Wall VL, Fischer EK, Bland ST (2012) Isolation rearing attenuates social interaction-induced expression of immediate early gene protein products in the medial prefrontal cortex of male and female rats. Physiol Behav 107:440–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walletschek H, Raab A (1982) Spontaneous activity of dorsal raphe neurons during defensive and offensive encounters in the tree-shrew. Physiol Behav 28:697–705

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Zhu J, Zhu H, Zhang Q, Lin Z, Hu H (2011) Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334:693–697

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Levine JLS, Avila-Quintero V, Bloch M, Kaffman A (2020) Systematic review and meta-analysis: effects of maternal separation on anxiety-like behavior in rodents. Transl Psychiatry 10:174

    Article  PubMed  PubMed Central  Google Scholar 

  • Wigger A, Neumann ID (1999) Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol Behav 66:293–302

    Article  CAS  PubMed  Google Scholar 

  • Workman JL, Fonken LK, Gusfa J, Kassouf KM, Nelson RJ (2011) Post-weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity. Pharmacol Biochem Behav 100:25–32

    Article  CAS  PubMed  Google Scholar 

  • Yap JJ, Miczek KA (2008) Stress and rodent models of drug addiction: role of VTA-accumbens-PFC-amygdala circuit. Drug Discov Today Dis Model 5:259–270

    Article  Google Scholar 

  • Yu Q, Teixeira CM, Mahadevia D, Huang Y, Balsam D, Mann JJ, Gingrich JA, Ansorge MS (2014) Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Mol Psychiatry 19:688–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, Xu H, Xue Y, An D, Li H, Chen W, Yu D, Sun Y, Ma J, Tang Y, Xiao Z, Yin S (2018) 5-HT2CR antagonist/5-HT2CR inverse agonist recovered the increased isolation-induced aggressive behavior of BALB/c mice mediated by ADAR1 (p110) expression and Htr2c RNA editing. Brain Behav 8:e00929

    Article  PubMed  PubMed Central  Google Scholar 

  • Zelikowsky M, Hui M, Karigo T, Choe A, Yang B, Blanco M, Beadle K, Gradinaru V, Deverman BE, Anderson DJ (2018) The neuropeptide Tac2 controls a distributed brain state induced by chronic social isolation stress. Cell 173:1265–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Sun L, Jia H, Meng Q, Wu S, Li N, He S (2009) Isolation rearing induces social and emotional function abnormalities and alters glutamate and neurodevelopment-related gene expression in rats. Prog Neuro-Psychopharmacol Biol Psychiatry 33:1173–1177

    Article  CAS  Google Scholar 

  • Zhou T, Zhu H, Fan Z, Wang F, Chen Y, Liang H, Yang Z, Zhang L, Lin L, Zhan Y, Wang Z, Hu H (2017) History of winning remodels thalamo-PFC circuit to reinforce social dominance. Science 357:162–168

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

I would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aki Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takahashi, A. (2021). Social Stress and Aggression in Murine Models. In: Miczek, K.A., Sinha, R. (eds) Neuroscience of Social Stress. Current Topics in Behavioral Neurosciences, vol 54. Springer, Cham. https://doi.org/10.1007/7854_2021_243

Download citation

Publish with us

Policies and ethics