Skip to main content

The Pathogenesis, Diagnosis, and Treatment of Polycythaemia Vera

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

Polycythaemia vera (PV) was first described in 1892 by Vazquez [1] in a case report describing a patient with ruddy cyanosis, splenomegaly, and an increased red cell count not associated with a congenital form of heart disease. A decade later in 1903 it was defined more clearly by Osler [2], and the disease then became known as Vasquez–Osler disease until this eponymous term was superseded by PV. PV together with essential thrombocythaemia (ET) and primary myelofibrosis (PMF) (Chap. 12) represent an overlapping spectrum of clonal haematological disorders called the human myeloproliferative neoplasms (MPN). The MPNs were first grouped together, along with chronic myeloid leukaemia (CML), by Dameshek in his seminal paper of 1951 [3]. CML is now generally considered as a distinct entity, but shares several features with the other MPNs. All of these disorders result from acquired genetic changes in the haematopoietic stem cell compartment and are characterized by proliferation of various cells of the myeloid lineages. They also all share the propensity to develop into acute myeloid leukaemia (AML), albeit with varying incidence, and, as will be described next, the majority demonstrate abnormalities of intracellular signalling. Taking all of these characteristics together, the MPN and CML therefore provide in vivo model systems to study the multistep development of AML. In addition, as MPNs are associated with full terminal differentiation of myeloid lineages, they allow the study of the effects of oncogenic mutations on normal myeloid homeostasis before this is complicated by cooperating mutations which block differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaquez H. On a special form of cyanosis accompanied by excessive and persistnet erythrocytosis. Comp rend Soc de biol. 1892; 12:384–8.

    Google Scholar 

  2. Osler W. Chronic cyanosis, with polycythaemia and enlarged spleen: A new clinical entity. Am J Med Sci. 1903;126: 187–201.

    Article  Google Scholar 

  3. Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951;6(4):372–5.

    PubMed  CAS  Google Scholar 

  4. Berlin N. Classification of the polycythaemias and initial clinical features in polycythaemia vera. In: Wasserman LBP, Berlin N, editors. Polycythaemia Vera and the Myeloproliferative Disorders. Philadelphia: W.B. Saunders; 1995. p. 22–30.

    Google Scholar 

  5. Mesa R. The incidence and epidemiology of essential thrombocythemia and agnogenic myeloid metaplasia: An Olmstead County study. Blood. 1997;90 Suppl 1:347a.

    Google Scholar 

  6. Modan B. An epidemiological study of polycythemia vera. Blood. 1965;26(5):657–67.

    PubMed  CAS  Google Scholar 

  7. Modan B, Kallner H, Zemer D, Yoran C. A note on the increased risk of polycythemia vera in Jews. Blood. 1971;37(2):172–6.

    PubMed  CAS  Google Scholar 

  8. Prochazka AV, Markowe HL. The epidemiology of polycythaemia rubra vera in England and Wales 1968–1982. Br J Cancer. 1986;53(1):59–64.

    Article  PubMed  CAS  Google Scholar 

  9. Tatarsky I, Sharon R. Management of polycythemia vera with hydroxyurea. Semin Hematol. 1997;34(1):24–8.

    PubMed  CAS  Google Scholar 

  10. Damon A, Holub DA. Host factors in polycythemia vera. Ann Intern Med. 1958;49(1):43–60.

    PubMed  CAS  Google Scholar 

  11. Committee for the Compilation of Materials on Damage Caused by the Atomic Bombs in Hiroshima and Nagasaki. Hiroshima and Nagasaki. The physical, medical and social effects of the atomic bombings. New York: Basic Books; 1981.

    Google Scholar 

  12. Caldwell GG, Kelley DB, Heath Jr CW, Zack M. Polycythemia vera among participants of a nuclear weapons test. J Am Med Assoc. 1984;252(5):662–4.

    Article  CAS  Google Scholar 

  13. Seaman V, Jumaan A, Yanni E, Lewis B, Neyer J, Roda P, et al. Use of molecular testing to identify a cluster of patients with polycythemia vera in eastern Pennsylvania. Cancer Epidemiol Biomarkers Prev. 2009;18(2):534–40.

    Article  PubMed  CAS  Google Scholar 

  14. Landgren O, Goldin LR, Kristinsson SY, Helgadottir EA, Samuelsson J, Bjorkholm M. Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood. 2008;112(6):2199–204.

    Article  PubMed  CAS  Google Scholar 

  15. Hemminki K, Jiang Y. Familial polycythemia vera: results from the Swedish Family-Cancer Database. Leukemia. 2001;15(8): 1313–5.

    Article  PubMed  CAS  Google Scholar 

  16. Kralovics R, Stockton DW, Prchal JT. Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood. 2003;102(10):3793–6.

    Article  PubMed  CAS  Google Scholar 

  17. Bellanne-Chantelot C, Chaumarel I, Labopin M, Bellanger F, Barbu V, De Toma C, et al. Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood. 2006;108(1):346–52.

    Article  PubMed  CAS  Google Scholar 

  18. Rumi E, Passamonti F, Pietra D, Della Porta MG, Arcaini L, Boggi S, et al. JAK2 (V617F) as an acquired somatic mutation and a secondary genetic event associated with disease progression in familial myeloproliferative disorders. Cancer. 2006;107(9): 2206–11.

    Article  PubMed  CAS  Google Scholar 

  19. Rumi E, Passamonti F, Della Porta MG, Elena C, Arcaini L, Vanelli L, et al. Familial chronic myeloproliferative disorders: clinical phenotype and evidence of disease anticipation. J Clin Oncol. 2007;25(35):5630–5.

    Article  PubMed  Google Scholar 

  20. Pietra D, Li S, Brisci A, Passamonti F, Rumi E, Theocharides A, et al. Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. Blood. 2008;111(3):1686–9.

    Article  PubMed  CAS  Google Scholar 

  21. Jones AV, Chase A, Silver RT, Oscier D, Zoi K, Wang YL, et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet. 2009;41(4):446–9.

    Article  PubMed  CAS  Google Scholar 

  22. Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullally A, Ebert BL, et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet. 2009;41(4):455–9.

    Article  PubMed  CAS  Google Scholar 

  23. Olcaydu D, Harutyunyan A, Jager R, Berg T, Gisslinger B, Pabinger I, et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet. 2009;41(4): 450–4.

    Article  PubMed  CAS  Google Scholar 

  24. Campbell PJ. Somatic and germline genetics at the JAK2 locus. Nat Genet. 2009;41(4):385–6.

    Article  PubMed  CAS  Google Scholar 

  25. Polycythemia vera: the natural history of 1213 patients followed for 20 years. Gruppo Italiano Studio Policitemia. Ann Intern Med 1995;123(9):656–64.

    Google Scholar 

  26. Berk P. Treatment of polycythemia vera: A summary of clinical trials conducted by the polycythemia vera study group. In: Wasserman LBP, Berlin N, editors. Polycythaemia vera and the myeloproliferative disorders. Philadelphia: W.B. Saunders; 1995. p. 166–94.

    Google Scholar 

  27. Landolfi R, Marchioli R, Kutti J, Gisslinger H, Tognoni G, Patrono C, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med. 2004;350(2):114–24.

    Article  PubMed  CAS  Google Scholar 

  28. Finazzi G. A prospective analysis of thrombotic events in the European collaboration study on low-dose aspirin in polycythemia (ECLAP). Pathol Biol (Paris). 2004;52(5):285–8.

    Article  CAS  Google Scholar 

  29. Kiladjian JJ, Cervantes F, Leebeek FW, Marzac C, Cassinat B, Chevret S, et al. The impact of JAK2 and MPL mutations on diagnosis and prognosis of splanchnic vein thrombosis: a report on 241 cases. Blood. 2008;111(10):4922–9.

    Article  PubMed  CAS  Google Scholar 

  30. Tartaglia AP, Goldberg JD, Berk PD, Wasserman LR. Adverse effects of antiaggregating platelet therapy in the treatment of polycythemia vera. Semin Hematol. 1986;23(3):172–6.

    PubMed  CAS  Google Scholar 

  31. Westin J, Lanner LO, Larsson A, Weinfeld A. Spleen size in polycythemia. A clinical and scintigraphic study. Acta Med Scand. 1972;191(3):263–71.

    PubMed  CAS  Google Scholar 

  32. Najean Y, Rain JD. Treatment of polycythemia vera: the use of hydroxyurea and pipobroman in 292 patients under the age of 65 years. Blood. 1997;90(9):3370–7.

    PubMed  CAS  Google Scholar 

  33. Najean Y, Rain JD. The very long-term evolution of polycythemia vera: an analysis of 318 patients initially treated by phlebotomy or 32P between 1969 and 1981. Semin Hematol. 1997;34(1):6–16.

    PubMed  CAS  Google Scholar 

  34. Pearson TC, Green AR, Reilly JT, Harrisoni G. Leukemic transformation in polycythemia Vera. MPD(UK) Study Group. Blood. 1998;92(5):1837–8.

    PubMed  CAS  Google Scholar 

  35. Fruchtman SM, Mack K, Kaplan ME, Peterson P, Berk PD, Wasserman LR. From efficacy to safety: a Polycythemia Vera Study group report on hydroxyurea in patients with polycythemia vera. Semin Hematol. 1997;34(1):17–23.

    PubMed  CAS  Google Scholar 

  36. Finazzi G, Caruso V, Marchioli R, Capnist G, Chisesi T, Finelli C, et al. Acute leukemia in polycythemia vera: an analysis of 1638 patients enrolled in a prospective observational study. Blood. 2005;105(7):2664–70.

    Article  PubMed  CAS  Google Scholar 

  37. Marchioli R, Finazzi G, Landolfi R, Kutti J, Gisslinger H, Patrono C, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol. 2005;23(10):2224–32.

    Article  PubMed  Google Scholar 

  38. Chievitz E, Thiede T. Complications and causes of death in polycythaemia vera. Acta Med Scand. 1962;172:513–23.

    Article  PubMed  CAS  Google Scholar 

  39. Hoffman R, Wasserman LR. Natural history and management of polycythemia vera. Adv Intern Med. 1979;24:255–85.

    PubMed  CAS  Google Scholar 

  40. Rozman C, Giralt M, Feliu E, Rubio D, Cortes MT. Life expectancy of patients with chronic nonleukemic myeloproliferative disorders. Cancer. 1991;67(10):2658–63.

    Article  PubMed  CAS  Google Scholar 

  41. Finazzi G, Marchiloi R. Life expectancy and causes of death in 252 patients with polycythemia vera below 50 years of age. Blood. 2000;96:740a.

    Google Scholar 

  42. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.

    Article  PubMed  CAS  Google Scholar 

  43. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61.

    PubMed  CAS  Google Scholar 

  44. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.

    Article  PubMed  CAS  Google Scholar 

  45. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97.

    Article  PubMed  CAS  Google Scholar 

  46. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68.

    Article  PubMed  CAS  Google Scholar 

  47. Adamson JW, Fialkow PJ, Murphy S, Prchal JF, Steinmann L. Polycythemia vera: stem-cell and probable clonal origin of the disease. N Engl J Med. 1976;295(17):913–6.

    Article  PubMed  CAS  Google Scholar 

  48. Anger B, Janssen JW, Schrezenmeier H, Hehlmann R, Heimpel H, Bartram CR. Clonal analysis of chronic myeloproliferative disorders using X-linked DNA polymorphisms. Leukemia. 1990;4(4):258–61.

    PubMed  CAS  Google Scholar 

  49. Gilliland DG, Blanchard KL, Levy J, Perrin S, Bunn HF. Clonality in myeloproliferative disorders: analysis by means of the polymerase chain reaction. Proc Natl Acad Sci U S A. 1991;88(15):6848–52.

    Article  PubMed  CAS  Google Scholar 

  50. Lucas GS, Padua RA, Masters GS, Oscier DG, Jacobs A. The application of X-chromosome gene probes to the diagnosis of myeloproliferative disease. Br J Haematol. 1989;72(4):530–3.

    Article  PubMed  CAS  Google Scholar 

  51. Prchal JF, Axelrad AA. Letter: Bone-marrow responses in polycythemia vera. N Engl J Med. 1974;290(24):1382.

    PubMed  CAS  Google Scholar 

  52. Correa PN, Eskinazi D, Axelrad AA. Circulating erythroid progenitors in polycythemia vera are hypersensitive to insulin-like growth factor-1 in vitro: studies in an improved serum-free medium. Blood. 1994;83(1):99–112.

    PubMed  CAS  Google Scholar 

  53. Dai CH, Krantz SB, Dessypris EN, Means Jr RT, Horn ST, Gilbert HS. Polycythemia vera. II. Hypersensitivity of bone marrow erythroid, granulocyte-macrophage, and megakaryocyte progenitor cells to interleukin-3 and granulocyte-macrophage colony-stimulating factor. Blood. 1992;80(4):891–9.

    PubMed  CAS  Google Scholar 

  54. Eaves CJ, Eaves AC. Erythropoietin (Ep) dose-response curves for three classes of erythroid progenitors in normal human marrow and in patients with polycythemia vera. Blood. 1978;52(6):1196–210.

    PubMed  CAS  Google Scholar 

  55. Li Y, Hetet G, Maurer AM, Chait Y, Dhermy D, Briere J. Spontaneous megakaryocyte colony formation in myeloproliferative disorders is not neutralizable by antibodies against IL3, IL6 and GM-CSF. Br J Haematol. 1994;87(3):471–6.

    Article  PubMed  CAS  Google Scholar 

  56. Scott LM, Campbell PJ, Baxter EJ, Todd T, Stephens P, Edkins S, et al. The V617F JAK2 mutation is uncommon in cancers and in myeloid malignancies other than the classic myeloproliferative disorders. Blood. 2005;106(8):2920–1.

    Article  PubMed  CAS  Google Scholar 

  57. Steensma DP, Dewald GW, Lasho TL, Powell HL, McClure RF, Levine RL, et al. The JAK2 V617F activating tyrosine kinase mutation is an infrequent event in both “atypical” myeloproliferative disorders and myelodysplastic syndromes. Blood. 2005;106(4):1207–9.

    Article  PubMed  CAS  Google Scholar 

  58. Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L, et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood. 2005;106(6):2162–8.

    Article  PubMed  CAS  Google Scholar 

  59. Vicente C, Vazquez I, Marcotegui N, Conchillo A, Carranza C, Rivell G, et al. JAK2-V617F activating mutation in acute myeloid leukemia: prognostic impact and association with other molecular markers. Leukemia. 2007;21(11):2386–90.

    Article  PubMed  CAS  Google Scholar 

  60. Lee JW, Kim YG, Soung YH, Han KJ, Kim SY, Rhim HS, et al. The JAK2 V617F mutation in de novo acute myelogenous leukemias. Oncogene. 2006;25(9):1434–6.

    Article  PubMed  CAS  Google Scholar 

  61. Illmer T, Schaich M, Ehninger G, Thiede C. Tyrosine kinase mutations of JAK2 are rare events in AML but influence prognosis of patients with CBF-leukemias. Haematologica. 2007;92(1):137–8.

    Article  PubMed  Google Scholar 

  62. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002;285(1–2):1–24.

    Article  PubMed  CAS  Google Scholar 

  63. O’Shea JJ, Gadina M, Schreiber RD. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell. 2002;109(Suppl): S121–31.

    Article  PubMed  Google Scholar 

  64. Sandberg EM, Wallace TA, Godeny MD, VonDerLinden D, Sayeski PP. Jak2 tyrosine kinase: a true jak of all trades? Cell Biochem Biophys. 2004;41(2):207–32.

    Article  PubMed  Google Scholar 

  65. Yamaoka K, Saharinen P, Pesu M, Holt 3rd VE, Silvennoinen O, O’Shea JJ. The Janus kinases (Jaks). Genome Biol. 2004; 5(12):253.

    Article  PubMed  Google Scholar 

  66. Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell. 1998;93(3):397–409.

    Article  PubMed  CAS  Google Scholar 

  67. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93(3):385–95.

    Article  PubMed  CAS  Google Scholar 

  68. Campbell PJ, Green AR. The myeloproliferative disorders. N Engl J Med. 2006;355(23):2452–66.

    Article  PubMed  CAS  Google Scholar 

  69. Ihle JN, Gilliland DG. Jak2: normal function and role in hematopoietic disorders. Curr Opin Genet Dev. 2007;17(1):8–14.

    Article  PubMed  CAS  Google Scholar 

  70. Levine RL, Pardanani A, Tefferi A, Gilliland DG. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer. 2007;7(9):673–83.

    Article  PubMed  CAS  Google Scholar 

  71. Nilsson J, Bjursell G, Kannius-Janson M. Nuclear Jak2 and transcription factor NF1-C2: a novel mechanism of prolactin signaling in mammary epithelial cells. Mol Cell Biol. 2006;26(15): 5663–74.

    Article  PubMed  CAS  Google Scholar 

  72. Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T, Green AR, et al. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature. 2009;461(7265): 819–22.

    Article  PubMed  CAS  Google Scholar 

  73. Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem. 2002;277(49):47954–63.

    Article  PubMed  CAS  Google Scholar 

  74. Saharinen P, Takaluoma K, Silvennoinen O. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol Cell Biol. 2000;20(10):3387–95.

    Article  PubMed  CAS  Google Scholar 

  75. Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB, et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem. 2005;280(24):22788–92.

    Article  PubMed  CAS  Google Scholar 

  76. Myklebust JH, Blomhoff HK, Rusten LS, Stokke T, Smeland EB. Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. Exp Hematol. 2002;30(9):990–1000.

    Article  PubMed  CAS  Google Scholar 

  77. Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF. Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/- mice: a direct role for Stat5 in Bcl-X(L) induction. Cell. 1999;98(2):181–91.

    Article  PubMed  CAS  Google Scholar 

  78. Ugo V, Marzac C, Teyssandier I, Larbret F, Lecluse Y, Debili N, et al. Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp Hematol. 2004;32(2):179–87.

    Article  PubMed  CAS  Google Scholar 

  79. Witthuhn BA, Quelle FW, Silvennoinen O, Yi T, Tang B, Miura O, et al. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell. 1993;74(2):227–36.

    Article  PubMed  CAS  Google Scholar 

  80. da Costa Reis Monte-Mor B, Plo I, da Cunha AF, Costa GG, de Albuquerque DM, Jedidi A, et al. Constitutive JunB expression, associated with the JAK2 V617F mutation, stimulates proliferation of the erythroid lineage. Leukemia. 2009;23(1):144–52.

    Article  PubMed  CAS  Google Scholar 

  81. Walz C, Crowley BJ, Hudon HE, Gramlich JL, Neuberg DS, Podar K, et al. Activated Jak2 with the V617F point mutation promotes G1/S phase transition. J Biol Chem. 2006;281(26):18177–83.

    Article  PubMed  CAS  Google Scholar 

  82. Zhao R, Follows GA, Beer PA, Scott LM, Huntly BJ, Green AR, et al. Inhibition of the Bcl-xL deamidation pathway in myeloproliferative disorders. N Engl J Med. 2008;359(26):2778–89.

    Article  PubMed  CAS  Google Scholar 

  83. Plo I, Nakatake M, Malivert L, de Villartay JP, Giraudier S, Villeval JL, et al. JAK2 stimulates homologous recombination and genetic instability: potential implication in the heterogeneity of myeloproliferative disorders. Blood. 2008;12(4):1402–12.

    Article  CAS  Google Scholar 

  84. Slupianek A, Hoser G, Majsterek I, Bronisz A, Malecki M, Blasiak J, et al. Fusion tyrosine kinases induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of G(2)/M phase, and protection from apoptosis. Mol Cell Biol. 2002;22(12):4189–201.

    Article  PubMed  CAS  Google Scholar 

  85. Kieslinger M, Woldman I, Moriggl R, Hofmann J, Marine JC, Ihle JN, et al. Antiapoptotic activity of Stat5 required during terminal stages of myeloid differentiation. Genes Dev. 2000;14(2):232–44.

    PubMed  CAS  Google Scholar 

  86. Silva M, Richard C, Benito A, Sanz C, Olalla I, Fernandez-Luna JL. Expression of Bcl-x in erythroid precursors from patients with polycythemia vera. N Engl J Med. 1998;338(9):564–71.

    Article  PubMed  CAS  Google Scholar 

  87. Gesbert F, Griffin JD. Bcr/Abl activates transcription of the Bcl-X gene through STAT5. Blood. 2000;96(6):2269–76.

    PubMed  CAS  Google Scholar 

  88. Zeuner A, Pedini F, Signore M, Ruscio G, Messina C, Tafuri A, et al. Increased death receptor resistance and FLIPshort expression in polycythemia vera erythroid precursor cells. Blood. 2006;107(9):3495–502.

    Article  PubMed  CAS  Google Scholar 

  89. Huang LJ, Constantinescu SN, Lodish HF. The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol Cell. 2001;8(6):1327–38.

    Article  PubMed  CAS  Google Scholar 

  90. Royer Y, Staerk J, Costuleanu M, Courtoy PJ, Constantinescu SN. Janus kinases affect thrombopoietin receptor cell surface localization and stability. J Biol Chem. 2005;280(29):27251–61.

    Article  PubMed  CAS  Google Scholar 

  91. Vainchenker W, Constantinescu SN. A unique activating mutation in JAK2 (V617F) is at the origin of polycythemia vera and allows a new classification of myeloproliferative diseases. Hematology Am Soc Hematol Educ Program 2005:195–200.

    Google Scholar 

  92. Staerk J, Kallin A, Royer Y, Diaconu CC, Dusa A, Demoulin JB, et al. JAK2, the JAK2 V617F mutant and cytokine receptors. Pathol Biol (Paris). 2007;55(2):88–91.

    Article  CAS  Google Scholar 

  93. Moliterno AR, Hankins WD, Spivak JL. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. N Engl J Med. 1998;338(9):572–80.

    Article  PubMed  CAS  Google Scholar 

  94. Moliterno AR, Spivak JL. Posttranslational processing of the thrombopoietin receptor is impaired in polycythemia vera. Blood. 1999;94(8):2555–61.

    PubMed  CAS  Google Scholar 

  95. Goerttler PS, Steimle C, Marz E, Johansson PL, Andreasson B, Griesshammer M, et al. The Jak2V617F mutation, PRV-1 overexpression, and EEC formation define a similar cohort of MPD patients. Blood. 2005;106(8):2862–4.

    Article  PubMed  CAS  Google Scholar 

  96. Lu X, Levine R, Tong W, Wernig G, Pikman Y, Zarnegar S, et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci U S A. 2005;102(52):18962–7.

    Article  PubMed  CAS  Google Scholar 

  97. Kralovics R, Guan Y, Prchal JT. Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp Hematol. 2002;30(3):229–36.

    Article  PubMed  CAS  Google Scholar 

  98. Scott LM, Scott MA, Campbell PJ, Green AR. Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood. 2006;108(7):2435–7.

    Article  PubMed  CAS  Google Scholar 

  99. Olthof SG, Fatrai S, Drayer AL, Tyl MR, Vellenga E, Schuringa JJ. Downregulation of signal transducer and activator of transcription 5 (STAT5) in CD34+ cells promotes megakaryocytic development, whereas activation of STAT5 drives erythropoiesis. Stem Cells. 2008;26(7):1732–42.

    Article  PubMed  CAS  Google Scholar 

  100. Pardanani A, Fridley BL, Lasho TL, Gilliland DG, Tefferi A. Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders. Blood. 2008;111(5):2785–9.

    Article  PubMed  CAS  Google Scholar 

  101. Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108(5):1652–60.

    Article  PubMed  CAS  Google Scholar 

  102. Bumm TG, Elsea C, Corbin AS, Loriaux M, Sherbenou D, Wood L, et al. Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res. 2006;66(23):11156–65.

    Article  PubMed  CAS  Google Scholar 

  103. Zaleskas VM, Krause DS, Lazarides K, Patel N, Hu Y, Li S, et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2 V617F. PLoS One. 2006;1:e18.

    Article  PubMed  CAS  Google Scholar 

  104. Shide K, Shimoda HK, Kumano T, Karube K, Kameda T, Takenaka K, et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2 V617F. Leukemia. 2008;22(1):87–95.

    Article  PubMed  CAS  Google Scholar 

  105. Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S, Schwaller J, et al. Ratio of mutant JAK2-V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood. 2008;111(8):3931–40.

    Article  PubMed  CAS  Google Scholar 

  106. Beer PA, Jones AV, Bench AJ, Goday-Fernandez A, Boyd EM, Vaghela KJ, et al. Clonal diversity in the myeloproliferative neoplasms: independent origins of genetically distinct clones. Br J Haematol. 2009;144(6):904–8.

    Article  PubMed  CAS  Google Scholar 

  107. Kralovics R. Genetic complexity of myeloproliferative neoplasms. Leukemia. 2008;22(10):1841–8.

    Article  PubMed  CAS  Google Scholar 

  108. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289–301.

    Article  PubMed  Google Scholar 

  109. Carbuccia N, Murati A, Trouplin V, Brecqueville M, Adelaide J, Rey J, et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia. 2009;23(11):2183–6.

    Article  PubMed  CAS  Google Scholar 

  110. Pearson TC, Messinezy M, Westwood N, Green AR, Bench AJ, Huntly BJ et al. A polycythemia vera updated: diagnosis, pathobiology, and treatment. Hematology Am Soc Hematol Educ Program 2000:51–68.

    Google Scholar 

  111. Pearson TC. Apparent polycythaemia. Blood Rev. 1991;5(4):205–13.

    Article  PubMed  CAS  Google Scholar 

  112. Percy MJ, Zhao Q, Flores A, Harrison C, Lappin TR, Maxwell PH, et al. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc Natl Acad Sci U S A. 2006;103(3):654–9.

    Article  PubMed  CAS  Google Scholar 

  113. Percy MJ, Furlow PW, Beer PA, Lappin TR, McMullin MF, Lee FS. A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove. Blood. 2007;110(6):2193–6.

    Article  PubMed  CAS  Google Scholar 

  114. Percy MJ, Furlow PW, Lucas GS, Li X, Lappin TR, McMullin MF, et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N Engl J Med. 2008;358(2):162–8.

    Article  PubMed  CAS  Google Scholar 

  115. Ang SO, Chen H, Hirota K, Gordeuk VR, Jelinek J, Guan Y, et al. Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia. Nat Genet. 2002;32(4):614–21.

    Article  PubMed  CAS  Google Scholar 

  116. Ang SO, Chen H, Gordeuk VR, Sergueeva AI, Polyakova LA, Miasnikova GY et al. Endemic polycythemia in Russia: mutation in the VHL gene. Blood Cells Mol Dis 2002 Jan-Feb;28(1):57-62.

    Google Scholar 

  117. Al-Sheikh M, Mazurier E, Gardie B, Casadevall N, Galacteros F, Goossens M, et al. A study of 36 unrelated cases with pure erythrocytosis revealed three new mutations in the erythropoietin receptor gene. Haematologica. 2008;93(7):1072–5.

    Article  PubMed  CAS  Google Scholar 

  118. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008.

    Google Scholar 

  119. McMullin MF, Reilly JT, Campbell P, Bareford D, Green AR, Harrison CN, et al. Amendment to the guideline for diagnosis and investigation of polycythaemia/erythrocytosis. Br J Haematol. 2007;138(6):821–2.

    Article  PubMed  Google Scholar 

  120. Jones AV, Cross NC, White HE, Green AR, Scott LM. Rapid identification of JAK2 exon 12 mutations using high resolution melting analysis. Haematologica. 2008;93(10):1560–4.

    Article  PubMed  CAS  Google Scholar 

  121. Cazzola M, Guarnone R, Cerani P, Rovati A, Ascari E. Congenital erythropoietin-dependent erythrocytosis responsive to theophylline treatment. Blood. 1998;91(1):360–1.

    PubMed  CAS  Google Scholar 

  122. Manglani MV, DeGroff CG, Dukes PP, Ettinger LJ. Congenital erythrocytosis with elevated erythropoietin level: an incorrectly set “erythrostat”? J Pediatr Hematol Oncol. 1998;20(6):560–2.

    Article  PubMed  CAS  Google Scholar 

  123. Walterspiel JN, Buchanan GR, Schad GA, Carpentieri U. Erythropoietin-induced congenital erythrocytosis: treatment with myelosuppressive agents and hookworm infestation. J Pediatr. 1985;107(4):575–7.

    Article  PubMed  CAS  Google Scholar 

  124. Borgna-Pignatti C, Liberato NL, Marradi P, Rosti V, Barosi G. Regulation of erythropoietin production in a case of congenital erythropoietin-dependent pure erythrocytosis. Am J Hematol. 1994;46(4):348–53.

    Article  PubMed  CAS  Google Scholar 

  125. Pearson TC, Guthrie DL, Simpson J, Chinn S, Barosi G, Ferrant A, et al. Interpretation of measured red cell mass and plasma volume in adults: Expert Panel on Radionuclides of the International Council for Standardization in Haematology. Br J Haematol. 1995;89(4):748–56.

    Article  PubMed  CAS  Google Scholar 

  126. Messinezy M, Macdonald LM, Nunan TO, Westwood NB, Chinn S, Pearson TC. Spleen sizing by ultrasound in polycythaemia and thrombocythaemia: comparison with SPECT. Br J Haematol. 1997;98(1):103–7.

    Article  PubMed  CAS  Google Scholar 

  127. Berlin NI. Diagnosis and classification of the polycythemias. Semin Hematol. 1975;12(4):339–51.

    PubMed  CAS  Google Scholar 

  128. Landolfi R, Di Gennaro L, Barbui T, De Stefano V, Finazzi G, Marfisi R, et al. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood. 2007;109(6):2446–52.

    Article  PubMed  CAS  Google Scholar 

  129. Gangat N, Strand J, Li CY, Wu W, Pardanani A, Tefferi A. Leucocytosis in polycythaemia vera predicts both inferior survival and leukaemic transformation. Br J Haematol. 2007;138(3):354–8.

    Article  PubMed  Google Scholar 

  130. Vannucchi AM, Antonioli E, Guglielmelli P, Longo G, Pancrazzi A, Ponziani V, et al. Prospective identification of high-risk polycythemia vera patients based on JAK2(V617F) allele burden. Leukemia. 2007;21(9):1952–9.

    Article  PubMed  CAS  Google Scholar 

  131. Tefferi A, Strand JJ, Lasho TL, Knudson RA, Finke CM, Gangat N, et al. Bone marrow JAK2V617F allele burden and clinical correlates in polycythemia vera. Leukemia. 2007;21(9):2074–5.

    Article  PubMed  CAS  Google Scholar 

  132. Berk PD, Goldberg JD, Donovan PB, Fruchtman SM, Berlin NI, Wasserman LR. Therapeutic recommendations in polycythemia vera based on Polycythemia Vera Study Group protocols. Semin Hematol. 1986;23(2):132–43.

    PubMed  CAS  Google Scholar 

  133. Treatment of polycythaemia vera by radiophosphorus or busulphan: a randomized trial. “Leukemia and Hematosarcoma” Cooperative Group, European Organization for Research on Treatment of Cancer (E.O.R.T.C.). Br J Cancer 1981;44(1):75–80.

    Google Scholar 

  134. Kiladjian JJ, Cassinat B, Turlure P, Cambier N, Roussel M, Bellucci S, et al. High molecular response rate of polycythemia vera patients treated with pegylated interferon alpha-2a. Blood. 2006;108(6):2037–40.

    Article  PubMed  CAS  Google Scholar 

  135. Thomas DJ, du Boulay GH, Marshall J, Pearson TC, Ross Russell RW, Symon L, et al. Cerebral blood-flow in polycythaemia. Lancet. 1977;2(8030):161–3.

    Article  PubMed  CAS  Google Scholar 

  136. Pearson TC, Wetherley-Mein G. Vascular occlusive episodes and venous haematocrit in primary proliferative polycythaemia. Lancet. 1978;2(8102):1219–22.

    Article  PubMed  CAS  Google Scholar 

  137. Di Nisio M, Barbui T, Di Gennaro L, Borrelli G, Finazzi G, Landolfi R, et al. The haematocrit and platelet target in polycythemia vera. Br J Haematol. 2007;136(2):249–59.

    Article  PubMed  Google Scholar 

  138. Crisa E, Venturino E, Passera R, Prina M, Schinco P, Borchiellini A, et al. A retrospective study on 226 polycythemia vera patients: impact of median hematocrit value on clinical outcomes and survival improvement with anti-thrombotic prophylaxis and non-alkylating drugs. Ann Hematol. 2010;89(7):691–9.

    Article  PubMed  Google Scholar 

  139. Finazzi G, Barbui T. Evidence and expertise in the management of polycythemia vera and essential thrombocythemia. Leukemia. 2008;22(8):1494–502.

    Article  PubMed  CAS  Google Scholar 

  140. Nand S, Messmore H, Fisher SG, Bird ML, Schulz W, Fisher RI. Leukemic transformation in polycythemia vera: analysis of risk factors. Am J Hematol. 1990;34(1):32–6.

    Article  PubMed  CAS  Google Scholar 

  141. Landaw SA. Acute leukemia in polycythemia vera. Semin Hematol. 1986;23(2):156–65.

    PubMed  CAS  Google Scholar 

  142. Kaplan ME, Mack K, Goldberg JD, Donovan PB, Berk PD, Wasserman LR. Long-term management of polycythemia vera with hydroxyurea: a progress report. Semin Hematol. 1986;23(3):167–71.

    PubMed  CAS  Google Scholar 

  143. Berk P. Treatment of polycythemia vera: A summary of clinical trials conducted by the polycythemia vera study group. In: Wasserman LBP, Berlin N, editors. Polycythemia vera and the myeloproliferative disorders. Philadelphia: W.B. Saunders; 1995. p. 166–94.

    Google Scholar 

  144. West WO. Hydroxyurea in the treatment of polycythemia vera: a prospective study of 100 patients over a 20-year period. South Med J. 1987;80(3):323–7.

    Article  PubMed  CAS  Google Scholar 

  145. Hanft VN, Fruchtman SR, Pickens CV, Rosse WF, Howard TA, Ware RE. Acquired DNA mutations associated with in vivo hydroxyurea exposure. Blood. 2000;95(11):3589–93.

    PubMed  CAS  Google Scholar 

  146. Sterkers Y, Preudhomme C, Lai JL, Demory JL, Caulier MT, Wattel E, et al. Acute myeloid leukemia and myelodysplastic syndromes following essential thrombocythemia treated with hydroxyurea: high proportion of cases with 17p deletion. Blood. 1998;91(2):616–22.

    PubMed  CAS  Google Scholar 

  147. Castello G, Lerza R, Cerruti A, Cavallini D, Bogliolo G, Pannacciulli I. The in vitro and in vivo effect of recombinant interferon alpha-2a on circulating haemopoietic progenitors in polycythaemia vera. Br J Haematol. 1994;87(3):621–3.

    Article  PubMed  CAS  Google Scholar 

  148. Ganser A, Carlo-Stella C, Greher J, Volkers B, Hoelzer D. Effect of recombinant interferons alpha and gamma on human bone marrow-derived megakaryocytic progenitor cells. Blood. 1987;70(4):1173–9.

    PubMed  CAS  Google Scholar 

  149. Silver RT. Interferon alfa: effects of long-term treatment for polycythemia vera. Semin Hematol. 1997;34(1):40–50.

    PubMed  CAS  Google Scholar 

  150. Taylor PC, Dolan G, Ng JP, Paul B, Collin R, Reilly JT. Efficacy of recombinant interferon-alpha (rIFN-alpha) in polycythaemia vera: a study of 17 patients and an analysis of published data. Br J Haematol. 1996;92(1):55–9.

    Article  PubMed  CAS  Google Scholar 

  151. Elliott MA, Tefferi A. Interferon-alpha therapy in polycythemia vera and essential thrombocythemia. Semin Thromb Hemost. 1997;23(5):463–72.

    Article  PubMed  CAS  Google Scholar 

  152. Quintas-Cardama A, Kantarjian H, Manshouri T, Luthra R, Estrov Z, Pierce S, et al. Pegylated interferon alfa-2a yields high rates of hematologic and molecular response in patients with advanced essential thrombocythemia and polycythemia vera. J Clin Oncol. 2009;27(32):5418–24.

    Article  PubMed  CAS  Google Scholar 

  153. Reilly JT, Vellenga E, De Wolff JT. Interferon treatment in polycythaemia vera. Leuk Lymphoma. 1996;22 Suppl 1:143–8.

    Article  PubMed  Google Scholar 

  154. Silver RT. Interferon-alpha 2b: a new treatment for polycythemia vera. Ann Intern Med. 1993;119(11):1091–2.

    PubMed  CAS  Google Scholar 

  155. Anagrelide, a therapy for thrombocythemic states: experience in 577 patients. Anagrelide Study Group. Am J Med 1992;92(1): 69–76.

    Google Scholar 

  156. Dawson MA, Curry JE, Barber K, Beer PA, Graham B, Lock V, et al. AT9283, a potent inhibitor of JAK2, has therapeutic potential in myeloproliferative disorders. Br J Haematol. 2010;150(1): 46–57.

    PubMed  CAS  Google Scholar 

  157. Geron I, Abrahamsson AE, Barroga CF, Kavalerchik E, Gotlib J, Hood JD, et al. Selective inhibition of JAK2-driven erythroid differentiation of polycythemia vera progenitors. Cancer Cell. 2008;13(4):321–30.

    Article  PubMed  CAS  Google Scholar 

  158. Pardanani A, Hood J, Lasho T, Levine RL, Martin MB, Noronha G, et al. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia. 2007;21(8):1658–68.

    Article  PubMed  CAS  Google Scholar 

  159. Pardanani A. JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Leukemia. 2008;22(1):23–30.

    Article  PubMed  CAS  Google Scholar 

  160. Santos FP, Kantarjian HM, Jain N, Manshouri T, Thomas DA, Garcia-Manero G et al. Phase 2 study of CEP-701, an orally available JAK2 inhibitor, in patients with primary or post-polycythemia vera/essential thrombocythemia myelofibrosis. Blood Feb 11;115(6):1131-6.

    Google Scholar 

  161. Verstovsek S. Therapeutic potential of JAK2 inhibitors. Hematology Am Soc Hematol Educ Program 2009:636–42.

    Google Scholar 

  162. Rambaldi A, Barbui T, Barosi G. From palliation to epigenetic therapy in myelofibrosis. Hematology Am Soc Hematol Educ Program 2008:83–91.

    Google Scholar 

  163. Kerbauy DM, Gooley TA, Sale GE, Flowers ME, Doney KC, Georges GE, et al. Hematopoietic cell transplantation as curative therapy for idiopathic myelofibrosis, advanced polycythemia vera, and essential thrombocythemia. Biol Blood Marrow Transplant. 2007;13(3):355–65.

    Article  PubMed  Google Scholar 

  164. Kroger N, Zabelina T, Schieder H, Panse J, Ayuk F, Stute N, et al. Pilot study of reduced-intensity conditioning followed by allogeneic stem cell transplantation from related and unrelated donors in patients with myelofibrosis. Br J Haematol. 2005;128(5): 690–7.

    Article  PubMed  CAS  Google Scholar 

  165. Rondelli D, Barosi G, Bacigalupo A, Prchal JT, Popat U, Alessandrino EP, et al. Allogeneic hematopoietic stem-cell transplantation with reduced-intensity conditioning in intermediate- or high-risk patients with myelofibrosis with myeloid metaplasia. Blood. 2005;105(10):4115–9.

    Article  PubMed  CAS  Google Scholar 

  166. Ferguson 2nd JE, Ueland K, Aronson WJ. Polycythemia rubra vera and pregnancy. Obstet Gynecol. 1983;62(3 Suppl):16s–20.

    PubMed  Google Scholar 

  167. Wright S. Myeloproliferative and metabolic causes. In: Meade T, editor. Thrombophilia. London: Balliere Tindall; 1994. p. 591–635.

    Google Scholar 

  168. Greisshammer M. Fertility, pregnancy and the management of myeloproliferative disorders. In: Green AP, editor. Myeloproliferative disorders. London: Baillière Tindall; 1988.

    Google Scholar 

  169. Delmer A, Rio B, Bauduer F, Ajchenbaum F, Marie JP, Zittoun R. Pregnancy during myelosuppressive treatment for chronic myelogenous leukemia. Br J Haematol. 1992;82(4):783–4.

    Article  PubMed  CAS  Google Scholar 

  170. Doll DC, Ringenberg QS, Yarbro JW. Antineoplastic agents and pregnancy. Semin Oncol. 1989;16(5):337–46.

    PubMed  CAS  Google Scholar 

  171. Griesshammer M, Struve S, Barbui T. Management of Philadelphia negative chronic myeloproliferative disorders in pregnancy. Blood Rev. 2008;22(5):235–45.

    Article  PubMed  Google Scholar 

  172. Robinson S, Bewley S, Hunt BJ, Radia DH, Harrison CN. The management and outcome of 18 pregnancies in women with polycythemia vera. Haematologica. 2005;90(11):1477–83.

    PubMed  Google Scholar 

  173. Delage R, Demers C, Cantin G, Roy J. Treatment of essential thrombocythemia during pregnancy with interferon-alpha. Obstet Gynecol. 1996;87(5 Pt 2):814–7.

    PubMed  CAS  Google Scholar 

  174. Haggstrom J, Adriansson M, Hybbinette T, Harnby E, Thorbert G. Two cases of CML treated with alpha-interferon during second and third trimester of pregnancy with analysis of the drug in the new-born immediately postpartum. Eur J Haematol. 1996;57(1):101–2.

    Article  PubMed  CAS  Google Scholar 

  175. Griesshammer M, Bangerter M, van Vliet HH, Michiels JJ. Aspirin in essential thrombocythemia: status quo and quo vadis. Semin Thromb Hemost. 1997;23(4):371–7.

    Article  PubMed  CAS  Google Scholar 

  176. Hunt BJ, Doughty HA, Majumdar G, Copplestone A, Kerslake S, Buchanan N, et al. Thromboprophylaxis with low molecular weight heparin (Fragmin) in high risk pregnancies. Thromb Haemost. 1997;77(1):39–43.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors also acknowledge Dr Anthony Bench and Professor Tony Green. Dr Bench and Professor Green were ­co-authors on a previous version of this chapter, whose format provided a loose framework for this significant update.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. P. Huntly M.B.Ch.B., M.R.C.P., Ph.D., F.R.C.Path .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dawson, M.A., Huntly, B.J.P. (2013). The Pathogenesis, Diagnosis, and Treatment of Polycythaemia Vera. In: Wiernik, P., Goldman, J., Dutcher, J., Kyle, R. (eds) Neoplastic Diseases of the Blood. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3764-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3764-2_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3763-5

  • Online ISBN: 978-1-4614-3764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics