Skip to main content

Symplasmic Transport in Wood: The Importance of Living Xylem Cells

  • Chapter
  • First Online:
Symplasmic Transport in Vascular Plants

Abstract

Short- and long-distance transport in woody plants is performed within two different systems of apoplasm and symplasm. Although the apoplasmic route of transport via dead conductive elements dominates in trees, the presence of interconnected living cells in xylem suggests the involvement of the symplasmic route in the transportation and communication processes occurring in wood. In this chapter, an attempt will be made to demonstrate and review the numerous functions of living xylem cells and the role of symplasmic transport in the secondary xylem of seed plants. The anatomical and ultrastructural characteristics of xylem parenchyma, reflecting the participation of living cells in the accumulation and distribution of stored compounds via symplasmic routes, will be presented. The involvement of living xylem parenchyma cells in the aspects of sugar transport and exchange at the symplasm/apoplasm interface, embolism repair, defense mechanisms against vascular pathogenic infection, and differentiation processes of xylem elements will be reviewed to emphasize the crucial impact of symplasmic transport and communication processes, via plasmodesmata, on integration and proper functioning of trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves G, Sauter JJ, Julien J-L, Fleurat-Lessard P, Ameglio T, et al. Plasma membrane H+-ATPase, succinate and isocitrate dehydrogenases activities of vessel-associated cells in walnut trees. J Plant Physiol. 2001;158:1263–71.

    CAS  Google Scholar 

  • Alves G, Decourteix M, Fleurat-Lessard P, Sakr S, Bonhomme M, Améglio T, et al. Spatial activity and expression of plasma membrane H+-ATPase in stem xylem of walnut during dormancy and growth resumption. Tree Physiol. 2007;27:1471–80.

    PubMed  CAS  Google Scholar 

  • Améglio T, Ewers FW, Cochard H, Martignac M, Vandame M, Bodet C, et al. Winter stem xylem pressure in walnut trees: effects of carbohydrates, cooling and freezing. Tree Physiol. 2001;21:387–94.

    PubMed  Google Scholar 

  • Améglio T, Bodet C, Lacointe A, Cochard H. Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees. Tree Physiol. 2002;22:1211–20.

    PubMed  Google Scholar 

  • Améglio T, Decourteix M, Alves G, Valentin V, Sakr S, Julien J-L, et al. Temperature effects on xylem sap osmolarity in walnut trees: evidence for a vitalistic model of winter embolism repair. Tree Physiol. 2004;24:785–93.

    PubMed  Google Scholar 

  • Arend M, Weisenseel MH, Brummer M, Osswald W, Fromm JH. Seasonal changes of plasma membrane H+-ATPase and endogenous ion current during cambial growth in poplar plants. Plant Physiol. 2002;129:1651–63.

    PubMed  CAS  Google Scholar 

  • Arend M, Monshausen G, Wind C, Weisenseel MH, Fromm J. Effect of potassium deficiency on the plasma membrane H+-ATPase of the wood ray parenchyma in poplar. Plant Cell Environ. 2004;27:1288–96.

    CAS  Google Scholar 

  • Banasiak A. Putative dual pathway of auxin transport in organogenesis in Arabidopsis. Planta. 2011;233:49–61.

    PubMed  CAS  Google Scholar 

  • Bannan MW. Origin and cellular character of xylem rays in gymnosperms. Bot Gaz. 1934;96:260–81.

    Google Scholar 

  • Bannan MW. Vascular rays and adventitious root formation in Thuja occidentalis L. Am J Bot. 1941;28:457–63.

    Google Scholar 

  • Bannan MW. Ray contacts and rate of anticlinal division in fusiform cambial cells of some Pinaceae. Can J Bot. 1965;43:487–507.

    Google Scholar 

  • Barghoorn ES. The ontogenetic development and phylogenetic specialization of rays in the xylem of dicotyledons. II. Modification of the multiseriate and uniseriate rays. Am J Bot. 1941a;28:273–82.

    Google Scholar 

  • Barghoorn ES. The ontogenetic development and phylogenetic specialization of rays in the xylem of dicotyledons. III. Elimination of rays. Bull Torrey Bot Club. 1941b;68:317–25.

    Google Scholar 

  • Barnett JR. Plasmodesmata and pit development in secondary xylem elements. Planta. 1982;155:251–60.

    Google Scholar 

  • Barnett JR. The development of fibre-tracheid pit membranes in Pyrus communis L. IAWA Bull. 1987a;8:134–42.

    Google Scholar 

  • Barnett JR. Changes in the distribution of plasmodesmata in developing fibre-tracheid pit membranes of Sorbus aucuparia L. Ann Bot. 1987b;59:269–79.

    Google Scholar 

  • Barnett JR. Cell-cell communication in wood. In: Baluška F, Volkmann D, Barlow PW, editors. Cell-cell channels. New York: Landes Bioscience and Springer Science+Business Media; 2006. p. 135–47.

    Google Scholar 

  • Barnett JR, Cooper P, Bonner LJ. The protective layer as an extension of the apoplast. IAWA J. 1993;14:163–71.

    Google Scholar 

  • Begum S, Nakaba S, Oribe Y, Kubo T, Funada R. Induction of cambial reactivation by localized heating in a deciduous hardwood hybrid poplar (Populus sieboldii × P. grandidentata). Ann Bot. 2007;100:439–47.

    PubMed  Google Scholar 

  • Benhamou N. Ultrastructural and cytochemical aspects of the response of eggplant parenchyma cells in direct contact with Verticillium – infected xylem vessels. Physiol Mol Plant Pathol. 1995;46:321–38.

    Google Scholar 

  • Bonhomme M, Peuch M, Ameglio T, Rageau R, Guilliot A, Decourteix M, et al. Carbohydrate uptake from xylem vessels and its distribution among stem tissues and buds in walnut (Juglans regia L.). Tree Physiol. 2009;30:89–102.

    PubMed  Google Scholar 

  • Botha CEJ, Aoki N, Scofield GN, Liu L, Furbank RT, White RG. A xylem sap retrieval pathway in rice leaf blades: evidence of a role for endocytosis? J Exp Bot. 2008;59:2945–54.

    PubMed  CAS  Google Scholar 

  • Botosso PC, Gomes AV. Radial vessels and series of perforated ray cells in Annonaceae. IAWA Bull. 1982;3:39–44.

    Google Scholar 

  • Braun HJ. The significance of the accessory tissues of the hydrosystem for osmotic water shifting as the second principle of water ascent, with some thoughts concerning the evolution of trees. IAWA Bull. 1984;5:275–94.

    Google Scholar 

  • Braun HJ, Wolkinger F. Zur funktionellen Anatomie des axialen Holzparenchyms und Vorschläge zur Reform seiner Terminologie. Holzforschung. 1970;24:19–26.

    Google Scholar 

  • Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Sternberg LDASL. Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: factors and mechanisms contributing to the refilling of embolized vessels. Plant Cell Environ. 2003;26:1633–45.

    Google Scholar 

  • Burgert I, Eckstein D. The tensile strength of isolated wood rays of beech (Fagus sylvatica L.) and its significance for the biomechanics of living trees. Trees. 2001;15:168–70.

    Google Scholar 

  • Burgert I, Bernasconi A, Eckstein D. Evidence for the strength function of rays in living trees. Holz Roh Werkst. 1999;57:397–9.

    Google Scholar 

  • Burgert I, Bernasconi A, Niklas KJ, Eckstein D. The influence of rays on the transverse elastic anisotropy in green wood of deciduous trees. Holzforschung. 2001;55:449–54.

    CAS  Google Scholar 

  • Carquist S. Comparative wood anatomy. Systematic, ecological and evolutionary aspects of dicotyledon wood. Berlin: Springer-Verlag; 1988.

    Google Scholar 

  • Carquist S. Bordered pits in ray cells and axial parenchyma: the histology of conduction, storage and strength in living wood cells. Bot J Linn Soc. 2007;153:157–68.

    Google Scholar 

  • Carquist S. Xylem heterochrony: an unappreciated key to angiosperm origin and diversifications. Bot J Linn Soc. 2009;161:26–65.

    Google Scholar 

  • Carquist S. Caryophyllales: a key group for understanding wood anatomy character states and their evolution. Bot J Linn Soc. 2010;164:342–93.

    Google Scholar 

  • Chafe SC. Cell wall formation and “protective layer” development in the xylem parenchyma of trembling aspen. Protoplasma. 1974;80:335–54.

    Google Scholar 

  • Chafe SC, Chauret G. Cell wall structure in the xylem parenchyma of trembling aspen. Protoplasma. 1974;80:129–47.

    Google Scholar 

  • Chaffey N, Barlow P. The cytoskeleton facilitates a three-dimensional symplasmic continuum in the long-lived ray and axial parenchyma cells of angiosperms trees. Planta. 2001;213:811–23.

    PubMed  CAS  Google Scholar 

  • Chaffey N, Barlow P. Myosin, microtubules, and microfilaments: co-operation between cytoskeletal components during cambial cell division and secondary vascular differentiation in trees. Planta. 2002;214:526–36.

    PubMed  CAS  Google Scholar 

  • Chaffey NJ, Barnett JR, Barlow PW. Visualization of the cytoskeleton within the secondary vascular system of hardwood species. J Microsc. 1997;187:77–84.

    PubMed  CAS  Google Scholar 

  • Chaffey N, Barnett J, Barlow P. A cytoskeletal basis for wood formation in angiosperm trees: the involvement of cortical microtubules. Planta. 1999;208:19–30.

    CAS  Google Scholar 

  • Chaffey N, Barlow P, Barnett J. A cytoskeletal basis for wood formation in angiosperm trees: the involvement of microfilaments. Planta. 2000;210:890–6.

    PubMed  CAS  Google Scholar 

  • Chattaway MM. The development of tyloses and secretion of gum in heartwood formation. Aust J Sci Res B. 1949;2:227–40.

    Google Scholar 

  • Chowdhury KA. The role of initial parenchyma in the transformation of the structure diffuse-porous to ring-porous in the secondary xylem of the genus Gmelina Linn. Proc Natl Inst Sci India. 1953;19:361–9.

    Google Scholar 

  • Clérivet A, Déon V, Alami I, Lopez F, Geiger J-P, Nicole M. Tyloses and gels associated with cellulose accumulation in vessels are responses of plane tree seedlings (Platanus × acerifolia) to the vascular fungus Ceratocystis fimbriata f. sp platani. Trees. 2000;15:25–31.

    Google Scholar 

  • Cooper RM, Williams JS. Elemental sulphur as an induced antifungal substance in plant defence. J Exp Bot. 2004;55:1947–53.

    PubMed  CAS  Google Scholar 

  • Cooper R, Resende MLV, Flood J, Rowan MG, Beale MH, Potter U. Detection and cellular localization of elemental sulphur in disease-resistant genotypes of Theobroma cacao. Nature. 1996;379:159–62.

    CAS  Google Scholar 

  • Cumbie BG. Development and structure of the xylem of Canavalia (Leguminosae). Bull Torrey Bot Club. 1967;94:162–75.

    Google Scholar 

  • Czaninski Y. Vessel-associated cells. IAWA Bull. 1977;3:51–5.

    Google Scholar 

  • Decourteix M, Alves G, Brunel N, Améglio T, Guilliot A, Lemoine R, et al. JrSUT1, a putative xylem sucrose transporter, could mediate sucrose influx into xylem parenchyma cells and be up-regulated by freeze-thaw cycles over the autumn-winter period in walnut tree (Juglans regia L.). Plant Cell Environ. 2006;29:36–47.

    PubMed  CAS  Google Scholar 

  • Decourteix M, Alves G, Bonhomme M, Peuch M, Baaziz KB, Brunel N, et al. Sucrose (JrSUT1) and hexose (JrHT1 and JrHT2) transporters in walnut xylem parenchyma cells: their potential role in early events of growth resumption. Tree Physiol. 2008;28:215–24.

    PubMed  CAS  Google Scholar 

  • Duckett CM, Oparka KJ, Prior DAM, Dolan L, Roberts K. Dye-coupling in the root epidermis of Arabidopsis is progressively reduced during development. Development. 1994;120:3247–55.

    CAS  Google Scholar 

  • Ehlers K, Binding H, Kollmann R. The formation of symplasmic domains by plugging of plasmodesmata: a general event in plant morphogenesis. Protoplasma. 1999;209:181–92.

    Google Scholar 

  • El Mahjoub M, Le Picard D, Moreau M. Origin of tyloses in melon (Cucumis melo L.) in response to a vascular fusarium. IAWA Bull. 1984;5:307–11.

    Google Scholar 

  • Essiamah S, Eschrich W. Changes of starch content in the storage tissues of deciduous trees during winter and spring. IAWA Bull. 1985;6:97–106.

    Google Scholar 

  • Essiamah S, Eschrich W. Water uptake in deciduous trees during winter and the role of conducting tissues in spring reactivation. IAWA Bull. 1986;7:31–8.

    Google Scholar 

  • Evert RF. Some aspects of cambial development in Pyrus communis. Am J Bot. 1961;48:479–88.

    Google Scholar 

  • Ewers FW, Améglio T, Cochard H, Beaujard F, Martignac M, Vandame M, et al. Seasonal variation in xylem pressure of walnut trees: root and stem pressures. Tree Physiol. 2001;21:1123–32.

    PubMed  CAS  Google Scholar 

  • Fromard L, Babin V, Fleurat-Lessard P, Fromont J-C, Serrano R, Bonnemain J-L. Control of vascular sap pH by the vessel-associated cells in woody species. Plant Physiol. 1995;108:913–8.

    PubMed  CAS  Google Scholar 

  • Fuchs M, Ehlers K, Will T, van Bel AJE. Immunolocalization indicates plasmodesmal trafficking of storage proteins during cambial reactivation in Populus nigra. Ann Bot. 2010;106:385–94.

    PubMed  CAS  Google Scholar 

  • Gartner BL, Baker DC, Spicer R. Distribution and vitality of xylem rays in relation to tree leaf area in Douglas-fir. IAWA J. 2000;21:389–401.

    Google Scholar 

  • Ghouse AKM, Yunus M. Some aspects of cambial development in the shoots of Dalbergia sissoo Roxb. Flora. 1973;162:549–58.

    Google Scholar 

  • Ghouse AKM, Yunus M. The ratio of ray and fusiform initials in some woody species of the Ranalian complex. Bull Torrey Bot Club. 1974;101:363–6.

    Google Scholar 

  • Gisel A, Barella S, Hempel FD, Zambryski PC. Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. Development. 1999;126:1879–89.

    PubMed  CAS  Google Scholar 

  • Goodman RN, White JA. Xylem parenchyma plasmolysis and vessel wall disorientation caused by Erwinia amylovora. Phytopathology. 1981;71:844–52.

    Google Scholar 

  • Gregory RA. Cambial activity and ray cell abundance in Acer saccharum. Can J Bot. 1977;55:2559–64.

    Google Scholar 

  • Gregory RA. Living elements of the conducting secondary xylem of sugar maple (Acer saccharum Marsh.). IAWA Bull. 1978;4:65–9.

    Google Scholar 

  • Hao B-Z, Wu J-L. Vacuole proteins in parenchyma cells of secondary phloem and xylem of Dalbergia odorifera. Trees. 1993;8:104–9.

    Google Scholar 

  • Harms U, Sauter JJ. Localization of a storage protein in the wood ray parenchyma cells of Taxodium distichum (L.). L.C. Rich by immunogold labeling. Trees. 1992a;6:37–40.

    Google Scholar 

  • Harms U, Sauter JJ. Changes in content of starch, protein, fat and sugars in the branchwood of Betula pendula Roth during fall. Holzforschung. 1992b;46:455–61.

    CAS  Google Scholar 

  • Higuchi T, Onda Y, Fujimoto Y. Biochemical aspects of heartwood formation with special reference to the site of biogenesis of heartwood compounds. Wood Res. 1969;48:15–30.

    Google Scholar 

  • Hilaire E, Young SA, Willard LH, McGee JD, Sweat T, Chittoor JM, et al. Vascular defense responses in rice: peroxidase accumulation in xylem parenchyma cells and xylem wall thickening. Mol Plant Microbe Interact. 2001;14:1411–9.

    PubMed  CAS  Google Scholar 

  • Hillinger C, Höll W, Ziegler H. Lipids and lipolytic enzymes in the trunkwood of Robinia pseudoacacia L. during heartwood formation. Trees. 1996;10:366–75.

    Google Scholar 

  • Holbrook NM, Zwieniecki MA, editors. Vascular transport in plants. Amsterdam: Elsevier; 2005.

    Google Scholar 

  • Höll W. Radial transport in rays. In: Zimmermann MH, Milburn JA, editors. Transport in plants. I. Phloem transport, Encyclopedia of Plant Physiology. New Series, vol. 1. Berlin: Springer-Verlag; 1975. p. 432–50.

    Google Scholar 

  • Hook DD, Brown CL. Permeability of the cambium to air in trees adapted to wet habitats. Bot Gaz. 1972;133:304–10.

    Google Scholar 

  • IAWA Committee. IAWA list of microscopic features for hardwood identification. IAWA Bull. 1989;10:219–332.

    Google Scholar 

  • Jansen S, Sano Y, Choat B, Rabaey D, Lens F, Dute RR. Pit membranes in tracheary elements of Rosaceae and related families: new records of tori and pseudotori. Am J Bot. 2007;94:503–14.

    PubMed  Google Scholar 

  • Kim JS, Sandquist D, Sundberg B, Daniel G. Spatial and temporal variability of xylan distribution in differentiating secondary xylem of hybrid aspen. Planta. 2012;235:1315–30.

    PubMed  CAS  Google Scholar 

  • Kitin P, Fujii T, Abe H, Takata K. Anatomical features that facilitate radial flow across growth rings and from xylem to cambium in Cryptomeria japonica. Ann Bot. 2009;103:1145–57.

    PubMed  Google Scholar 

  • Korolev AV, Tomos AD, Bowtell R, Farrar JF. Spatial and temporal distribution of solutes in the developing carrot taproot measured at single-cell resolution. J Exp Bot. 2000a;51:567–77.

    PubMed  CAS  Google Scholar 

  • Korolev AV, Tomos AD, Farrar JF. The trans-tissue pathway and chemical fate of 14C photoassimilate in carrot taproot. New Phytol. 2000b;147:299–306.

    CAS  Google Scholar 

  • Krabel D. Influence of sucrose on cambial activity. In: Savidge RA, Barnett JR, Napier R, editors. Cell and molecular biology of wood formation. Oxford: BIOS Scientific; 2000. p. 113–25.

    Google Scholar 

  • Lachaud S, Maurousset L. Occurrence of plasmodesmata between differentiating vessels and other xylem cells of Sorbus torminalis L. Crantz and their fate during xylem maturation. Protoplasma. 1996;191:220–6.

    Google Scholar 

  • Langenfeld-Heyser R. Distribution of leaf assimilates in the stem of Picea abies L. Trees. 1987;1:102–9.

    CAS  Google Scholar 

  • Langheinrich U, Tischner R. Vegetative storage proteins in poplar. Plant Physiol. 1991;97:1017–25.

    PubMed  CAS  Google Scholar 

  • LaPasha CA, Wheeler EA. Resin canals in Pinus taeda. Longitudinal canal lengths and interconnections between longitudinal and radial canals. IAWA Bull. 1990;11:227–38.

    Google Scholar 

  • Larson PR. The vascular cambium. Development and structure. Berlin: Springer-Verlag; 1994.

    Google Scholar 

  • Lev-Yadun S. Radial fibres in aggregate rays of Quercus calliprinos Webb. – evidence for radial signal flow. New Phytol. 1994;128:45–8.

    Google Scholar 

  • Lev-Yadun S, Aloni R. Polycentric vascular rays in Suaeda monoica and the control of ray initiation and spacing. Trees. 1991;5:22–9.

    Google Scholar 

  • Lev-Yadun S, Aloni R. The role of wounding and partial girdling in differentiation of vascular rays. Int J Plant Sci. 1992;153:348–57.

    Google Scholar 

  • Lev-Yadun S, Aloni R. Differentiation of the ray system in woody plants. Bot Rev. 1995;61:45–84.

    Google Scholar 

  • Magel EA, Drouet A, Claudot AC, Ziegler H. Formation of heartwood substances in the stem of Robinia pseudoacacia L. Trees. 1991;5:203–7.

    Google Scholar 

  • Metcalfe CR, Chalk L. Anatomy of dicotyledons. 2nd ed. Wood structure and conclusion of the general introduction. Oxford: Clarendon; 1983.

    Google Scholar 

  • Mueller WC, Beckman CH. Ultrastructure of the cell wall of vessel contact cells in the xylem of tomato stems. Ann Bot. 1984;53:107–14.

    Google Scholar 

  • Mueller WC, Morgham AT, Roberts EM. Immunocytochemical localization of callose in the vascular tissue of tomato and cotton plants infected with Fusarium oxysporum. Can J Bot. 1994;72:505–9.

    Google Scholar 

  • Murakami Y, Funada R, Sano Y, Ohtani J. The differentiation of contact cells and isolation cells in the xylem ray parenchyma of Populus maximowiczii. Ann Bot. 1999;84:429–35.

    Google Scholar 

  • Myśkow E, Zagórska-Marek B. Ontogenetic development of storied ray pattern in cambium of Hippophaë rhamnoides L. Acta Soc Bot Pol. 2004;73:93–101.

    Google Scholar 

  • Myśkow E, Zagórska-Marek B. Vertical migration of rays leads to the development of a double-storied phenotype in the cambium of Aesculus turbinata. Botany. 2008;86:36–44.

    Google Scholar 

  • Myśkow E, Zagórska-Marek B. Dynamics of the ray pattern in cambium of Diospyros lotus L. Dendrobiology. 2013;69:21–30.

    Google Scholar 

  • Nagai S, Utsumi Y. The function of intercellular spaces along the ray parenchyma in sapwood, intermediate wood, and heartwood of Cryptomeria japonica (Cupressaceae). Am J Bot. 2012;99:1553–61.

    PubMed  Google Scholar 

  • Nakaba S, Sano Y, Kubo T, Funada R. The positional distribution of cell death of ray parenchyma in a conifer, Abies sachalinensis. Plant Cell Rep. 2006;25:1143–8.

    PubMed  CAS  Google Scholar 

  • Nakaba S, Kubo T, Funada R. Differences in patterns of cell death between ray parenchyma cells and ray tracheids in the conifers Pinus densiflora and Pinus rigida. Trees. 2008;22:623–30.

    Google Scholar 

  • Nakaba S, Begum S, Yamagishi Y, Jin H-O, Kubo T, Funada R. Differences in the timing of cell death, differentiation and function among three different types of ray parenchyma cells in the hardwood Populus sieboldii x P. grandidentata. Trees. 2012a;26:743–50.

    Google Scholar 

  • Nakaba S, Yamagishi Y, Sano Y, Funada R. Temporally and spatially controlled death of parenchyma cells is involved in heartwood formation in pith regions of branches of Robinia pseudoacacia var. inermis. J Wood Sci. 2012b;58:69–76.

    CAS  Google Scholar 

  • Nardini A, Lo Gullo MA, Salleo S. Refilling embolized xylem conduits: is it a matter of phloem unloading? Plant Sci. 2011;180:604–11.

    PubMed  CAS  Google Scholar 

  • Oribe Y, Funada R, Shibagaki M, Kubo T. Cambial reactivation in locally heated stems of the evergreen conifer Abies sachalinensis (Schmidt) Masters. Planta. 2001;212:684–91.

    PubMed  CAS  Google Scholar 

  • Oribe Y, Funada R, Kubo T. Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees. 2003;17:185–92.

    Google Scholar 

  • Patrick JW, Offler CE. Post-sieve element transport of photoassimilates in sink regions. J Exp Bot. 1996;47:1165–77.

    PubMed  CAS  Google Scholar 

  • Rabaey D, Lens F, Smets E, Jansen S. The micromorphology of pit membranes in tracheary elements of Ericales: new records of tori or pseudo-tori? Ann Bot. 2006;98:943–51.

    PubMed  Google Scholar 

  • Rabaey D, Lens F, Huysmans S, Smets E, Jansen S. A comparative ultrastructural study of pit membranes with plasmodesmata associated thickenings in four angiosperm species. Protoplasma. 2008;233:255–62.

    PubMed  Google Scholar 

  • Romberger A, Hejnowicz H, Hill JF. Plant structure: function and development. A treatise on anatomy and vegetative development, with special reference to woody plants. 1st ed. Berlin: Springer-Verlag; 1993.

    Google Scholar 

  • Sakr S, Alves G, Morillon R, Maurel K, Decourteix M, Guilliot A, et al. Plasma membrane aquaporins are involved in winter embolism recovery in walnut tree. Plant Physiol. 2003;133:630–41.

    PubMed  CAS  Google Scholar 

  • Salleo S, Lo Gullo MA, Trifilo P, Nardini A. New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L. Plant Cell Environ. 2004;27:1065–76.

    Google Scholar 

  • Salleo S, Trifilò P, Lo Gullo MA. Vessel wall vibrations: trigger for embolism repair? Funct Plant Biol. 2008;35:289–97.

    Google Scholar 

  • Salleo S, Trifilò P, Esposito S, Nardini A, Lo Gullo MA. Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: a component of the signal pathway for embolism repair? Funct Plant Biol. 2009;36:815–25.

    Google Scholar 

  • Sano Y, Okamura Y, Utsumi Y. Visualizing water-conduction pathways of living trees: selection of dyes and tissue preparation methods. Tree Physiol. 2005;25:269–75.

    PubMed  Google Scholar 

  • Sauter JJ. Respiratory and phosphatase activities in contact cells of wood rays and their possible role in sugar secretion. Z Pflanzenphysiol Bd. 1972;67:135–45.

    CAS  Google Scholar 

  • Sauter JJ. Seasonal variation of sucrose content in the xylem sap of Salix. Z Pflanzenphysiol Bd. 1980;98:377–91.

    CAS  Google Scholar 

  • Sauter JJ. Evidence for sucrose efflux and hexose uptake in the xylem of Salix. Z Pflanzenphysiol Bd. 1981;103:183–7.

    CAS  Google Scholar 

  • Sauter JJ. Efflux and reabsorption of sugars in the xylem. I. Seasonal changes in sucrose efflux in Salix. Z Pflanzenphysiol Bd. 1982;106:325–36.

    CAS  Google Scholar 

  • Sauter JJ. Efflux and reabsorption of sugars in the xylem. II. Seasonal changes in sucrose uptake in Salix. Z Pflanzenphysiol Bd. 1983;111:425–40.

    Google Scholar 

  • Sauter JJ. Seasonal changes in the efflux of sugars from parenchyma cells into the apoplast in poplar stems (Populus x canadensis ‘robusta’). Trees. 1988;2:242–9.

    Google Scholar 

  • Sauter JJ. Photosynthate allocation to the vascular cambium: facts and problems. In: Savidge RA, Barnett JR, Napier R, editors. Cell and molecular biology of wood formation. Oxford: BIOS Scientific; 2000. p. 71–83.

    Google Scholar 

  • Sauter JJ, Kloth S. Plasmodesmatal frequency and radial translocation rates in ray cells of poplar (Populus x canadensis Moench ‘robusta’). Planta. 1986;168:377–80.

    Google Scholar 

  • Sauter JJ, van Cleve B. Biochemical, immunochemical, and ultrastructural studies of protein storage in poplar (Populus x canadensis ‘robusta’) wood. Planta. 1990;183:92–100.

    Google Scholar 

  • Sauter JJ, van Cleve B. Storage, mobilization and interrelations of starch, sugars, protein and fat in the ray storage tissue of poplar trees. Trees. 1994;8:297–304.

    Google Scholar 

  • Sauter JJ, Iten W, Zimmermann MH. Studies on the release of sugar into the vessels of sugar maple (Acer saccharum). Can J Bot. 1973;51:1–8.

    CAS  Google Scholar 

  • Sauter JJ, Wisniewski M, Witt W. Interrelationships between ultrastructure, sugar levels, and frost hardiness of ray parenchyma cells during frost acclimation and deacclimation in poplar (Populus x canadensis Moench ‘robusta’) wood. J Plant Physiol. 1996;149:451–61.

    CAS  Google Scholar 

  • Schmitt U, Liese W. Wound reaction of the parenchyma in Betula. IAWA Bull. 1990;11:413–20.

    Google Scholar 

  • Šćukanec V, Petrić B. The relationship between wood ray shape and ray volume percentage in beech. IAWA Bull. 1977;3:57–9.

    Google Scholar 

  • Secchi F, Zwieniecki MA. Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling. Plant Cell Environ. 2011;34:514–24.

    PubMed  CAS  Google Scholar 

  • Secchi F, Zwieniecki MA. Analysis of xylem sap from functional (non-embolized) and non-functional (embolized) vessels of Populus nigra – chemistry of refilling. Plant Physiol. 2012;160:955–64.

    PubMed  CAS  Google Scholar 

  • Secchi F, Gilbert ME, Zwieniecki MA. Transcriptome response to embolism formation in stems of Populus trichocarpa provides insight into signaling and biology of refilling. Plant Physiol. 2011;157:1419–29.

    PubMed  CAS  Google Scholar 

  • Sharkey PJ, Pate JS. Selectivity in xylem to phloem transfer of amino acids in fruiting shoots of white lupin (Lupinus albus L). Planta. 1975;127:251–62.

    CAS  Google Scholar 

  • Shi J, Mueller WC, Beckman CH. Vessel occlusion and secretory activities of vessel contact cells in resistant and susceptible cotton plants infected with Fusarium oxysporum f.sp. vasinfectum. Physiol Mol Plant Pathol. 1992;40:133–47.

    Google Scholar 

  • Sinnott EW. Factors determining character and distribution of food reserve in woody plants. Bot Gaz. 1918;66:162–75.

    Google Scholar 

  • Sokołowska K, Zagórska-Marek B. Seasonal changes in the degree of symplasmic continuity between the cells in cambial region of Acer pseudoplatanus and Ulmus minor. Acta Soc Bot Pol. 2007;76:277–86.

    Google Scholar 

  • Sokołowska K, Zagórska-Marek B. Symplasmic, long-distance transport in xylem and cambial regions in branches of Acer pseudoplatanus (Aceraceae) and Populus tremula x P. tremuloides (Salicaceae). Am J Bot. 2012;99:1–11.

    Google Scholar 

  • Song K, Liu B, Jiang X, Yin Y. Cellular changes of tracheids and ray parenchyma cells from cambium to heartwood in Cunninghamia lanceolata. J Trop For Sci. 2011;23:478–87.

    Google Scholar 

  • Spicer R. Senescence in secondary xylem: heartwood formation as an active developmental program. In: Holbrook NM, Zwieniecki M, editors. Vascular transport in plants. Oxford: Elsevier; 2005. p. 457–75.

    Google Scholar 

  • Spicer R, Holbrook NM. Within-stem oxygen concentration and sap flow in four temperature tree species: does long-lived xylem parenchyma experience hypoxia? Plant Cell Environ. 2005;28:192–201.

    Google Scholar 

  • Spicer R, Holbrook NM. Parenchyma cell respiration and survival in secondary xylem: does metabolic activity decline with cell age? Plant Cell Environ. 2007;30:934–43.

    PubMed  CAS  Google Scholar 

  • Street PFS, Robb J, Ellis BE. Secretion of vascular coating components by xylem parenchyma cells of tomatoes infected with Verticillium albo-atrum. Protoplasma. 1986;132:1–11.

    Google Scholar 

  • Sun Q, Kobayashi K, Suzuki M. Intercellular space system in xylem rays of pneumatophores in Sonneratia alba (Sonneratiaceae) and its possible functional significance. IAWA J. 2004;25:141–54.

    Google Scholar 

  • Sun Q, Rost TL, Matthews MA. Wound-induced vascular occlusions in Vitis vinifera (Vitaceae): tyloses in summer and gels in winter. Am J Bot. 2008;95:1498–505.

    PubMed  Google Scholar 

  • Tarpley L, Vietor DM. Compartmentation of sucrose during radial transfer in mature sorghum culm. BMC Plant Biol. 2007;7:33.

    PubMed  Google Scholar 

  • Taylor AM, Gartner BL, Morrell JJ. Heartwood formation and natural durability – a review. Wood Fiber Sci. 2002;34:587–611.

    CAS  Google Scholar 

  • Thompson MV, Holbrook NM. Scaling phloem transport: information transmission. Plant Cell Environ. 2004;27:509–19.

    Google Scholar 

  • Tomos D, Korolev A, Farrar J, Nicolay K, Bowtell R, Köckenberger W. Water and solute relations of the carrot cambium studied at single-cell resolution. In: Savidge RA, Barnett JR, Napier R, editors. Cell and molecular biology of wood formation. Oxford: BIOS Scientific; 2000. p. 101–12.

    Google Scholar 

  • van Bel AJE. Xylem-phloem exchange via the rays: the undervalued route of transport. J Exp Bot. 1990;41:631–44.

    Google Scholar 

  • van Bel AJE, van der Schoot C. Primary function of the protective layer in contact cells: buffer against oscillations in hydrostatic pressure in the vessels? IAWA Bull. 1988;9:285–8.

    Google Scholar 

  • van der Schoot C, van Bel AJE. Architecture of the intermodal xylem of tomato (Solanum lycopersicum) with reference to longitudinal and lateral transfer. Am J Bot. 1989;76:487–503.

    Google Scholar 

  • van der Schoot C, van Bel AJE. Mapping membrane potential differences and dye-coupling in intermodal tissues of tomato (Solanum lycopersicum L.). Planta. 1990;182:9–21.

    Google Scholar 

  • Vogelmann TC, Dickson RE, Larson PR. Comparative distribution and metabolism of xylem-borne amino compounds and sucrose in shoots of Populus deltoides. Plant Physiol. 1985;77:418–28.

    PubMed  CAS  Google Scholar 

  • Williams JS, Hall SA, Hawkesford MJ, Beale MH, Cooper RM. Elemental sulfur and thiol accumulation in tomato and defense against a fungal vascular pathogen. Plant Physiol. 2002;128:150–9.

    PubMed  CAS  Google Scholar 

  • Wiśniewski M, Ashworth E, Schaffer K. The use of lanthanum to characterize cell wall permeability in relation to deep supercooling and extracellular freezing in woody plants. I. Intergeneric comparison between Prunus, Cornus, and Salix. Protoplasma. 1987;139:105–16.

    Google Scholar 

  • Yamada Y, Awano T, Fujita M, Takabe K. Living wood fibers act as large-capacity “single-use” starch storage in black locust (Robinia pseudoacacia). Trees. 2011;25:607–16.

    Google Scholar 

  • Yang K-C. The fine structure of pits in yellow birch (Betula alleghaniensis Britton). IAWA Bull. 1978;4:71–7.

    CAS  Google Scholar 

  • Yang J, Kamdem DP, Keathley DE, Han K-H. Seasonal changes in gene expression at the sapwood-heartwood transition zone of black locust (Robinia pseudoacacia) revealed by cDNA microarray analysis. Tree Physiol. 2004;24:461–74.

    PubMed  CAS  Google Scholar 

  • Ziegler H. Storage, mobilization and distribution of reserve material in trees. In: Zimmermann MH, editor. The formation of wood in forest trees. New York: Academic; 1964. p. 303–20.

    Google Scholar 

  • Zwieniecki MA, Holbrook NM. Confronting Maxwell’s demon: biophysics of xylem embolism repair. Trends Plant Sci. 2009;14:530–4.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I wish to thank the colleagues from the Department of Plant Developmental Biology, University of Wrocław, Poland, for their discussions and especially Drs. E. Gola, E. Myśkow, and A. Dolzblasz for critical reading of the manuscript. Financial support came from the University of Wrocław, Poland (No. 2776/W/IBR/07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Sokołowska Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sokołowska, K. (2013). Symplasmic Transport in Wood: The Importance of Living Xylem Cells. In: Sokołowska, K., Sowiński, P. (eds) Symplasmic Transport in Vascular Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7765-5_4

Download citation

Publish with us

Policies and ethics