Skip to main content

Peanut (Arachis hypogaea L.) Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Nut and Beverage Crops

Abstract

Cultivated peanut (Arachis hypogaea L.), a vital source of proteins and nutrient-rich fodder for livestock, is considered globally as a major oilseed crop. Being a segmental allopolyploid with AABB genome conformation, the cultivated peanut is considered to have evolved through single interspecific hybridization amid two diploid species. A number of biotic and abiotic forces restrict the production and productivity of peanut. Intensive attempts to develop superior peanut varieties with inherent tolerance/resistance and enriched nutritional components were executed to combat stress factors in fulfilling the requirements of farmers and consumers. Breeding objectives in the past were achieved mainly through mass and pure-line selections. Subsequently to accomplish breeding objectives, peanut breeders employed backcross and pedigree approaches followed by inter- and intra-specific hybridization in a considerable way. Simultaneously, peanut breeding through the mutagenic approach played a noteworthy part during the development of multiple propitious high-yielding varieties. Traditional breeding approaches helped in identification and advancement of cultivars with inherent resistant traits, but such resistance traits are tightly linked with inferior pod and kernel characteristics that are extremely challenging to break. Under non-conventional approaches, several molecular breeding techniques were successfully attempted to break this barrier. Marker-assisted selection (MAS) and transformation of genes coding the traits of interest, overlaying the way of gene insertion, assisted significantly in establishing superior varieties of peanut with inherent resistance and enhanced pod and kernel features. Among all efficient markers, microsatellite markers were extensively employed in constructing linkage maps, genotyping as well as MAS, owing to the distinguishable and co-dominance nature of these markers. A number of reproducible molecular markers were developed that are associated with salinity and drought tolerance, as well as resistance to biotic stresses like rust, and leaf spots, and to a certain extent Sclerotinia blight etc. Agrobacterium-mediated genetic transformations, via in planta or particle-bombardment approaches, have resulted in development of transgenic peanuts with enhanced yield attributes and inherent resistance against a few biotic and abiotic stresses. Such genetically transformed peanut populations could also be employed as donor parents in traditional breeding system to develop fungal and a few virus disease tolerant varieties. Nevertheless, it could be suggested that a combination of breeding and biotechnological tools and approaches, might deliver an inherent, cost-effective, as well as eco-friendly solutions in developing better peanut varieties globally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akromah R (2001) Structural differences in stigmas of Arachis species (Leguminosae) and their probable significance in pollination. Ghana J Agric Sci 34:49–55

    Article  Google Scholar 

  • Anderson WG, Holbrook CC, Culbreath AK (1996) Screening the core collection for resistance to tomato spotted wilt virus. Peanut Sci 23:57–61

    Article  Google Scholar 

  • Angelici CM, Hoshino AA, Nóbile MP et al (2008) Genetic diversity in section Rhizomatosae of the genus Arachis (Fabaceae) based on microsatellite markers. Genet Mol Biol 31:79–88

    Article  CAS  Google Scholar 

  • Anuradha TS, Jami SK, Datla RS, Kirti PB (2006) Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus:npt II fusion gene based vector. J Biosci 31:235–246

    Article  CAS  PubMed  Google Scholar 

  • Anuradha TS, Divya K, Jami S, Kirti P (2008) Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Rep 27:1777–1786

    Article  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218

    Article  CAS  Google Scholar 

  • Asibuo JY, Akromah R, Safo-Kantanka O et al (2008) Chemical composition of groundnut, Arachis hypogaea (L) landraces. Afr J Biotechnol 7:2203–2208

    CAS  Google Scholar 

  • Asif MA, Zafar Y, Iqbal J et al (2011) Enhanced expression of AtNHX1, in transgenic groundnut (Arachis hypogaea L.) improves salt and drought tolerence. Mol Biotechnol 49:250–256

    Article  CAS  PubMed  Google Scholar 

  • Azzam C, Khalifa M (2016) Peanut mutants resistant to aflatoxin induced through gamma ray and somaclonal variation and its associated genetic molecular markers. In: Proceedings of the IRES 26th International conference, 30 January 2016, Paris, France, pp 1–8

    Google Scholar 

  • Babu CN (1955) Cytogenetical investigations on groundnuts I. The somatic chromosomes. Indian J Agric Sci 25:41–46

    Google Scholar 

  • Badami VK (1928) Arachis hypogaea (the groundnut). Inheritance studies. PhD thesis, Cambridge University, Cambridge, pp 297–374

    Google Scholar 

  • Banavath JN, Chakradhar T, Pandit V et al (2018) Stress inducible overexpression of AtHDG11 leads to improved drought and salt stress tolerance in peanut (Arachis hypogaea L.). Front Chem 6:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banjara M, Zhu L, Shen G et al (2012) Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Plant Biotechnol Rep 6:59–67

    Article  Google Scholar 

  • Bera SK, Paria P, Radhakrisnan T (2002) Wide hybridization in Arachis hypogaea: genetic improvement and species relationship. Int Arachis Newsl 22:37–39

    Google Scholar 

  • Bhagwat A, Krishna TG, Bhabha CR (1997) RAPD analysis of induced mutants of groundnut (Arachis hypogaea L.). J Genet 76:201–208

    Article  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Devi MJ, Reddy DS et al (2007) Stress inducible expression of AtDREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar-Mathur P, Rao JS, Vadez V et al (2014) Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Mol Breed 33:327–340

    Article  CAS  Google Scholar 

  • Bhauso T, Radhakrishnan T, Kumar A et al (2014) Over-expression of bacterial mtlD gene in peanut improves drought tolerance through accumulation of mannitol. Sci World J 2014:125967

    Article  CAS  Google Scholar 

  • Bi Y-P, Liu W, Xia H et al (2010) EST sequencing and gene expression profiling of cultivated peanut (Arachis hypogaea L.). Genome 53:832–839

    Article  CAS  PubMed  Google Scholar 

  • Bland JM, Lax AR (2000) Isolation and characterization of a peanut maturity-associated protein. J Agric Food Chem 48:3275–3279

    Article  CAS  PubMed  Google Scholar 

  • Bonavia D (1982) Precerámico Peruano. Los gavilanes. mar, desierto y oasis en la historia del hombre. Corporación Financiera de Desarrollo S.A. COFIDE and Instituto Arqueológico Alemán, Lima

    Google Scholar 

  • Bosamia TC, Mishra G, Thankappan R, Dobaria JR (2015) Novel and stress relevant EST derived SSR markers developed and validated in peanut. PLoS One 10:e0129127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brar GS, Cohen BA, Vick CL, Johnson GW (1994) Recovery of transgenic peanut (Arachis hypogaea L.) plants from elite cultivars utilizing ACCELL® technology. Plant J 5:745–753

    Article  Google Scholar 

  • Brown AHD (1989a) A case for core collections. In: Brown AHD, Frankel OH, Marshall DR, Williams JT (eds) The use of plant genetic resources. Cambridge University Press, Cambridge, pp 136–156

    Google Scholar 

  • Brown AHD (1989b) Core collections: a practical approach to genetic resource management. Genome 31:818–824

    Article  Google Scholar 

  • Burks W, Sampson HA, Bannon G (1998) Peanut allergens. Allergy 53:725–730

    Article  CAS  PubMed  Google Scholar 

  • Burow MD, Selvaraj MG, Upadhyaya H et al (2008) Genomics of peanut, a major source of oil and protein. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, NY, pp 421–440

    Chapter  Google Scholar 

  • Charcosset A, Moreau L (2004) Use of molecular markers for the development of new cultivars and the evaluation of genetic diversity. Euphytica 137:81–94

    Article  CAS  Google Scholar 

  • Chenault KD, Payton ME, Melouk HA (2003) Greenhouse testing of transgenic peanut for resistance to Sclerotinia minor. Peanut Sci 30:116–120

    Article  Google Scholar 

  • Cheng M, Jarret RL, Li Z et al (1996) Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Rep 15:653–657

    Article  CAS  PubMed  Google Scholar 

  • Chu Y, Deng X, Faustinelli P, Ozias-Akins P (2008) Bcl-xL transformed peanut (Arachis hypogaea L.) exhibits paraquat tolerance. Plant Cell Rep 27:85–92

    Article  CAS  PubMed  Google Scholar 

  • Clevenger J, Chu Y, Scheffler B, Ozias-Akins P (2016) A developmental transcriptome map for allotetraploid Arachis hypogaea. Front Plant Sci 7:1446

    Article  PubMed  PubMed Central  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Dwivedi SL, Gurtu S, Chandra S et al (2001) Assessment of genetic diversity among selected groundnut germplasm. I: RAPD analysis. Plant Breed 120:345–349

    Article  CAS  Google Scholar 

  • Fang CQ, Wang CT, Wang PW et al (2012) Identification of a novel mutation in FAD2B from a peanut EMS mutant with elevated oleate content. J Cleo Sci 61:143–148

    CAS  Google Scholar 

  • Feng S, Wang X, Zhang X et al (2012) Peanut (Arachis hypogaea) expressed sequence tag project: progress and application. Comp Funct Genomics 2012:373768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franke MD, Brenneman TB, Holbrook CC (1999) Identification of resistance to rhizoctonia limb rot in a core collection of peanut germplasm. Plant Dis 83:944–948

    Article  CAS  PubMed  Google Scholar 

  • Gantait S, Mondal S (2018) Transgenic approaches for genetic improvement in groundnut (Arachis hypogaea L.) against major biotic and abiotic stress factors. J Genet Eng Biotechnol 6:537–544

    Article  Google Scholar 

  • Gantait S, Gunri SK, Kundu R, Chatterjee S (2017) Evaluation of genetic divergence in Spanish bunch groundnut (Arachis hypogaea Linn.) genotypes. Plant Breed Biotechnol 5:163–171

    Article  Google Scholar 

  • Garcia GM, Stalker HT, Shroeder E, Kochert G (1996) Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39:836–845

    Article  CAS  PubMed  Google Scholar 

  • Geng L, Niu L, Gresshoff PM et al (2012) Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants in peanut (Arachis hypogaea L.). Plant Cell Tissue Organ Cult 109:491–500

    Article  CAS  Google Scholar 

  • Gimenes MA, Hoshino AA, Barbosa AV et al (2007) Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea). BMC Plant Biol 7:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonsalves D, Slightom J (1993) Coat protein-mediated protection: analysis of transgenic plants for resistance in a variety of crops. Semin Virol 4(6):397–405

    Article  CAS  Google Scholar 

  • Gonzales MD, Archuleta E, Farmer A et al (2005) The legume information system: an integrated information resource for comparative legume biology. Nucleic Acids Res 1:33

    Google Scholar 

  • Gorbet DW, Knauft DA (1997) Registration of SunOleic 95R peanut. Crop Sci 37:1392

    Article  Google Scholar 

  • Gregory WC (1946) Peanut breeding program underway. In: Research and farming annual report, vol 69. North Carolina Agr Exper Stat, Raleigh, pp 42–44

    Google Scholar 

  • Gregory W, Gregory M (1976) Groundnut. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 151–154

    Google Scholar 

  • Guo B, Fedorova ND, Chen X et al (2011) Gene expression profiling and identification of resistance genes to Aspergillus flavus infection in peanut through EST and microarray strategies. Toxins 3:737–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Abernathy B, Zeng Y, Ozias-Akins P (2015) TILLING by sequencing to identify induced mutations in stress resistance genes of peanut (Arachis hypogaea). BMC Genomics 16:157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hain R, Bieseler B, Kindl H et al (1990) Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol 15:325–335

    Article  CAS  PubMed  Google Scholar 

  • Halward TM, Stalker HT (1987) Incompatibility mechanisms in interspecific peanut hybrids. Crop Sci 27:456–460

    Article  Google Scholar 

  • Halward TM, Stalker HT, Larue EA, Kochert G (1991) Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome 34:1013–1020

    Article  CAS  Google Scholar 

  • He G, Prakash CS (1997) Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97:143–149

    Article  CAS  Google Scholar 

  • Herselman L, Thwaites R, Kimmins FM et al (2004) Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet 109:1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Higgins C, Hall R, Mitter N et al (2004) Peanut stripe potyvirus resistance in peanut (Arachis hypogaea L.) plants carrying viral coat protein gene sequences. Transgenic Res 13:59–67

    Article  CAS  PubMed  Google Scholar 

  • Holbrook CC, Isleib TG (2001) Geographical distribution of genetic diversity in Arachis hypogaea. Peanut Sci 28:80–84

    Article  Google Scholar 

  • Holbrook CC, Stalker HT (2002) Peanut breeding and genetic resources. Plant Breed Rev 22:297–356

    Google Scholar 

  • Holbrook C, Anderson W, Pittman R (1993) Selection of a core collection from the U.S. germplasm collection of peanut. Crop Sci 33:859–861

    Article  Google Scholar 

  • Holbrook CC, Wilson DM, Matheron ME (1998) Source of resistance to pre-harvest aflatoxin contamination in peanut. Proc Am Peanut Res Educ Soc 30:54

    Google Scholar 

  • Holbrook CC, Stephenson MG, Johnson AW (2000) Level and geographical distribution of resistance to Meloidogyne arenaria in the U.S. peanut germplasm collection. Crop Sci 40:1168–1171

    Article  Google Scholar 

  • Hopkins MS, Casa AM, Wang T et al (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39:1243–1247

    Article  CAS  Google Scholar 

  • Hull FH, Carver WA (1938) Peanut improvement. In: Annual report Florrida agricultural experimental stations, pp 39–40

    Google Scholar 

  • Husted L (1936) Cytological studies of the peanut Arachis. II. Chromosome number, number morphology and behavior and their application to the origin of cultivated forms. Cytologia 7:396–423

    Article  Google Scholar 

  • Iqbal MM, Nazir F, Ali S et al (2012) Over expression of rice chitinase gene in transgenic peanut (Arachis hypogaea L.) improves resistance against leaf spot. Mol Biotechnol 50:129–136

    Article  CAS  PubMed  Google Scholar 

  • Isleib TG, Beute MK, Rice PW, Hollowell JE (1995) Screening the peanut core collection for resistance to Cylindrocladium black rot and early leaf spot. Proc Am Peanut Res Educ Soc 27:25

    Google Scholar 

  • Jain AK, Basha SM, Holbrook CC (2001) Identification of drought-responsive transcripts in peanut (Arachis hypogaea L.). Electron J Biotechnol 4:2

    Article  Google Scholar 

  • Janila P, Pandey MK, Shasidhar Y et al (2016) Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci 242:203–213

    Article  CAS  PubMed  Google Scholar 

  • Jesubatham AM, Burow MD (2006) PeanutMap: an online genome database for comparative molecular maps of peanut. BMC Bioinf 7:375

    Article  CAS  Google Scholar 

  • Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. In: Andersen SB (ed) Plant breeding from laboratories to fields. IntechOpen, Rijeka, pp 43–83

    Google Scholar 

  • Jiang H, Liao B, Duan N et al (2004) Development of a core collection of peanut germplasm in China. Proc Am Peanut Res Educ Soc 36:33

    Google Scholar 

  • Johansen C, Rao NRC (1996) Maximizing groundnut yields. In: Renard C, Gowda CLL, Nigam SN, Johansen C (eds.) Achieving high groundnut yields: Proceedings of International Workshop, 25–29 August 1995, Laixi City, Shandong China, pp 117–127

    Google Scholar 

  • Jung S, Powell G, Moore K, Abbott A (2000) The high oleate trait in the cultivated peanut (Arachis hypogaea L.). II. Molecular basis and genetics of the trait. Mol Gen Genet 263:806–811

    Article  CAS  PubMed  Google Scholar 

  • Kassa MT, Yeboah SO, Bezabih M (2009) Profiling peanut (Arachis hypogea L.) accessions and cultivars for oleic acid and yield in Botswana. Euphytica 167:293–301

    Article  CAS  Google Scholar 

  • Kawakami J (1930) Chromosome numbers in Leguminosae. Bot Mag 44:319–328

    Article  Google Scholar 

  • Keshavareddy G, Rohini S, Ramu SV et al (2013) Transgenics in groundnut (Arachis hypogaea L.) expressing cry1AcF gene for resistance to Spodoptera litura (F.). Physiol Mol Biol Plants 19:343–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73

    Article  CAS  Google Scholar 

  • Knoll JE, Ramos ML, Zeng Y et al (2011) TILLING for allergen reduction and improvement of quality traits in peanut (Arachis hypogaea L.). BMC Plant Biol 11:81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570

    Article  CAS  PubMed  Google Scholar 

  • Krapovickas A (1968) Origen, variabilidad y difusion del maní (Arachis hypogaea). Actas y Memorias Congress International Americanistas (Buenos Aires) 2:517–534

    Google Scholar 

  • Krapovickas A, Gregory WC (1994) Taxonomía del género Arachis (Leguminosae). Bonplandia 8:1–186

    Google Scholar 

  • Krapovickas A, Vanni RO (2010) The peanut from Llullaillaco. Bonplandia 18:51–55

    Article  Google Scholar 

  • Krishna G, Singh BK, Kim E-K et al (2015) Progress in genetic engineering of peanut (Arachis hypogaea L.) – a review. Plant Biotechnol J 13:147–162

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Kirti PB (2015a) Pathogen-induced SGT1 of Arachis diogoi induces cell death and enhanced disease resistance in tobacco and peanut. Plant Biotechnol J 13:73–84

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Kirti PB (2015b) Transcriptomic and proteomic analyses of resistant host responses in Arachis diogoi challenged with late leaf spot pathogen, Phaeoisariopsis personata. PLoS One 10:e0117559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kundu S, Gantait S (2018) Fundamental facets of somatic embryogenesis and its applications for advancement of peanut biotechnology. In: Gosal SS, Wani SH (eds) Biotechnologies of crop improvement, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-78283-6_8

    Chapter  Google Scholar 

  • Lavia GI (1996) Estudios cromosómicos en Arachis (Leguminosae). Bonplandia 9:111–120

    Article  Google Scholar 

  • Lavia GI (1998) Karyotypes of Arachis palustris and A. praecox (section Arachis), two species with basic chromosome number x = 9. Cytologia 63:177–181

    Article  Google Scholar 

  • Li Z, Jarret RL, Pittman RN et al (1993) Efficient plant regeneration from protoplasts of Arachis paraguariensis Chod. & Hassl. using a nurse method. Plant Cell Tissue Organ Cult 34:83–90

    Article  CAS  Google Scholar 

  • Li Z, Cheng M, Demski JW, Jarret RL (1995) Improved electroporation buffer enhances transient gene expression in Arachis hypogaea protoplasts. Genome 38:858–863

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Jarret RL, Demski JW (1997) Engineered resistance to tomato spotted wilt virus in transgenic peanut expressing the viral nucleocapsid gene. Transgenic Res 6:297–305

    Article  CAS  Google Scholar 

  • Linnaeus C (1753) Species plantarum. Holmiae 2:741

    Google Scholar 

  • Livingstone DM, Hampton JL, Phipps PM, Grabau EA (2005) Enhancing resistance to Sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiol 137:1354–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Mayer A, Pickersgill B (1990) Stigma morphology and pollination in Arachis L. (Leguminosae). Ann Bot 66:73–82

    Article  Google Scholar 

  • Luo M, Dang P, Bausher MG et al (2005a) Identification of transcripts involved in resistance responses to leaf spot disease caused by Cercosporidium personatum in peanut (Arachis hypogaea). Phytopathology 95:381–387

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Liang X, Dang P et al (2005b) Microarray-based screening of differentially expressed genes in peanut in response to Aspergillus parasiticus infection and drought stress. Plant Sci 169:695–703

    Article  CAS  Google Scholar 

  • Luo H, Xu Z, Li Z et al (2017) Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet 130:1635–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magbanua Z, Wilde H, Roberts J et al (2000) Field resistance to tomato spotted wilt virus in transgenic peanut (Arachis hypogaea L.) expressing an antisense nucleocapsid gene sequence. Mol Breed 6:227–236

    Article  CAS  Google Scholar 

  • Mallikarjuna N, Maheedhr G, Chandra S (2005) Genetic diversity among Arachis species based on RAPDs. Indian J Genet Plant Breed 65:5–8

    CAS  Google Scholar 

  • Mallikarjuna G, Rao TSRB, Kirti PB (2016) Genetic engineering for peanut improvement: current status and prospects. Plant Cell Tissue Organ Cult 125:399–416

    Article  CAS  Google Scholar 

  • Manjulatha M, Sreevathsa R, Kumar AM et al (2014) Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress. Mol Biotechnol 56:111–125

    Article  CAS  PubMed  Google Scholar 

  • Martin FW, Ruberte RM (1975) Edible leaves of the tropics. Antillian College Press, Mayaguez

    Google Scholar 

  • Mehta R, Radhakrishnan T, Kumar A et al (2013) Coat protein-mediated transgenic resistance of peanut (Arachis hypogaea L.) to peanut stem necrosis disease through Agrobacterium-mediated genetic transformation. Indian J Virol 24:205–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohan M, Nair S, Bhagwat A et al (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103

    Article  CAS  Google Scholar 

  • Mondal S, Badigannavar AM, Kale DM, Murty GS (2007) An induced dominant seed coat colour mutation in groundnut. Indian J Genet Plant Breed 67:177–179

    Google Scholar 

  • Moretzsohn MC, Hopkins MS, Mitchell SE et al (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable region of the genome. BMC Plant Biol 4:11

    Article  PubMed Central  CAS  Google Scholar 

  • Naito Y, Suzuki S, Iwata Y, Kuboyama T (2008) Genetic diversity and relationship analysis of peanut germplasm using SSR markers. Breed Sci 58:293–300

    Article  CAS  Google Scholar 

  • Nóbile PM, Gimenes MA, Valls JFM, Lopes CR (2004) Genetic variation within and among species of genus Arachis, section Rhizomatosae. Genet Resour Crop Evol 51:299–307

    Article  Google Scholar 

  • Noodén LD, Singh S, Letham DS (1990) Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean. Plant Physiol 93:33–39

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozias-Akins P, Schnall JA, Anderson WF et al (1993) Regeneration of transgenic peanut plants from stably transformed embryogenic callus. Plant Sci 93:185–194

    Article  CAS  Google Scholar 

  • Ozias-Akins P, Ramos ML, Faustinelli P et al (2009) Spontaneous and induced variability of allergens in commodity crops: ara h 2 in peanut as a case study. Regul Toxicol Pharmacol 54:S37–S40

    Article  CAS  PubMed  Google Scholar 

  • Paik-Ro OG, Smith RL, Knauft DA (1992) Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor Appl Genet 84:201–208

    Article  CAS  PubMed  Google Scholar 

  • Pandurangaiah M, Lokanadha Rao G, Sudhakarbabu O et al (2014) Overexpression of horsegram (Macrotyloma uniflorum Lam. Verdc.) NAC transcriptional factor (MuNAC4) in groundnut confers enhanced drought tolerance. Mol Biotechnol 56:758–769

    Article  CAS  PubMed  Google Scholar 

  • Patil M, Ramu S, Jathish P et al (2014) Overexpression of AtNAC2 (ANAC092) in groundnut (Arachis hypogaea L.) improves abiotic stress tolerance. Plant Biotechnol Rep 8:161–169

    Article  Google Scholar 

  • Pattee HE, Stalker HT (1991) Comparative embryo sac morphology at anthesis of cultivated and wild species of Arachis. Ann Bot 68:511–517

    Article  Google Scholar 

  • Pattee HE, Stalker HT (1992) Embryogenesis in reciprocal crosses of Arachis hypogaea cv. NC 6 with A. duranensis and A. stenosperma. Int J Plant Sci 153:341–347

    Article  Google Scholar 

  • Porter DM, Smith DH, Rodrígues-Kábana R (1990) Compendium of peanut diseases. APS Press, St. Paul, MN

    Google Scholar 

  • Pruthvi V, Narasimhan R, Nataraja KN (2014) Simultaneous expression of abiotic stress responsive transcription factors, AtDREB2A, AtHB7 and AtABF3 improves salinity and drought tolerance in peanut (Arachis hypogaea L.). PLoS One 9:e111152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin H, Gu Q, Zhang J et al (2011) Regulated expression of an isopentenyl transferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol 52:1904–1914

    Article  CAS  PubMed  Google Scholar 

  • Raina SN, Rani V, Kojima T et al (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44:763–772

    Article  CAS  PubMed  Google Scholar 

  • Ramu VS, Swetha TN, Sheela SH et al (2016) Simultaneous expression of regulatory genes associated with specific drought-adaptive traits improves drought adaptation in peanut. Plant Biotechnol J 14:1008–1020

    Article  CAS  PubMed  Google Scholar 

  • Reddy A, Rao RP, Thirumala-Devi K et al (2002) Occurrence of tobacco streak virus on peanut (Arachis hypogaea) in India. Plant Dis 86:173–178

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Jiang H, Yan Z et al (2014) Genetic diversity and population structure of the major peanut (Arachis hypogaea L.) cultivars grown in China by SSR markers. PLoS One 9:e88091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rohini V, Rao KS (2000) Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Sci 150:41–49

    Article  CAS  Google Scholar 

  • Rohini V, Rao KS (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898

    Article  CAS  PubMed  Google Scholar 

  • Rudd VE (1981) Aescynomeneac. In: Polhiu RM, Raven PH (eds.) Advances in legume systematics: Vol 2 of the proceedings of the International Legume Conference, 24–29 July 1978, Kew, pp 347–354

    Google Scholar 

  • Sarkar T, Thankappan R, Kumar A et al (2014) Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS One 9:e110507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sarkar T, Thankappan R, Kumar A et al (2016) Stress inducible expression of AtDREB1A transcription factor in transgenic peanut (Arachis hypogaea L.) conferred tolerance to soil-moisture deficit stress. Front Plant Sci 7:935

    Article  PubMed  PubMed Central  Google Scholar 

  • Savage GP, Keenan JI (1994) The composition and nutritive value of groundnut kernels. In: Smart J (ed) The groundnut crop: scientific basis for improvement. Chapman and Hall, London, pp 173–213

    Chapter  Google Scholar 

  • Schnall JA, Weissinger AK (1993) Culturing peanut (Arachis hypogaea L.) zygotic embryos for transformation via microprojectile bombardement. Plant Cell Rep 12:316–319

    Article  CAS  PubMed  Google Scholar 

  • Seijo JG, Lavia GI, Fernández A et al (2004) Physical mapping of the 5s and 18s-25s rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303

    Article  CAS  PubMed  Google Scholar 

  • Seijo JG, Lavia GI, Fernández A et al (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94:1963–1971

    Article  PubMed  Google Scholar 

  • Sharma KK, Anjaiah VV (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159:7–19

    Article  CAS  PubMed  Google Scholar 

  • Sharma HC, Pampapathy G, Dwivedi SL, Reddy LJ (2003) Mechanisms and diversity of resistance to insect pests in wild relatives of groundnut. J Econ Entomol 96:1886–1897

    Article  CAS  PubMed  Google Scholar 

  • Shastri DC, Moss JP (1982) Effects of growth regulators on incompatible crosses in the genus Arachis L. J Exp Bot 33:1293–1301

    Article  Google Scholar 

  • Simpson CE, Starr JL, Church GT et al (2003) Registration of ‘NemaTAM’ peanut. Crop Sci 43:1561

    Article  Google Scholar 

  • Singh AK (1998) Hybridization barriers among the species of Arachis L., namely the sections Arachis (including the groundnut) and Erectoides. Genet Resour Crop Evol 45:41–45

    Article  Google Scholar 

  • Singh AK, Moss JP (1982) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. 2. Chromosome complements of species of section Arachis. Theor Appl Genet 61:305–314

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Nigam SN (1997) Groundnut. In: Fuccillo D, Sears L, Stapleton P (eds) Biodiversity in trust. Cambridge University Press, Cambridge, pp 114–127

    Chapter  Google Scholar 

  • Singh AK, Simpson CE (1994) Biosystematics and genetic resources. In: Smartt J (ed) The groundnut crop: a scientific basis for improvement. Chapman & Hall, London, pp 96–137

    Chapter  Google Scholar 

  • Singh AK, Smartt J (1998) The genome donors of the groundnut/peanut (Arachis hypogaea L.) revisited. Genet Resour Crop Evol 45:113–118

    Article  Google Scholar 

  • Singh N, Mishra A, Jha B (2014) Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea). Gene 547:119–125

    Article  CAS  PubMed  Google Scholar 

  • Singsit C, Adang MJ, Lynch RE et al (1997) Expression of a Bacillus thuringiensis cryIA(c) gene in transgenic peanut plants and its efficacy against lesser cornstalk borer. Transgenic Res 6:169–176

    Article  CAS  PubMed  Google Scholar 

  • Smartt J, Stalker T (1982) Speciation and cytogenetics in Arachis. In: Pattee HE, Young CT (eds) Peanut science and technology. American Peanut Research and Education Society, Inc, Yoakum

    Google Scholar 

  • Smartt J, Gregory WC, Gregory MP (1978) The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors. Euphytica 27:665–675

    Article  Google Scholar 

  • Stalker HT (1991) A new species in section Arachis of peanuts with a D genome. Am J Bot 78:630–637

    Article  Google Scholar 

  • Stalker HT (1992) Utilizing Arachis germplasm resources. In: Nigam SN (ed) Groundnut, a global perspective: Proceedings of an International Workshop, Patancheru, India. 25–29 November 1991. ICRISAT, Patancheru. pp 281–295

    Google Scholar 

  • Stalker HT, Dalmacio RD (1986) Karyotype analysis and relationships among varieties of Arachis hypogaea L. Cytologia 58:617–629

    Article  Google Scholar 

  • Stalker HT, Mozingo LG (2001) Molecular markers of Arachis and marker-assisted selection. Peanut Sci 28:117–123

    Article  CAS  Google Scholar 

  • Stalker HT, Simpson CE (1995) Germplasm resources in Arachis. In: Pattee HE, Stalker HT (eds) Advances in peanut science. American Peanut Research and Education Society, Stillwater, pp 14–53

    Google Scholar 

  • Stalker HT, Wynne JC (1983) Photoperiod response of peanut species. Peanut Sci 10:59–62

    Article  Google Scholar 

  • Stalker HT, Tallury SP, Seijo GR, Leal-Bertoli SC (2016) Biology, speciation, and utilization of peanut species. In: Stalker HT, Wilson RF (eds) Peanuts: genetics, processing, and utilization. Academic Press/AOCS Press, Amsterdam, pp 27–66

    Chapter  Google Scholar 

  • Subramanian V, Gurtu S, Rao RN, Nigam SN (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43:656–660

    Article  CAS  PubMed  Google Scholar 

  • Sundaresha S, Kumar AM, Rohini S et al (2010) Enhanced protection against two major fungal pathogens of groundnut, Cercospora arachidicola and Aspergillus flavus in transgenic groundnut over-expressing a tobacco β 1–3 glucanase. Eur J Plant Pathol 126:497–508

    Article  CAS  Google Scholar 

  • Sundaresha S, Rohini S, Appanna VK et al (2016) Co-overexpression of Brassica juncea NPR1 (BjNPR1) and Trigonella foenum-graecum defensin (Tfgd) in transgenic peanut provides comprehensive but varied protection against Aspergillus flavus and Cercospora arachidicola. Plant Cell Rep 35:1189

    Article  CAS  PubMed  Google Scholar 

  • Tang R, Gao G, He L et al (2007) Genetic diversity in cultivated groundnut based on SSR markers. J Genet Genomics 34:449–459

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Tuli R (2012) Optimization of factors for efficient recovery of transgenic peanut (Arachis hypogaea L.). Plant Cell Tissue Organ Cult 109:111–121

    Article  CAS  Google Scholar 

  • Tiwari S, Mishra DK, Singh A et al (2008) Expression of a synthetic cry1EC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.). Plant Cell Rep 27:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Mishra DK, Chandrasekhar K et al (2011) Expression of delta-endotoxin Cry1EC from an inducible promoter confers insect protection in peanut (Arachis hypogaea L.) plants. Pest Manag Sci 67:137–145

    Article  CAS  PubMed  Google Scholar 

  • Tiwari V, Chaturvedi AK, Mishra A, Jha B (2015) Introgression of the SbASR-1 gene cloned from a halophyte Salicornia brachiata enhances salinity and drought endurance in transgenic groundnut (Arachis hypogaea) and acts as a transcription factor. PLoS One 10:e0131567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upadhyaya HD, Ortiz R, Bramel PJ, Singh S (2003) Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genet Resour Crop Evol 50:139–148

    Article  CAS  Google Scholar 

  • Vadez V, Rao S, Sharma KK et al (2007) DREB1A allows for more water uptake in groundnut by a large modification in the root/shoot ratio under water deficit. J SAT Agric Res 5:1–5

    Google Scholar 

  • Vadez V, Rao JS, Bhatnagar-Mathur P, Sharma KK (2013) DREB1A promotes root development in deep soil layers and increases water extraction under water stress in groundnut. Plant Biol 15:45–52

    Article  CAS  PubMed  Google Scholar 

  • Valls JFM, Costa LC, Custodio AR (2013) A novel trifoliolate species of Arachis (Fabaceae) and further comments on the taxonomic section Trierectoides. Bonplandia 22:91–97

    Article  Google Scholar 

  • Van der Stok JE (1910) Onderzoekingen omtrent, Arachis hypogaea L. (Katang-Tanah). Meded Dept Landbouw 12:176–221

    Google Scholar 

  • Varshney RK (2016) Exciting journey of 10 years from genomes to fields and markets: some success stories of genomics-assisted breeding in chickpea, pigeon pea and groundnut. Plant Sci 242:98–107

    Article  CAS  PubMed  Google Scholar 

  • Wan L, Li B, Lei Y et al (2017) Mutant transcriptome sequencing provides insights into pod development in peanut (Arachis hypogaea L.). Front Plant Sci 8:1900

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang CT, Yu HT, Wang XZ et al (2012) Production of peanut hybrid seeds in an intersectional cross through post-pollination treatment of flower bases with plant growth regulators. Plant Growth Regul 68:511–515

    Article  CAS  Google Scholar 

  • Wang JS, Qiao LX, Zhao LS et al (2015a) Performance of peanut mutants and their offspring generated from mixed high-energy particle field radiation and tissue culture. Genet Mol Res 14:10837–10848

    Article  CAS  PubMed  Google Scholar 

  • Wang JS, Sui JM, Xie YD et al (2015b) Generation of peanut mutants by fast neutron irradiation combined with in vitro culture. J Radiat Res 56:437–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Khera P, Huang B et al (2016) Analysis of genetic diversity and population structure of peanut cultivars and breeding lines from China, India and the US using simple sequence repeat markers. J Integr Plant Biol 58:452–465

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Singsit C, Wang A et al (1998) Transgenic peanut plants containing a nucleocapsid protein gene of tomato spotted wilt virus show divergent levels of gene expression. Plant Cell Rep 17:693–699

    Article  CAS  PubMed  Google Scholar 

  • Yang CY, Narin J, Ozias-Atkin P (2003) Transformation of peanut using a modified bacterial mercuric ion reductase gene driven by an actin promoter from Arabidopsis thaliana. J Plant Physiol 160:945–952

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liang S, Duan J et al (2012) De novo assembly and characterisation of the transcriptome during seed development, and generation of genic-SSR markers in peanut (Arachis hypogaea L.). BMC Genomics 13:90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Li A, Li C et al (2017) Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Electron J Biotechnol 25:9–12

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the e-library assistance from Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India. We further are thankful to the anonymous reviewers and the editor of this article for their critical comments and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Specialized Research Institutes on Peanut and Their Online Resources

Institution

Specialization Research Activities

Contact information and website

ICAR - Directorate of Groundnut Research (ICAR-DGR)

Conduct basic and strategic research to enhance production, productivity and quality of peanut; act as the national repository of working collection of peanut germplasm and information on peanut research; establish relevant institutional linkages; offer consultancy and training; and provide logistic support and coordination mechanism for generation of location-specific technology through the All India Coordinated Research Project on Groundnut.

www.dgr.org.in

International Crops Research Institute for the Semi-Arid Tropics

Perform fundamental and strategic research for the enhancement of peanut production, productivity and quality; act as an international repository of working collection of peanut germplasms; create pertinent institutional linkages; offer consultancy and trainings

http://www.icrisat.org

The Peanut Institute

It is a non-profit organization that supports nutrition research and develops educational programs to encourage healthful lifestyles that include peanuts and peanut products.

http://www.peanut-institute.org

Peanut Lab, College of Agricultural and Environmental Sciences, University of Georgia

Improvement of peanut production through the development and use of advanced genetic and genomic technologies and better crop protection measures

http://www.caes.uga.edud

Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Wuhan, China

OCRI has peanut as one of its major mandate crop with a mission to conduct basic and applied research that can lead to enhance the productivity and utilization of peanut. The current research fields cover germplasm, genetics, breeding, functional genomic, genetic engineering, safety assessment of genetic modified organisms (GMOS), plant nutrition and physiology, plant pathology, chemical analysis, food safety and product processing.

http://en.oilcrops.com.cn

Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India

Development of new varieties of peanut using radiation-induced mutagenesis and hybridization, execution of basic and applied research for the enhancement of peanut production, productivity and quality

http://www.barc.gov.in/randd/hfa.html

Department of Field Crops, Plant Science Institute, ARO, Bet-Dagan, Israel

Introduction and breeding of peanut to expand the variety of products for farmers and consumers with improved yield and quality, development and application of agro-techniques to improve yield and quality traits of peanut, development of agricultural methodologies to accommodate climate change, food security and alternative energy sources, as well as training and education of next generation scientists in the above areas

http://www.agri.gov.il/en/units/institutes/1.aspx

Institut Sénégalais de Recherches Agricoles (ISRA)-CNRA, Bambey, Sénégal

Enhancement of peanut yield through the improvement and use of advanced genetic and genomic approaches and superior crop protection measures

http://www.isra.sn

USDA-ARS Wheat, Peanut and Other Field Crops Research Unit, Stillwater OK

Development of improved peanut cultivars and germplasm, evaluation of advanced breeding lines and current peanut varieties, integrated management of peanut diseases, and development of improved high-oleic peanut varieties

https://www.ars.usda.gov/plains-area/stillwater-ok/wheat-peanut-and-other-field-crops-research/

USDA-ARS, National Peanut Research Laboratory (NPRL), Dawson, GA

Developing strategies to identify useful genes in peanut and breeding high yielding peanut varieties and germplasm, enhancing the competitiveness of U.S. Peanuts and peanut-based cropping systems, as well as development of postharvest systems to assess and preserve peanut quality and safety

https://www.ars.usda.gov/southeast-area/dawson-ga/national-peanut-research-laboratory/

1.2 Appendix II: Genetic Resources of Peanut During the Last 10 Years

Cultivar

Important traits

Cultivation location

Habit group: Spanish Bunch

GG-5 (Gujarat Groundnut-5)

Drought tolerant; leaflets stay green at maturity

Gujarat, India

Jawahar groundnut-3 (JGN-3)

Tolerant of drought, sucking pests and leaf spots (ELS, LLS)

Madhya Pradesh, India

R-9251

Early maturity; tolerant of PBND

Karnataka, India

Apoorva (R-8808)

Tolerant of LLS and PBND

Karnataka, Andhra Pradesh and Tamil Nadu, India

Phule Vyas (JL-220)

High oil content; early maturity

Maharashtra, India

ALR-3 (ALG-63)

Suitable for early sowing in south-west monsoon; tolerant of LLS and resistant to rust

Tamil Nadu, India

Co-3 (TNAU-256)

Tolerant of PBND

Tamil Nadu, India

VRI (Gn)-5

Resistant to rust and LLS

Tamil Nadu, India

Co (Gn)-4 (TNAU-269)

Resistant to rust and LLS; possesses high oil content

Tamil Nadu, India

GG-7 (J-38)

Early maturity; tolerant of LLS

Gujarat and southern Rajasthan, India

AK-159

Early maturity; possesses high oil content

Maharashtra and Madhya Pradesh, India

GG-6

Early maturity; high shelling (73%)

Gujarat, India

TPG-41

Large seeds (>60 g/100 kernels); high O/L ratio (3.27), tolerant of rust; possesses fresh seed dormancy (up to 25 days)

Throughout India

TG-37A

Possesses fresh seed dormancy (up to 15 days); tolerant of collar rot, rust and LLS

Rajsthan, Uttar Pradesh, Punjab, Gujarat, Orissa, West Bengal, and NEH states, India

Vikas (GPBD-4)

Resistant to LLS and rust

Maharashtra, Karnataka, Andhra Pradesh, Tamil Nadu, Jharkhand, West Bengal, Orissa, and Assam, India

Prutha (Dh-86)

Semi-dwarf; high harvest index (HI); tolerant of LLS and sucking pests

Gujarat, southern Rajasthan, Maharashtra, Orissa and West Bengal, India

Kadiri-5

Tolerant of drought and leaf spots

Aandhra Pradesh, India

Kadiri-6 (K-1240)

Tolerant of leaf spots

Aandhra Pradesh and West Bengal, India

Pratap Mungphali-2 (ICUG-92195)

Tolerant of ELS, LLS and PBND and tolerant of Spodoptera litura, leaf miner and thrips

Rajasthan, India

GG-8 (J-53)

Tolerant of PBND, collar and stem rot diseases

Northern Maharashtra and Madhya Pradesh, India

TG-38B (TG-38)

Tolerant of stem rot

Orissa, West Bengal, Bihar and North Eastern states, India

Vasundhara (Dh-101)

Tolerant of stem rot, PBND, thrips and Spodoptera litura

West Bengal, Orissa, Jharkhand and Assam, India

Ratneshwar (LGN-1)

Tolerant of LLS, stem rot, rust and PBND

Maharashtra, India

TLG-45

Large seeded

Maharashtra, India

SG-99

Tolerant of PBND

Punjab, India

ICGV-91114

Early maturity; tolerant of rust and LLS and drought

Andhra Pradesh and Orissa, India

Phule Unap (JL-286)

Early maturity; tolerant of LLS, rust and stem rot, thrips, leaf miner and Spodoptera litura

Maharashtra, India

Abhaya (TPT-25)

Tolerant of early and mid-season moisture stress conditions; tolerant of LLS, sucking insects (jassids and thrips) and Spodoptera litura

Andhra Pradesh, India

TMV (Gn-13)

Tolerant of early and mid-season moisture stress conditions, tolerant of LLS, rust and PBND

Tamil Nadu, India

Kalahasti (TCGS-320)

Suitable for rabi situation for kalahasti malady endemic areas and also for kharif in North coastal and north Telengana of Andhra Pradesh; tolerant of PBND; resistant to jassids

Andhra Pradesh, India

Narayani (TCGS-29)

Tolerant of mid-season moisture stress conditions

Andhra Pradesh, India

VL-Moongphali-1

Resistant to LLS and root rot diseases

Uttarakhand, India

TG-51

Tolerant of stem rot and root rot diseases

West Bengal, Orissa, Jharkhand and Assam, India

Ajeya (R-2001-3)

Resistant to PBND; drought tolerant; wider adaptability

Southern Maharashtra, Karnataka, Andhra Pradesh, and Tamil Nadu, India

VRI (Gn)-6

Tolerant of LLS, rust and PBND

Southern Maharashtra, Karnataka, Andhra Pradesh, and Tamil Nadu, India

Jawahar Groundnut-23 (JGN-23)

Tolerant of ELS, LLS and drought

Madhya Pradesh, India

Kadiri-9

Tolerant of early and end-of-season drought

Andhra Pradesh, India

Greeshma

Early maturity; tolerant of drought, high temperature and aflatoxin contamination

Andhra Pradesh, India

Vijetha (R-2001-2)

Resistant to PBND

West Bengal, Orissa, Jharkhand, Assam; southern Maharashtra, Karnataka, Andhra Pradesh, and Tamil Nadu, India

Girnar-3 (PBS-12160)

Tolerant of leaf miner and thrips

West Bengal, Orissa, and Manipur, India

Kadiri Haritandhra (K-1319)

Possesses fresh seed dormancy (up to 20 days); multiple diseases (rust, ELS, LLS, stem rot, PBND) and insect pests (thrips, Spodoptera litura, jassid, Helicoverpa) resistant

Karnataka and Maharashtra, India

GPBD-5

Tolerant of LLS and rust

Jharkhand and Manipur, India

JL-501

Early maturity

Gujarat and southern Rajasthan, India

RARS-T-1 and T-2

Bold seeded pods

Andhra Pradesh, India

Pratap Raj Mungphali

Early maturity; tolerant of ELS, LLS, PBND, jassids, thrips, leaf miner and Spodoptera litura

Andhra Pradesh, India

ICGV-00350

Resistant to LLS and rust; tolerant of stem rot

Tamil Nadu and Andhra Pradesh, India

GJG-31 (J 71)

Tolerant of stem rot

Gujarat, India

Habit Group: Virginia Runner

DSG-1

Suitable for transitional zone for rain-fed conditions

Karnataka, India

GG-14 (JSP-28)

High oil content; tolerant of thrips, Spodoptera litura and leaf miner

Northern Rajasthan, Punjab, Haryana and Uttar Pradesh, India

Utkarsh (CSMG-9510)

Possesses fresh seed dormancy (up to 40–45 days)

Uttar Pradesh, Punjab and northern Rajasthan, India

Durga (RG-382)

Suitable for sandy and loamy soils; resistant to jassids, leaf miner and thrips

Rajasthan, India

GG-16 (JSP-39)

Tolerant of PBND, root rot diseases, thrips, Spodoptera litura and leaf miner

Tamil Nadu, Andhra Pradesh, Kerala and southern Maharashtra, India

M-548

High protein content; bold kernel; tolerant of leaf spots and collar rot

Punjab, India

GJG-HPS-1 (JSP-HPS-44)

Bold kernels (76 g/100 kernels)

Gujarat, India

Divya (CSMG-2003-19)

Tolerant of PBND

Uttar Pradesh and Rajasthan, India

Raj Mungfali 1 (RG 510)

Bold kernels (76 g/100 kernels)

Rajasthan and Punjab, India

GJG-17 (JSP-48)

Tolerant of stem rot

Gujarat, India

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gantait, S., Panigrahi, J., Patel, I.C., Labrooy, C., Rathnakumar, A.L., Yasin, J.K. (2019). Peanut (Arachis hypogaea L.) Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Nut and Beverage Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23112-5_8

Download citation

Publish with us

Policies and ethics