Skip to main content

The Mouse Brainstem (Truncus encephali)

  • Chapter
  • First Online:
Neuroanatomy of the Mouse

Abstract

The mammalian brainstem is composed in caudocranial order of the medulla oblongata, the pons, and the midbrain (mesencephalon). The main difference to the spinal cord (see ► Chap. 5, nervous supply of trunk and limbs) is the endowment of the brainstem with nuclei, fiber tracts, and nerves for the innervation of the head-specific organs, like the eyes, the ears, the organ of equilibrium, the nose, the foregut, and the specific muscles of the head and face region. The nerves providing eye movement (oculomotor, trochlear, and abducens), the face (trigeminal and facial), the inner ear (vestibulocochlear), and the foregut (trigeminal, facial, glossopharyngeal, vagal and hypoglossal) originate (motor, efferent innervation) or end (sensory, afferent innervation) in specific nuclei inside the brainstem. Following a historical classification, there are nine “real” cranial nerves, comparable to the spinal nerves of the spinal cord, and two cranial nerves which in effect are bulges of the telencephalon (olfactory nerve, olfaction; see ► Chap. 14) and the diencephalon (optic nerve, vision; see ► Chap. 8). The accessory nerve, innervating some of the neck muscles, is included additionally into the cranial nerves although its neurons of origin are located in the cervical spinal cord.

In addition to the “real cranial nerve” nuclei, there are precerebellar nuclei targeting the cerebellum (► Chap. 7), premotor nuclei like the red nucleus, nuclei which provide the aminergic innervation of the whole brain, relay nuclei for the ascending sensory tracts (somatosensory, auditory), and those of the reticular formation. Finally, all the ascending and descending fibers tracts we have learned about in ► Chap. 5 are traversing the brainstem on their way to the cerebellum, the vestibular nuclei, the somatosensory nuclei of the thalamus (► Chap. 8), and those which descend to their motor targets in the brainstem and the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoyagi H, Iwasaki SI et al (2015) Three-dimensional observation of mouse tongue muscles using micro-computed tomography. Odontology 103:1–8. [Slc:ddY]

    Article  PubMed  Google Scholar 

  • Ashwell KW (1982) The adult mouse facial nerve nucleus: morphology and musculotopic organization. J Anat 135:531–538. [Balb/c]

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayuso-Mateos JL, Vázquez-Barquero JL et al (2001) Depressive disorders in Europe: prevalence figures from the ODIN study. Br J Psychiatry 179:308–316

    Article  CAS  PubMed  Google Scholar 

  • Bab I, Hajbi-Yonissi C, Gabet Y, Müller R (2007) Micro-tomographic atlas of the mouse skeleton. Springer, New York. [C57BL/6]

    Google Scholar 

  • Bagnall MW, Stevens RJ et al (2007) Transgenic mouse lines subdivide medial vestibular nucleus into discrete neurochemically distinct populations. J Neurosci 27:2318–2330. [Several transgenic mouse lines]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benninger B, McNeil J (2010) Transitional nerve: a new and original classification of a peripheral nerve supported by the nature of the accessory nerve (CN XI). Neurol Res Int 2010:476018

    Article  PubMed  Google Scholar 

  • Beraneck M, Bojados M et al (2012) Ontogeny of mouse vestibulo-ocular reflex following genetic or environmental alteration of gravity sensing. PLoS One 7:e40414. [C57BL/6J]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biazoli CE, Goto M et al (2006) The supragenual nucleus: a putative relay station for ascending vestibular signs to head direction cells. Brain Res 1094:138–148. [rat]

    Article  CAS  PubMed  Google Scholar 

  • Boudes M, Uvin P et al (2013) Bladder dysfunction in a transgenic mouse model of multiple system atrophy. Mov Disord 28:347–355. [PLP-hαSyn transgenic mice, C57Bl/6]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broms J, Antolin-Fontes B et al (2014) Conserved expression of the GPR151 receptor in habenular axonal projections of vertebrates. J Comp Neurol 523:359–380. [Gpr151−/− mice]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce LL, Kinsley J et al (1997) The development of vestibulocochlear efferents and cochlear afferents in mice. Int J Dev Neurosci 15:671–692. [CF1, BALB/c, C3H]

    Article  CAS  PubMed  Google Scholar 

  • Bruinstroop E, Cano G et al (2012) Spinal projections of the A5, A6 (locus coeruleus), and A7 noradrenergic cell groups in rats. J Comp Neurol 520:1985–2001. [rat]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess RW, Jucius TJ et al (2006) Motor axon guidance of the mammalian trochlear and phrenic nerves: dependence on the netrin receptor Unc5c and modifier loci. J Neurosci 26:5756–5766. [C57BL/6]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calka J, Zalecki M et al (2013) Re-examination of the topographical localization of facial nucleus in the pig. Anat Embryol 211:197–201. [pig]

    Article  Google Scholar 

  • Campbell JP, Henson MM (1988) Olivocochlear neurons in the brainstem of the mouse. Hear Res 135:271–274. [white laboratory mice (ICR)]

    Article  Google Scholar 

  • Campos CA, Bowen AJ et al (2018) Encoding of danger by parabrachial CGRP neurons. Nature 555:617–622. [Heterozygous CalcaCre/+ mice and OxtrCre/+ mice (C57Bl/6 background)]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrive P, Paxinos G (1994) The supraoculomotor cap: a region revealed by NADPH diaphorase histochemistry. Neuroreport 5:2257–2260. [rat, rabbit, cat, monkey, man]

    Article  CAS  PubMed  Google Scholar 

  • Celio MR, Babalian A et al (2013) Efferent connections of the parvalbumin-positive (PV1) nucleus in the lateral hypothalamus of rodents. J Comp Neurol 521:3133–3353. [PV-Cre mice, rat]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaumont J, Guyon N et al (2013) Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge. Proc Natl Acad Sci U S A 110:16223–16228. [L7-ChR2-eYFP Mice]

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Gabitto M et al (2011) A gustotopic map of taste qualities in the mammalian brain. Science 333:1262–1126. [mouse]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colussi-Mas J, Geisle S et al (2007) Activation of afferents to the ventral tegmental area in response to acute amphetamine: a double labeling study. Eur J Neurosci 26:1011–1025. [rat]

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordes SP (2001) Molecular genetics of cranial nerve development in the mouse. Nat Rev Neurosci 2:611–623. [mouse]

    Article  CAS  PubMed  Google Scholar 

  • Costa C, Harding B (2001) Neuronal migration defects in the Dreher (Lmx1a) mutant mouse: role of disorders of the glial limiting membrane. Cereb Cortex 11:498–505. [dreher mouse]

    Article  CAS  PubMed  Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol Scand 62:1–54. [rat]

    Google Scholar 

  • Deneris ES (2011) Molecular genetics of mouse serotonin neurons across the lifespan. Neuroscience 197:17–27. [Several transgenic lines]

    Article  CAS  PubMed  Google Scholar 

  • Dergacheva O, Wang X et al (2010) The lateral paragigantocellular nucleus modulates parasympathetic cardiac neurons: a mechanism for rapid eye movement sleep-dependent changes in heart rate. J Neurophysiol 104:685–694. [rat]

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhungel N, Eleuteri S et al (2015) Parkinson’s disease genes VPS35 and EIF4G1 interact genetically and converge on α-synuclein. Neuron 85:76–87. [Several transgenic mouse lines]

    Article  CAS  PubMed  Google Scholar 

  • Diehl AG, Zareparsi S et al (2006) Extraocular muscle morphogenesis and gene expression are regulated by Pitx2 gene dose. Invest Ophthalmol Vis Sci 47:1785–1793. [Panel of mice with Pitx2 gene dose ranging from wild-type (+/+) to none (−/−)]

    Article  PubMed  Google Scholar 

  • Dimitrov EL, Yanagawa Y et al (2013) Forebrain GABAergic projections to locus caeruleus in mouse. J Comp Neurol 521:2373–2397. [C57BL/6J, GAD67-GFP, VGAT-iCre/LSGFP]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dräger UC, Hubel DH (1975) Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J Neurophysiol 38(3):690–713. [C57BL/6J]

    Article  PubMed  Google Scholar 

  • Edinger L (1885) Über den Verlauf der centralen Hirnnervenbahnen mit Demonstrationen von Präparaten. Arch Psychiatr Nervenkr 16:858–859. [man]

    Google Scholar 

  • Edwards IJ, Deuchars SA et al (2009) The intermedius nucleus of the medulla: a potential site for the integration of cervical information and the generation of autonomic responses. J Chem Neuroanat 38:166–175. [VGluT2-GFP mice]

    Article  CAS  PubMed  Google Scholar 

  • Erzurumlu RS, Kind PC (2001) Neural activity: sculptor of barrels in the neocortex. Trends Neurosci 24:589–595. [mouse]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Tvrdik P et al (2011) Precerebellar cell groups in the hindbrain of the mouse defined by retrograde tracing and correlated with cumulative Wnt1-cre genetic labeling. Cerebellum 10:570–584. [C57BL/6]

    Article  PubMed  Google Scholar 

  • Fu YH, Watson C (2012) The arcuate nucleus of the C57BL/6J mouse hindbrain is a displaced part of the inferior olive. Brain Behav Evol 79:191–204. [C57BL/6J]

    Article  PubMed  Google Scholar 

  • Fujiyama T, Yamada M et al (2009) Inhibitory and excitatory subtypes of cochlear nucleus neurons are defined by distinct bHLH transcription factors, Ptf1a and Atoh1. Development 136:2049–2058. [Ptf1acre, Rosa26R (R26R) and Gad67-GFP (Δneo) mouse lines]

    Article  CAS  PubMed  Google Scholar 

  • Galliano E, Baratella M et al (2013) Anatomical investigation of potential contacts between climbing fibers and cerebellar Golgi cells in the mouse. Front Neural Circuits 7:59. [C57BL/6]

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganchrow D, Ganchrow JR et al (2013) The nucleus of the solitary tract in the C57BL/6J mouse: subnuclear parcellation, chorda tympani nerve projections and brainstem connections. J Comp Neurol 522(7):1565–1596. [C57BL/6]

    Article  PubMed Central  Google Scholar 

  • Gilbert SF (2000) Developmental biology, 6th edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Gilthorpe JD, Papantoniou E-K et al (2002) The migration of cerebellar rhombic lip derivatives. Development 129:4719–4728. [Chick]

    CAS  PubMed  Google Scholar 

  • Glattfelder KJ, Ng LL et al (2008) Area Postrema (AP). precedings.nature.com

  • Gray PA (2013) Transcription factors define the neuroanatomical organization of the medullary reticular formation. Front Neuroanat 7:7. [Mixed CD1 / C57B6 background]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graziano A, Liu XB et al (2008) Vesicular glutamate transporters define two sets of glutamatergic afferents to the somatosensory thalamus and two thalamocortical projections in the mouse. J Comp Neurol 507:1258–1276. [Swiss-Webster mouse]

    Article  CAS  PubMed  Google Scholar 

  • Häfner H (ed) (2008) Ein König wird beseitigt, Ludwig II. von Bayern. C.H. Beck, München

    Google Scholar 

  • Han W, Tellez LA et al (2017) Integrated control of predatory hunting by the central nucleus of the amygdala. Cell 168:311–324. [VGat ires Cre (Slc32a1tm2(cre)Lowl/J, VGlut2-ires-Cre (Slc17a6tm2(cre)Lowl/J,VGat-floxed (Slc32a1tm1Lowl/J, Chat-ires-Cre 3 RFGT = Chat-Cre (B6;129S6-Chattm2(cre)Lowl/J, 3 RFGT (B6;129P2-Gt(ROSA)26Sortm1(CAG-RABVgp4,-TVA)Arenk/J, C57BL/6J]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hökfelt T, Mårtensson R et al (1984) Distributional maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam. [rat]

    Google Scholar 

  • Hof PR, Young WG et al (2000) comparative cytoarchitectonic atlas of the C57BL/6 and 129/Sv mouse brains. Elsevier, Amsterdam. [C57BL/6 and 129/Sv]

    Google Scholar 

  • Hong Q, Ke B et al (2014) Cuneiform nucleus stimulation as adjunct treatment for intractable epilepsy: a virally mediated transsynaptic tracing study in spinally transected transgenic mice. Epilepsy Behav 33:135–137. [melanocortin-4 receptor-green fluorescence protein (MC4R-GFP) knock-in mouse]

    Article  PubMed  Google Scholar 

  • Horn CC, Kimball BA et al (2013) Why can’t rodentia vomit? A comparative behavioral, anatomical, and physiological study. PLoS One 8:e60537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huggenberger S, Moser N, Schröder H, Cozzi B, Granato A, Merigh A. (2019) Neuroanatomie des Menschen. Heidelberg: Springer. 210pp. ISBN: 978-3-662-56460-8.

    Google Scholar 

  • Ichikawa H, Qiu F et al (2005) Brn-3a is required for the generation of proprioceptors in the mesencephalic trigeminal tract nucleus. Brain Res 1053:203–206. [White laboratory mouse]

    Article  CAS  PubMed  Google Scholar 

  • Inoue M (1984) Structure and innervation of mouse parotid gland. J Juzen Med Soc 93:534–549. [Mus Wagneri var. albula]

    Google Scholar 

  • Irle E, Sarter M et al (1984) Afferents to the ventral tegmental nucleus of Gudden in the mouse, rat, and cat. J Comp Neurol 228:509–541. [mouse, rat, cat]

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Furuoka H et al (2005) The mesencephalic trigeminal sensory nucleus is involved in the control of feeding and exploratory behavior in mice. Brain Res 1048:80–86. [ddY mice]

    Article  CAS  PubMed  Google Scholar 

  • Iwahori N (1986) A Golgi study on the dorsal nucleus of the lateral lemniscus in the mouse. Neurosci Res 3:196–212. [Albino mouse]

    Article  CAS  PubMed  Google Scholar 

  • Iwahori N, Nakamura K et al (1993a) Terminal patterns of the tegmental afferents in the interpeduncular nucleus: a Golgi study in the mouse. Anat Embryol 187:523–528. [albino mouse]

    Article  CAS  Google Scholar 

  • Iwahori N, Nakamura K et al (1993b) Terminal patterns of the fasciculus retroflexus in the interpeduncular nucleus of the mouse: a Golgi study. Anat Embryol 187:523–528. [Albino mice]

    Article  CAS  Google Scholar 

  • Iwaki T, Yamashita H, Hayakawa T (2001) A color atlas of sectional anatomy of the mouse. Adthree Publishing, Tokyo. [ddY and ICR]

    Google Scholar 

  • Kaufman MH, Bard JBL (1999) The anatomical basis of mouse development. Academic Press, San Diego

    Google Scholar 

  • Kobayashi Y, Sano Y et al (2013) Genetic dissection of medial habenula–interpeduncular nucleus pathway function in mice. Front Behav Neurosci 7:17. [Several transgenic mouse lines]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolkman KE, Moghadam SH et al (2011) Intrinsic physiology of identified neurons in the prepositus hypoglossi and the Medial vestibular nuclei. J Vestib Res 21:33–47. [C57BL/6]

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovac W, Denk H (1968) Der Hirnstamm der Maus. Topographie, Cytoarchitektonik und Cytologie. Springer, Wien – New York. [White laboratory mouse]

    Google Scholar 

  • Kozicz T, Bittencourt JC et al (2012) The Edinger-Westphal nucleus: a historical, structural, and functional perspective on a dichotomous terminology. J Comp Neurol 519:1413–1434. [man, monkey, cat, pigeon]

    Article  Google Scholar 

  • Kow LM, Commons KG et al (2002) Potentiation of the excitatory action of NMDA in ventrolateral periaqueductal gray by the μ-opioid receptor agonist, DAMGO. Brain Res 935:87–102. [rat]

    Article  CAS  PubMed  Google Scholar 

  • Leergard TB, Bjaalie JG (2007) Topography of the complete corticopontine projection: from experiments to principal maps. Front Neurosci 1:211–223. [rat]

    Article  Google Scholar 

  • Leichnetz GR (1982) The medial accessory nucleus of Bechterew: a cell group within the anatomical limits of the rostral oculomotor complex receives a direct prefrontal projection in the monkey. J Comp Neurol 210:147–151. [monkey]

    Article  CAS  PubMed  Google Scholar 

  • Li JL, Wu SX et al (2005) Efferent and afferent connections of GABAergic neurons in the supratrigeminal and the intertrigeminal regions. An immunohistochemical tract-tracing study in the GAD67-GFP knock-in mouse. Neurosci Res 51:81–91. [GAD67-GFP mouse]

    Article  CAS  PubMed  Google Scholar 

  • Li L, Huang C et al (2010a) Structural remodeling of vagal afferent innervation of aortic arch and Nucleus ambiguus (NA) projections to cardiac ganglia in a transgenic mouse model of type 1 ciabetes (OVE26). J Comp Neurol 518:2771–2793. [FVB mouse]

    Google Scholar 

  • Li L, Huang C et al (2010b) Small conductance Ca2+-activated K+ channels regulate firing properties and excitability in parasympathetic cardiac motoneurons in the nucleus ambiguus. AJP Cell Physiology 299:C1285–1298 . [FVB mouse]

    Google Scholar 

  • Liang H, Bácskai T et al (2014) Projections from the lateral vestibular nucleus to the spinal cord in the mouse. Brain Struct Funct 219:805–815. [C57/BL6]

    Article  PubMed  Google Scholar 

  • Loewi O (1921) Über humorale Erregbarkeit der Herznervenwirkung. Pflügers Arch Ges Physiol 189:239–242. [frog]

    Article  Google Scholar 

  • Loewi O, Navratil E (1926) Über humorale Übertragbarkeit der Herznervenwirkung. X. Mitteilung: Über das Schicksal des Vagusstoffs. Pflügers Arch Ges Physiol 214:678–688. [frog]

    Article  CAS  Google Scholar 

  • Ma R, Cui H et al (2013) Predictive encoding of moving target trajectory by neurons in the parabigeminal nucleus. J Neurophysiol 108:2029–2043. [cat]

    Article  Google Scholar 

  • Malmierca MS, Merchán MA et al (2004) Auditory system. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier, Amsterdam. [rat]

    Google Scholar 

  • Martin EM, Devidze N et al (2011) Molecular and neuroanatomical characterization of single neurons in the mouse medullary Gigantocellular reticular nucleus. J Comp Neurol 519:2574–2593. [Swiss Webster, Tg(Gjd2-EGFP)16Gsat]

    Article  CAS  PubMed  Google Scholar 

  • May PJ, Reiner AJ et al (2008) Comparison of the distributions of urocortin containing and cholinergic neurons in the perioculomotor midbrain of the cat and macaque. J Comp Neurol 507:1300–1316. [cat, monkey]

    Article  PubMed  PubMed Central  Google Scholar 

  • McKay IJ, Lewis J et al (1997) Organization and development of facial motor neurons in the Kreisler mutant mouse. Eur J Neurosci 9:1499–1506. [Kreisler mouse]

    Article  CAS  PubMed  Google Scholar 

  • McKinley MJ, McAllen RM et al (2003) The sensory circumventricular organs of the mammalian brain. Adv Anat Embryol Cell Biol 172:1–122

    Article  Google Scholar 

  • Meka DP, Müller-Rischart AK et al (2015) Parkin cooperates with GDNF/RET signaling to prevent dopaminergic neuron degeneration. J Clin Invest 125:1873–1885. [RET floxed, Dat-Cre BAC, parkin KO, TH-GFP mice]

    Article  PubMed  PubMed Central  Google Scholar 

  • Mesulam MM, Mufson EJ et al (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201. [rat]

    Article  CAS  PubMed  Google Scholar 

  • Millonig JH, Millen KJ et al (2000) The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403:764–769. [mouse Dreher]

    Article  CAS  PubMed  Google Scholar 

  • Møller AR (2006) History of cochlear implants and auditory brainstem implants. Adv Otorhinolaryngol 64:1–10

    PubMed  Google Scholar 

  • Moore LA, Trussel LO (2017) Co-release of inhibitory neurotransmitters in the mouse auditory midbrain. J Neurosci 37:9453–9464. [Heterozygous GlyT2-Cre/tdTomato: GlyT2-EGFP, GlyT2-Cre;ChR2, C57BL/6 mice]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morcinek K, Köhler C et al (2013) Pattern of tau hyperphosphorylation and neurotransmitter markers in the brainstem of senescent tau filament forming transgenic mice. Brain Res 1497:73–84. [C57BL/6]

    Article  CAS  PubMed  Google Scholar 

  • Morrison JFB (2008) The discovery of the pontine micturition centre by F. J. F. Barrington. Exp Physiol 93:742–745

    Article  PubMed  Google Scholar 

  • Morsli H, Choo D et al (1998) Development of the mouse inner ear and origin of its sensory organs. J Neurosci 18:3327–3335. [CD-1 mice]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray LM, Gillingwater TH et al (2010) Using mouse cranial muscles to investigate neuromuscular pathology in vivo. Neuromuscul Disord 20:740–743. [mouse]

    Article  CAS  PubMed  Google Scholar 

  • Muzerelle A, Scotto-Lomassese S et al (2016) Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to the forebrain and brainstem. Brain Struct Funct 221:535–561. [(SERT, Slc6a4) Cre mouse line , Pet1Cre (B6.Cg-Tg(Fev-cre)1Esd/J) crossed to the RCE-lox-stop-GFP mouse line on C57-Bl6 background; C57-Bl6-J (sic) mice]

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Muto H (1985) Anatomical observations in the pharynx of the mouse with special reference to the nasopharyngeal hiatus (Wood Jones). Acta Anat 121:147–152. [SMA mouse]

    Article  CAS  PubMed  Google Scholar 

  • Nashold BS Jr, Wilson WP et al (1969) Sensations evoked by stimulation in the midbrain of man. J Neurosurg 30:14–24. [man]

    Article  PubMed  Google Scholar 

  • Neuhaus JF, Baris OR et al (2013) Catecholamine metabolism drives generation of mitochondrial DNA deletions in dopaminergic neurons. Brain 137:354–365. [C57BL/6]

    Article  PubMed  Google Scholar 

  • Ohm TG, Braak H (1988) The pigmented subpeduncular nucleus: a neuromelanin-containing nucleus in the human pontine tegmentum. Acta Neuropathol 77:26–32. [man]

    Article  CAS  PubMed  Google Scholar 

  • Ollo C, Schwartz IR (1979) The superior olivary complex in C57BL/6 mice. Am J Anat 155:349–374. [C57BL/6]

    Article  CAS  PubMed  Google Scholar 

  • Olson MOJ, Dundr M (2015) Nucleolus: structure and function. In: eLS. Wiley, Chichester

    Google Scholar 

  • Olyntho-Tokunago HH, Pinto ML et al (2008) Projections from the anterior interposed nucleus to the red nucleus diminish with age in the mouse. Anat Histol Embryol 37:438–441. [C57BL/10]

    Article  Google Scholar 

  • Osterberg VR, Spinelli KJ et al (2015) Progressive aggregation of alpha-synuclein and selective degeneration of inclusion-bearing neurons in a mouse model of parkinsonism. Cell Rep 10:1252–1260. [Syn-GFP x BDF1 mice]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paxinos W, Franklin KBJ (2012) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego. [C57BL/6]

    Google Scholar 

  • Paxinos G, Watson C (2010) BrainNavigator. Interactive atlas and 3D brain software for research, structure analysis, and education. Elsevier, Amsterdam

    Google Scholar 

  • Patrylo PR, Sekiguchi M et al (1990) Heterozygote effects in dreher mice. J Neurogenet 6:173–181

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego.

    Google Scholar 

  • Pelaez NM, Schreihofer AM et al (2002) Decompensated hemorrhage activates serotonergic neurons in the subependymal parapyramidal region of the rat medulla. Am J Physiol Regul Integr Comp Physiol 283:R688–R697. [rat]

    Article  CAS  PubMed  Google Scholar 

  • Pinto ML, Olyntho-Tokunaga HH et al (2007) The interstitial system of the trigeminal spinal tract projects to the red nucleus in mice. Somatosens Mot Res 24:221–225. [C57BL10]

    Article  PubMed  Google Scholar 

  • Puelles L (2009) Forebrain development: prosomere model. In: Lemke G (ed) Developmental neurobiology. Academic Press, pp 315–319

    Google Scholar 

  • Rohrschneider I, Schink I et al (1972) Der Feinbau der Area postrema der Maus. Z Zellforsch 123:251–276. [white mouse]

    Article  CAS  PubMed  Google Scholar 

  • Ruberte J, Carretero A, Navarro M (2017) Morphological mouse phenotyping. Academic Press, San Diego

    Google Scholar 

  • Ruggiero DA, Underwood MD et al (2000) The human nucleus of the solitary tract: visceral pathways revealed with an “in vitro” postmortem tracing method. J Auton Nerv Syst 79:181–190. [man]

    Article  CAS  PubMed  Google Scholar 

  • Safieddine S, El-Amraoui A (2012) The auditory hair cell ribbon synapse: from assembly to function. Ann Rev Neurosci 35:509–528

    Article  CAS  PubMed  Google Scholar 

  • Sang Q, Goyal RK (2000) Lower esophageal sphincter relaxation and activation of medullary neurons by subdiaphragmatic vagal stimulation in the mouse. Gastroenterology 119:1600–1609. [Swiss Webster mouse]

    Article  CAS  PubMed  Google Scholar 

  • Scalia F, Rasweiler JJ 4th et al (2014) Retinal projections in the short-tailed fruit bat, Carollia perspicillata, as studied using the axonal transport of cholera toxin B subunit: comparison with mouse. J Comp Neurol 523(12):1756–1791. [Carollia perspicillata, C57BL6]

    Article  Google Scholar 

  • Sekirnjak C, du Lac S (2006) Physiological and anatomical properties of mouse medial vestibular nucleus neurons projecting to the oculomotor nucleus. J Neurophysiol 95:3012–3023. [mixed C57BL/6 and BALB/c background]

    Article  PubMed  Google Scholar 

  • Shang C, Liu Z et al (2015) A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 348:1472–1477. [Several transgenic mouse lines]

    Article  CAS  PubMed  Google Scholar 

  • Singer W, Panford-Walsh R et al (2014) The function of BDNF in the adult auditory system. Neuropharmacology 76:719–728

    Article  CAS  PubMed  Google Scholar 

  • Sirleix C, Gervasino D et al (2013) Role of the lateral paragigantocellular nucleus in the network of paradoxical (REM) sleep: an electrophysiological and anatomical study in the rat. PLoS One 7(1):e28724. [rat]

    Article  CAS  Google Scholar 

  • Smith JC, Abdala APL et al (2009) Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos Trans R Soc B 364:2577–2587

    Article  Google Scholar 

  • Smits SM, von Oerthel L et al (2013) Molecular marker differences relate to developmental position and subsets of mesodiencephalic dopaminergic neurons. PLoS One 8:e76037. [Pregnant C57Bl/6-Jico mice]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprenger C, Eichler IC et al (2018) Altered signaling in the descending pain modulatory system after short-term infusion of the μ-opioid agonist remifentanil. J Neurosci 38:2454–2470. [man]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stornetta RL, Macon CJ et al (2013) Cholinergic neurons in the mouse rostral ventrolateral medulla target sensory afferent areas. Brain Struct Funct 218:455–475. [ChAT-Cre, DBH-Cre]

    Article  PubMed  Google Scholar 

  • Streefland C, Jansen K (1999) Intramedullary projections of the rostral nucleus of the solitary tract in the rat: gustatory influences of autonomic output. Chem Senses 24:655–664. [rat]

    Article  CAS  PubMed  Google Scholar 

  • Sturrock RR (1990) A comparison of age-related changes in neuron number in the dorsal motor nucleus of the vagus and the nucleus ambiguus of the mouse. J Anat 173:169–176. [ASH/TO mice]

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takasaki A, Hui M et al (2010) Is the periaqueductal gray an essential relay center for the micturition reflex pathway in the cat? Brain Res 1317:108–115. [cat]

    Article  CAS  PubMed  Google Scholar 

  • Tanii H, Zang X-P et al (2000) Involvement of GABA neurons in allylnitrile-induced dyskinesia. Brain Res 887:454–459. [ddy mouse]

    Article  CAS  PubMed  Google Scholar 

  • Terashima T, Kishimoto Y et al (1994) Musculotopic organization in the motor trigeminal nucleus of the reeler mutant mouse. Brain Res 666:31–42. [C57BL/6 background]

    Article  CAS  PubMed  Google Scholar 

  • Tokita K, Inoue T et al (2009) Afferent connections of the parabrachial nucleus in C57BL/6J mice. Neuroscience 161:475–488. [C57BL/6]

    Article  CAS  PubMed  Google Scholar 

  • Tokita K, Inoue T et al (2010) Subnuclear organization of parabrachial efferents to the thalamus, amygdala and lateral hypothalamus in C57BL/6J mice: a quantitative retrograde double labeling study. Neuroscience 171:351–365. [C57BL/6J]

    Article  CAS  PubMed  Google Scholar 

  • Totterdell S, Meredith GE (2005) Localization of alpha-synuclein to identified fibers and synapses in the normal mouse brain. Neuroscience 135:907–913

    Article  CAS  PubMed  Google Scholar 

  • Triarhou LC, Norton J et al (1988) Mesencephalic dopamine cell deficit involves areas A8, A9 and A10 in weaver mutant mice. Exp Brain Res 70:256–265

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi T, Houtani T et al (2007) Vesicular acetylcholine transporter-immunoreactive axon terminals enriched in the pontine nuclei of the mouse. Neuroscience 146:1869–1878. [ddY mouse]

    Article  CAS  PubMed  Google Scholar 

  • Uziel D, Mühlfriedel S et al (2002) Miswiring of limbic thalamocortical projections in the absence of ephrin-A5. J Neurosci 22:9352–9357. Ephrin A5 k.o. mice, wild type mice

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valverde F (1973) The neuropil in superficial layers of the superior colliculus of the mouse. A correlated Golgi and electron microscopic study. Z Anat Entwickl-Gesch 142:117–147. [C57BL/6J]

    Article  CAS  Google Scholar 

  • Vanderhorst VG (2005) Nucleus retroambiguus-spinal pathway in the mouse: localization, gender differences, and effects of estrogen treatment. J Comp Neurol 488:180–200. [C57BL/6 / C57BL/6J, CD-1]

    Article  PubMed  Google Scholar 

  • VanderHorst VG, Ulfhake B (2006) The organization of the brainstem and spinal cord of the mouse: relationships between monoaminergic, cholinergic, and spinal projection systems. J Chem Neuroanat 31:2–36. [C57BL/6]

    Article  CAS  PubMed  Google Scholar 

  • Watson C, Paxinos G, Kayalioglu G (eds) (2008) The spinal cord, 1st edn. Academic Press, San Diego. [C57BL/6]

    Google Scholar 

  • Watson C, Trvdik P (2018) Spinal accessory motor neurons in the mouse: a special type of branchial motor neuron? Anat Rec (Hoboken). https://doi.org/10.1002/ar.23822. [Epub ahead of print] [Phox2b-Cre mice]

  • Wenthur CJ, Bennett MR et al (2014) Classics in chemical neuroscience: fluoxetine (Prozac). ACS Chem Nerosci 5:14–23

    Article  CAS  Google Scholar 

  • Westphal C (1887) Über einen Fall von chronischer progressiver Lähmung der Augenmuskeln (Ophthalmoplegia externa) nebst Beschreibung von Ganglienzellengruppen im Bereiche des Oculomotoriuskerns. Arch Psychiat Nervenheilk 98:846–871. [man]

    Article  Google Scholar 

  • Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134:319–329. [rat, mouse]

    Article  CAS  Google Scholar 

  • Willner P, Muscat R et al (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16:525–534. [rat]

    Article  CAS  PubMed  Google Scholar 

  • Woolsey TA, Welker C et al (1975) Comparative anatomical studies of the SmI face cortex with special reference to the occurrence of “barrels” in layer IV. J Comp Neurol 164:79–94. [Mus musculus, rat and a number of other vertebrates]

    Article  CAS  PubMed  Google Scholar 

  • Wu SH, Kelly JB (1991) Physiological properties of neurons in the mouse superior olive: Membrane characteristics and postsynaptic responses studied in vitro. J Neurophysiol 65:230–246. [DBA, CIR-BR, A/Thy-1.1]

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Wang HL et al (2011) Mesocorticolimbic glutamatergic pathway. J Neurosci 31:8476–8490. [mouse]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Yuan PQ et al (2000) Activation of the parapyramidal region in the ventral medulla stimulates gastric acid secretion through vagal pathways in rats. Neuroscience 95:773–779. [rat]

    Article  CAS  PubMed  Google Scholar 

  • Zeiss CJ (2005) Neuroanatomical phenotyping in the mouse: the dopaminergic system. Vet Pathol 42:753–773. [C57BL/6]

    Article  CAS  PubMed  Google Scholar 

  • http://braininfo.rprc.washington.edu

  • http://www.ebi.ac.uk/interpro/entry/IPR008080

  • http://fipat.library.dal.ca/TNA/

  • http://www.ifaa.net/committees/anatomical-terminology-fipat/

  • http://www.neurobio.pitt.edu/barrels

  • http://www.nimh.nih.gov/health/publications/depression/what-are-the-signs-and-symptoms-of-depression.shtml

  • www.nobelprize.org/nobel_prizes/medicine/laureates/1936/loewi-bio.html

  • http://www.ninds.nih.gov/disorders/msa/detail_msa.htm

  • http://report.nih.gov

  • http://www.wava-amav.org/nav

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannsjörg Schröder .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schröder, H., Moser, N., Huggenberger, S. (2020). The Mouse Brainstem (Truncus encephali). In: Neuroanatomy of the Mouse. Springer, Cham. https://doi.org/10.1007/978-3-030-19898-5_6

Download citation

Publish with us

Policies and ethics