Skip to main content

Abstract

It is challenging to study the mechanisms underlying the dynamics of water in the soil–plant–atmosphere continuum. Although micrometeorological techniques are widely used in hydrology, their applicability is typically restricted to certain environmental conditions (i. e., homogeneous and flat surfaces, sufficiently turbulent conditions). Weighing lysimeters allow the water fluxes in vegetated soil columns to be measured gravimetrically with high accuracy. They are complementary and provide valuable information on transport processes within and across the upper and lower boundaries of undisturbed monolith samples. Measurements include evapotranspiration and precipitation, seepage into groundwater, and additional supporting information—soil hydraulic properties such as soil water retention and hydraulic conductivity, which are key parameters for model parameterization. In addition to water fluxes, the transportation of matter into, within, and from soil can be probed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Aboukhaled, A. Alfaro, M. Smith: Lysimeters, Irrigation and Drainage, Vol. 39 (FAO, Rome 1982)

    Google Scholar 

  • T.A. Howell, A.D. Schneider, M.E. Jensen: History of lysimeter design and use for evapotranspiration measurements. In: Proc. Lysimeters Evapotranspir. Environ. Meas. (ASCE, New York 1991) pp. 1–9

    Google Scholar 

  • F.B. Salisbury, C. Ross: Plant Physiology (Wadsworth, Belmont 1969)

    Google Scholar 

  • H. Kohnke, F.R. Dreibelbis, J.M. Davidson: A Survey and Discussion of Lysimeters and a Bibliography on Their Construction and Performance (US Department of Agriculture, Washington DC 1940) p. 372

    Google Scholar 

  • M.J. Goss, W. Ehlers: The role of lysimeters in the development of our understanding of soil water and nutrient dynamics in ecosystems, Soil Use Manag. 25, 213–223 (2009)

    Article  Google Scholar 

  • M.J. Goss, W. Ehlers, A. Unc: The role of lysimeters in the development of our understanding of processes in the vadose zone relevant to contamination of groundwater aquifers, Phys. Chem. Earth 35, 913–926 (2010)

    Article  Google Scholar 

  • C. Lanthaler, J. Fank: Lysimeter stations and soil hydrology measuring sites in Europe—results of a 2004 survey. In: Proc. 11th Lysimeter Conf., Raumberg, Gumpenstein (2005) pp. 19–24

    Google Scholar 

  • S. Lovelli, M. Perniola, M. Arcieri, A.R. Rivelli, T. Di Tommaso: Water use assessment in muskmelon by the Penman–Monteith “one-step” approach, Agric. Water Manag. 95, 1153–1160 (2008)

    Article  Google Scholar 

  • P.J. Vaughan, T.J. Trout, J.E. Ayars: A processing method for weighing lysimeter data and comparison to micrometeorological eto predictions, Agric. Water Manag. 88, 141–146 (2007)

    Article  Google Scholar 

  • R. López-Urrea, F. Martín de Santa Olalla, C. Fabeiro, A. Moratalla: Testing evapotranspiration equations using lysimeter observations in a semiarid climate, Agric. Water Manag. 85, 15–26 (2006)

    Article  Google Scholar 

  • H. Vereecken, A. Schnepf, J.W. Hopmans, M. Javaux, D. Or, T. Roose, J. Vanderborght, M.H. Young, W. Amelung, M. Aitkenhead, S.D. Allison, S. Assouline, P. Baveye, M. Berli, N. Brüggemann, P. Finke, M. Flury, T. Gaiser, G. Govers, T. Ghezzehei, P. Hallett, H.J.H. Franssen, J. Heppell, R. Horn, J.A. Huisman, D. Jacques, F. Jonard, S. Kollet, F. Lafolie, K. Lamorski, D. Leitner, A. McBratney, B. Minasny, C. Montzka, W. Nowak, Y. Pachepsky, J. Padarian, N. Romano, K. Roth, Y. Rothfuss, E.C. Rowe, A. Schwen, J. Šimůnek, A. Tiktak, J. Van Dam, S.E.A.T.M. van der Zee, H.J. Vogel, J.A. Vrugt, T. Wöhling, I.M. Young, A. Tiktak: Modeling soil processes: review, key challenges, and new perspectives, Vadose Zone J. 15, 1–57 (2016)

    Article  Google Scholar 

  • J. Šimůnek, S.A. Bradford: Vadose zone modeling: introduction and importance, Vadose Zone J. 7, 581–586 (2008)

    Article  Google Scholar 

  • C. Steenpass, J. Vanderborght, M. Herbst, J. Šimůnek, H. Vereecken: Estimating soil hydraulic properties from infrared measurements of soil surface temperatures and TDR data, Vadose Zone J. 9, 910–924 (2010)

    Article  Google Scholar 

  • V. Phogat, M.A. Skewes, J.W. Cox, J. Alam, G. Grigson, J. Šimůnek: Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree, Agric. Water Manag. 127, 74–84 (2013)

    Article  Google Scholar 

  • W.R. Whalley, E.S. Ober, M. Jenkins: Measurement of the matric potential of soil water in the rhizosphere, J. Exp. Bot. 64, 3951–3963 (2013)

    Article  Google Scholar 

  • A. Degré, M.J. van der Ploeg, T. Caldwell, H.P.A. Gooren: Comparison of soil water potential sensors: a drying experiment, Vadose Zone J. 16, 1–8 (2017)

    Article  Google Scholar 

  • S. Reth, K. Hentschel, M. Drösler, E. Falge: Dennit – experimental analysis and modelling of soil N2O efflux in response on changes of soil water content, soil temperature, soil pH, nutrient availability and the time after rain event, Plant Soil 272, 349–363 (2005)

    Article  Google Scholar 

  • S. Reth, M. Göckede, E. Falge: CO2 efflux from agricultural soils in Eastern Germany – comparison of a closed chamber system with eddy covariance measurements, Theor. Appl. Climatol. 80, 105–120 (2005)

    Article  Google Scholar 

  • J. Punzel, M. Seyfarth: Lysimeter lower boundary condition controlling method, involves providing porous filter plate with high thermal conductivity at same voltage and temperature of water from water volume of soil column transferred to lysimeter, Patent No. De102010051333a1 (2011)

    Google Scholar 

  • C. Podlasly, K. Schwarzel: Development of a continuous closed pipe system for controlling soil temperature at the lower boundary of weighing field lysimeters, Soil Sci. Soc. Am. J. 77, 2157–2163 (2013)

    Article  Google Scholar 

  • WMO: Guide to Instruments and Methods of Observation, WMO-No. 8, Volume I - Measurement of Meteorological Variables. (World Meteorological Organization, Geneva, 2018)

    Google Scholar 

  • O. Perez-Priego, T.S. El-Madany, M. Migliavacca, A.S. Kowalski, M. Jung, A. Carrara, O. Kolle, M.P. Martín, J. Pacheco-Labrador, G. Moreno, M. Reichstein: Evaluation of eddy covariance latent heat fluxes with independent lysimeter and sapflow estimates in a Mediterranean savannah ecosystem, Agric. For. Meteorol. 236, 87–99 (2017)

    Article  Google Scholar 

  • H. Coners, W. Babel, S. Willinghofer, T. Biermann, L. Kohler, E. Seeber, T. Foken, Y.M. Ma, Y.P. Yang, G. Miehe, C. Leuschner: Evapotranspiration and water balance of high-elevation grassland on the Tibetan plateau, J. Hydrol. 533, 557–566 (2016)

    Article  Google Scholar 

  • C. Lanthaler: Lysimeter Stations and Soil Hydrology Measuring Sites in Europe: Purpose, Equipment, Research Results, Future Developments, Diploma Thesis, University of Graz, 2004)

    Google Scholar 

  • C.C. Daamen, L.P. Simmonds, J.S. Wallace, K.B. Laryea, M.V.K. Sivakumar: Use of microlysimeters to measure evaporation from sandy soils, Agric. For. Meteorol. 65, 159–173 (1993)

    Article  Google Scholar 

  • O. Uclés, L. Villagarcía, M.J. Moro, Y. Canton, F. Domingo: Role of dewfall in the water balance of a semiarid coastal steppe ecosystem, Hydrol. Proc. 28, 2271–2280 (2014)

    Article  Google Scholar 

  • R.W. Shawcroft, H.R. Gardner: Direct evaporation from soil under a row crop canopy, Agric. Meteorol. 28, 229–238 (1983)

    Article  Google Scholar 

  • V. Prasuhn, C. Humphrys, E. Spiess: Seventy-two lysimeters for measuring water flows and nitrate leaching under arable land. In: Proc. NAS Int. Workshop Appl. Lysimeter Syst. Water Nutr. Dyn., Wanju, South Korea (2016) pp. 124–146

    Google Scholar 

  • S. Oberholzer, V. Prasuhn, A. Hund: Crop water use under Swiss pedoclimatic conditions – evaluation of lysimeter data covering a seven-year period, Field Crops Res. 211, 48–65 (2017)

    Article  Google Scholar 

  • K.H.L. Han, Y. J., M.J. Seo, K.H. Jung, H.R. Cho: Current and future water management technology for upland crops using lysimeter. In: NAS Int. Lysimeter Workshop (2016)

    Google Scholar 

  • G.W. Gee, B.D. Newman, S. Green, R. Meissner, H. Rupp, Z. Zhang, J.M. Keller, W. Waugh, M. Van der Velde, J. Salazar: Passive wick fluxmeters: design considerations and field applications, Water Resour. Res. 45, W04420 (2009)

    Article  Google Scholar 

  • Umwelt-Geräte-Technik GmbH (UGT): Novel Lysimeter Techniques, https://www.ugt-online.de/fileadmin/Public/downloads/Produkte/Lysimetertechnik/Lysimeter2013_en_.pdf (2013), Accessed 27 July

  • O. Dietrich, M. Fahle, M. Seyfarth: Behavior of water balance components at sites with shallow groundwater tables: possibilities and limitations of their simulation using different ways to control weighable groundwater lysimeters, Agric. Water Manag. 163, 75–89 (2016)

    Article  Google Scholar 

  • B.G. Heusinkveld, S.M. Berkowicz, A.F.G. Jacobs, A.A.M. Holtslag, W.C.A.M. Hillen: An automated microlysimeter to study dew formation and evaporation in arid and semiarid regions, J. Hydrometeorol. 7, 825–832 (2006)

    Article  Google Scholar 

  • O. Ucles, L. Villagarcia, Y. Canton, F. Domingo: Microlysimeter station for long term non-rainfall water input and evaporation studies, Agric. For. Meteorol. 182, 13–20 (2013)

    Article  Google Scholar 

  • R. Meißner, H. Rupp, M. Seyfarth, H. Friedrich: Lysimeter for extracting a monolithic column of soil comprises blades that pivot inwards under the action of springs to cut a narrow slit in the soil, where upon rotation is reversed and the blades cut deeper into the soil, Patent No. DE102005062896b3 (2007)

    Google Scholar 

  • H. Friedrich, R. Meissner, M. Seyfarth: Apparatus and method for removing soil columns, Patent No. DE102011006374b4 (2011)

    Google Scholar 

  • R. Meisner, M. Seyfarth, H. Friedrich, H. Rupp, M. Beuter, K. Kesler: A device for taking soil monolithic columns, Patent No DE10048089c2 (2003)

    Google Scholar 

  • R. Nolz, G. Kammerer, P. Cepuder: Interpretation of lysimeter weighing data affected by wind, J. Plant Nutr. Soil Sci. 176, 200–208 (2013)

    Article  Google Scholar 

  • A. Peters, T. Nehls, H. Schonsky, G. Wessolek: Separating precipitation and evapotranspiration from noise – a new filter routine for high-resolution lysimeter data, Hydrol. Earth Syst. Sci. 18, 1189–1198 (2014)

    Article  Google Scholar 

  • W.M. Gary, R.E. Steven, H.G. Prasanna, A.H. Terry, S.C. Karen, R.L. Baumhardt: Post-processing techniques for reducing errors in weighing lysimeter evapotranspiration (ET) datasets, Transactions ASABE 57, 499–515 (2014)

    Google Scholar 

  • R.W. Malone, D.J. Stewardson, J.V. Bonta, T. Nelsen: Calibration and quality control of the Coshocton weighing lysimeters, Transactions ASAE 42, 701–712 (1999)

    Article  Google Scholar 

  • P.J. Vaughan, J.E. Ayars: Noise reduction methods for weighing lysimeters, J. Irrig. Drain. Eng. 135, 235–240 (2009)

    Article  Google Scholar 

  • M. Hannes, U. Wollschläger, F. Schrader, W. Durner, S. Gebler, T. Pütz, J. Fank, G. von Unold, H.J. Vogel: A comprehensive filtering scheme for high-resolution estimation of the water balance components from high-precision lysimeters, Hydrol. Earth Syst. Sci. 19, 3405–3418 (2015)

    Article  Google Scholar 

  • L. Rose, H. Coners, C. Leuschner: Effects of fertilization and cutting frequency on the water balance of a temperate grassland, Ecohydrology 5, 64–72 (2012)

    Article  Google Scholar 

  • W. Babel, T. Biermann, H. Coners, E. Falge, E. Seeber, J. Ingrisch, P.M. Schleuss, T. Gerken, J. Leonbacher, T. Leipold, S. Willinghofer, K. Schutzenmeister, O. Shibistova, L. Becker, S. Hafner, S. Spielvogel, X. Li, X. Xu, Y. Sun, L. Zhang, Y. Yang, Y. Ma, K. Wesche, H.F. Graf, C. Leuschner, G. Guggenberger, Y. Kuzyakov, G. Miehe, T. Foken: Pasture degradation modifies the water and carbon cycles of the Tibetan highlands, Biogeosciences 11, 6633–6656 (2014)

    Article  Google Scholar 

  • K. DiGiovanni, F. Montalto, S. Gaffin, C. Rosenzweig: Applicability of classical predictive equations for the estimation of evapotranspiration from urban green spaces: green roof results, J. Hydrol. Eng. 18, 99–107 (2012)

    Article  Google Scholar 

  • K. DiGiovanni, S. Gaffin, F. Montalto: Green roof hydrology: results from a small-scale lysimeter setup (Bronx, NY). In: Low Impact Development 2010: Redefining Water in the City (ASCE, Reston 2010) pp. 1328–1341

    Chapter  Google Scholar 

  • T. Pütz, R. Kiese, U. Wollschläger, J. Groh, H. Rupp, S. Zacharias, E. Priesack, H.H. Gerke, R. Gasche, O. Bens, E. Borg, C. Baessler, K. Kaiser, M. Herbrich, J.C. Munch, M. Sommer, H.J. Vogel, J. Vanderborght, H. Vereecken: TERENO-SOILCan: a lysimeter-network in Germany observing soil processes and plant diversity influenced by climate change, Environ. Earth Sci. 75, 1242 (2016)

    Article  Google Scholar 

  • J. Roy, C. Picon-Cochard, A. Augusti, M.L. Benot, L. Thiery, O. Darsonville, D. Landais, C. Piel, M. Defossez, S. Devidal, C. Escape, O. Ravel, N. Fromin, F. Volaire, A. Milcu, M. Bahn, J.F. Soussana: Elevated CO2 maintains grassland net carbon uptake under a future heat and drought extreme, Proc. Natl. Acad. Sci. USA 113, 6224–6229 (2016)

    Article  Google Scholar 

  • N. Eisenhauer, M. Türke: From climate chambers to biodiversity chambers, Front. Ecol. Environ. 16, 136–137 (2018)

    Article  Google Scholar 

  • M. Türke, R. Feldmann, B. Fürst, H. Hartmann, M. Herrmann, S. Klotz, G. Mathias, S. Meldau, M. Ottenbreit, S. Reth: Multitrophische Biodiversitätsmanipulation unter kontrollierten Umweltbedingungen im Idiv Ecotron. In: Proc. Lysimetertag. (2017) pp. 107–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Reth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Reth, S., Perez-Priego, O., Coners, H., Nolz, R. (2021). Lysimeter. In: Foken, T. (eds) Springer Handbook of Atmospheric Measurements. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-52171-4_58

Download citation

Publish with us

Policies and ethics