Skip to main content

Bivalve Mollusks as Hosts in the Fossil Record

  • Chapter
  • First Online:
The Evolution and Fossil Record of Parasitism

Abstract

Parasites are ubiquitous in modern ecosystems, occupy one of the most successful life modes, promote ecosystem stability, and, despite their typically diminutive size and lack of a mineralized skeleton, are commonly identified in the fossil record. Bivalve mollusks have occupied marine aquatic environments since the Cambrian, comprise an excellent fossil record, and often preserve traces of interactions with their parasites. Here we review parasite-host interactions of living bivalves and the record of parasitism of bivalves that reaches as far back as the Silurian. Escalation in parasite-host bivalve interactions seems to have occurred in both the middle Paleozoic and the late Mesozoic to Cenozoic, similar to trends documented in other antagonistic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott CL, Meyer GR (2014) Review of Mikrocytos microcell parasites at the dawn of a new age of scientific discovery. Dis Aquat Org 110:25–32

    Google Scholar 

  • Adkins WS, Winton WM (1919) Paleontological correlation of the Fredricksburg and Washita formations in North Texas. University of Texas Bulletin, p 1945

    Google Scholar 

  • Alagarswami K (1965) On pearl formation in the venerid bivalve, Gafrarium tumidum Roding. J Mar Biol Ass India 7:345–347

    Google Scholar 

  • Alagarswami K (1971) Pearl Culture. Seaf Export J February Issue:9–14

    Google Scholar 

  • Alroy J, Aberhan M, Bottjer DJ, Foote M, Fürsich FT, Harries PJ, Hendy AJW, Holland SM, Ivany LC, Kiessling W, Kosnik MA, Marshall CR, McGowan AJ, Miller AI, Olszewski TD, Patzkowsky ME, Peters SE, Villier L, Wagner PJ, Bonuso N, Borkow PS, Brenneis B, Clapham ME, Fall LM, Ferguson CA, Hanson VL, Krug AZ, Layou KM, Leckey EH, Nürnberg S, Powers CM, Sessa JA, Simpson C, Tomašových A, Visaggi CC (2008) Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100

    CAS  Google Scholar 

  • Amorosi A, Colalongo ML, Fiorini F, Fusco F, Pasini G, Vaiani SC, Sarti G (2004) Palaeogeographic and palaeoclimatic evolution of the Po plain from 150-ky core records. Glob Planet Chang 40:55–78

    Google Scholar 

  • Amorosi A, Bruno L, Campo B, Morelli A, Rossi V, Scarponi D, Hong W, Bohacs KM, Drexler TM (2017) Global sea-level control on local parasequence architecture from the Holocene record of the Po Plain, Italy. Mar Pet Geol 87:99–111

    Google Scholar 

  • Anderson WF (1946) Een fossiele parel in Nederland. Nederlandse Geologische Vereniging 1:1–8

    Google Scholar 

  • Augusta J, Remeš M (1947) Úvod do všeobecné paleontologie. Praha

    Google Scholar 

  • Bachmayer F, Binder H (1967) Fossile perlen aus dem Wiener Becken. Annalen des Naturhistorischen Museums in Wien 71:1–12

    Google Scholar 

  • Baliński A, Sun Y, DzikJ (2013) Traces of marine nematodes from 470 million years old Early Ordovician rocks in China. Nematology 15(5):567–574

    Google Scholar 

  • Baroli P (1974) Les microbiotopes occupés par les métacercaires de Gymnophallus fossarum P. Baroli, 1965 (Trematoda, Gymnophallidae) chez Tapes decussatus L. Bulletin du Muséum National d’Histoire Naturelle 3e série Zoologie. pp. 335–349

    Google Scholar 

  • Baumiller TK, Gahn FJ (2002) Fossil record of parasitism on marine invertebrates with special emphasis on the platyceratid-crinoid interaction. In: Kowalewski M, Kelley PH (eds) The fossil record of predation, The paleontological society papers, vol 8, pp 195–210

    Google Scholar 

  • Berry CT (1936) A Miocene pearl. Am Midl Nat 17:464–470

    Google Scholar 

  • Beuck L, López Correa M, Freiwald A (2008) Biogeographical distribution of Hyrrokkin (Rosalinidae, foraminifera) and its host-specific morphological and textural trace variability. In: Wisshak M, Tapanila L (eds) Current Developments in Bioerosion, Erlangen earth conference series. Spring-Verlag, Heidelberg

    Google Scholar 

  • Binder H (2002) Fossile Perlen aus dem Karpatium des Korneuburger Beckens (Österreich, Untermiozän). Beitr Paläontol Österr 27:259–271

    Google Scholar 

  • Binder H (2015) Fossil pearls and blisters in molluscan shells from the Neogene of Austria. Ann Naturhist Mus Wien, Serie A 117:63–93

    Google Scholar 

  • Blake JA, Evans JW (1973) Polydora and related genera as borers in mollusk shells and other calcareous substrates. The Veliger 15:235–249

    Google Scholar 

  • Bolman J (1941) The mystery of the pearl. E.J. Brill, Leiden, Holland

    Google Scholar 

  • Boucot AJ, Poinar GO Jr (2010) Fossil Behavior Compendium. CRC Press, Boca Raton, p 424

    Google Scholar 

  • Bower SM, McGladdery SE, Price IM (1994) Synopsis of infectious diseases and parasites of commercially exploited shellfish. Annu Rev Fish Dis 4:1–99

    Google Scholar 

  • Breton G, Wisshak M, Néraudeau D, Morel N (2017) Parasitic gastropod bioerosion trace fossil on Cenomanian oysters from Le Mans, France and its ichnologic and taphonomic context. Acta Palaeontol Pol 62:45–57

    Google Scholar 

  • Bromley RG (2004) A stratigraphy of marine bioerosion. Geol Soc Lond, Spec Publ 228(1):455–479

    Google Scholar 

  • Buatois, L.A., Wisshak, M., Wilson, M.A. & Mangáro, M.G. (2017) Categories of architectural designs in trace fossils: A measure of ichnodisparity. Earth-Science Reviews, 164:102–181

    Google Scholar 

  • Brown RW (1946) A Pleistocene pearl from southern Maryland. J Wash Acad Sci 36:75–76

    Google Scholar 

  • Cake EW Jr (1977) Larval cestode parasites of edible mollusks of the northeastern Gulf of Mexico. Gulf Res Reports 6:1–8

    Google Scholar 

  • Cameron B (1967) Fossilization of an ancient (Devonian) soft-bodied worm. Science 155:1246–1248

    CAS  Google Scholar 

  • Cameron B (1969) Paleozoic shell-boring annelids and their trace fossils. Am Zool 9:689–703

    Google Scholar 

  • Carrasco N, Green T, Itoh N (2015) Marteilia spp. parasites in bivalves: A revision of recent studies. Journal of Invertebrate Pathology 131:43–57.

    Google Scholar 

  • Carriker MR, Yochelson EL (1968) Recent gastropod boreholes and Ordovician cylindrical borings. Geol Surv Prof Pap 593-B

    Google Scholar 

  • Catuneanu O (2017) Sequence stratigraphy: guidelines for a standard methodology. Stratigr Time Scales 2:1–57

    Google Scholar 

  • Chin (2021) Gastrointestinal Parasites of Ancient Nonhuman Vertebrates: Evidence from Coprolites and Other Materials In: De Baets K, Huntley JW (eds) The Evolution and Fossil Record of Parasitism: Coevolution and Paleoparasitological Techniques. Topics In Geobiology 50

    Google Scholar 

  • Clarke JM (1908) The beginnings of dependent life. New York State Museum Bulletin 121:146–196

    Google Scholar 

  • Cremonte F, Ituarte C (2003) Pathologies elicited by the gymnophallid metacercariae of Bartolius pierrei in the clam Darina solenoids. J Mar Biol Ass UK 83:311–318

    Google Scholar 

  • Cribb TH, Bray RA, Littlewood DTJ (2001) The nature and evolution of the association among digeneans, molluscs and fishes. Int J Parasitol 31:997–1011

    CAS  Google Scholar 

  • Cribb TH, Bray RA, Olson PD, Littlewood DTJ (2003) Life cycle evolution in the Digenea: a new perspective from phylogeny. Adv Parasitol 54:197–254

    Google Scholar 

  • Dale B, Edwards M, Reid PC (2006) Climate change and harmful algal blooms. In: Granéli E, Turner JT (eds) Ecology of harmful algae, Ecological Studies, vol 189. Springer-Verlag, Berlin, Heidelberg, New York, p 413

    Google Scholar 

  • Daro MH, Polk P (1973) The autecology of Polydora ciliata along the Belgian coast. Neth J Sea Res 6:130–140

    Google Scholar 

  • De Baets K, Littlewood DTJ (2015) The importance of fossils in understanding the evolution of parasites and their vectors. In: De Baets K, Littlewood DTJ (eds) Fossil Parasites, Advances in parasitology, vol 90, pp 1–52

    Google Scholar 

  • De Baets K, Klug C, Korn D (2011) Devonian pearls and ammonoid-endoparasite co-evolution. Acta Palaeontol Pol 56:159–180

    Google Scholar 

  • De Baets K, Dentzien-Dias P, Upeniece I, Verneau O, Donoghue PCJ (2015) Constraining the deep origin of parasitic flatworms and host-interactions with fossil evidence. Adv Parasitol 90:93–135

    Google Scholar 

  • De Baets K, Dentzien-Dias P, Harrison GWM, Littlewood DTJ, Parry LA (2021a) Fossils constraints on the timescale of parasitic helminth evolution. In: De Baets K, Huntley JW (eds) The evolution and fossil record of parasitism: identification and macroevolution of parasites. Topics In Geobiology 49

    Google Scholar 

  • De Baets K, Hoffmann R, Mironenko A (2021b) Evolutionary history of cephalopod pathologies linked with parasitism In: De Baets K, Huntley JW (eds) The evolution and fossil record of parasitism: coevolution and paleoparasitological techniques. Topics in Geobiology 50.

    Google Scholar 

  • De Baets K, Huntley JW, Klompmaker AA, Schiffbauer JD, Muscente AD (2021c) The fossil record of parasitism: its extent and taphonomic constraints. In: De Baets K, Huntley JW (eds) The evolution and fossil record of parasitism: coevolution and paleoparasitological techniques. Topics in Geobiology 50. Springer

    Google Scholar 

  • De Baets K, Huntley JW, Scarponi D, Klompmaker AA, Skawina A (2021d). Phanerozoic parasitism and marine metazoan diversity: dilution versus amplification. Philos Trans R Soc Lond B Biol Sci 376(1837):20200366.

    Google Scholar 

  • Dentzien-Dias PC, Poinar G, De Figueiredo AEQ, Pacheco ACL, Horn BLD, Schultz CL (2013) Tapeworm eggs in a 270 million-year-old shark coprolite. PLoS One 8:e55007

    CAS  Google Scholar 

  • Diez ME, Radashevsky VI, Orensanz JM, Cremonte F (2011) Spionid polychaetes (Annelida: Spionidae) boring into shells of molluscs of commercial interest in northern Patagonia, Argentina. Ital J Zool 78:497–504

    Google Scholar 

  • Dix TL, Karlen DJ, Grabe SA, Goetting BK, Holden CM, Markham SE (2005) Spionid polychaetes as environmental indicators: an example from Tampa Bay, Florida. In: Bortone SA (ed) Estuarine Indicators. CRC Press, Boca Raton, FL

    Google Scholar 

  • Dobson A, Lafferty KD, Kuris AM, Hechinger RF, Jetz W (2008) Homage to Linnaeus: How many parasites? How many hosts? PNAS 105:11482–11489

    CAS  Google Scholar 

  • Dorn VP (1937) Fossile perlen in Ostreen des Dogger delta Schwabens nebst paläogeographischen Bemerkungen. Zentralblatt für Mineralogie, Geologie und Paläontologie Abteilung B, pp 295–304

    Google Scholar 

  • Dungan CF, Reece KS (2020) 5.2.1 Perkinsus spp. infections of marine molluscs (2020) A revision of Reece KS and Dungan CF (2006) Perkinsus sp. Infections of Marine Molluscs In AFS-FHS Blue Book: Suggested procedures for the detection and identification of certain finfish and shellfish pathogens, 2016 edition, Bethesda, Maryland.

    Google Scholar 

  • Elston RA (1990) Mollusc diseases: guide for the shellfish farmer. University of Washington Press, Seattle, Washington, USA

    Google Scholar 

  • Frenguilli J (1937) Sobre una perla fósil del Aonikense de Punta Norte en la Península Valdez (Chubut). Notas de Museo de La Plata 11:155–162

    Google Scholar 

  • Gašparič R, Fraaije RHB, van Bakel BWM, Jagt JWM, Skupien P (2015) Mesozoic-Cenozoic crustaceans preserved within echinoid tests and bivalve shells. Bull Geosci 90:601–611

    Google Scholar 

  • Geyer G, Hautmann M, Hagdorn H, Ockert W, Streng M (2005) Well-preserved mollusks from the Lower Keuper (Ladinian) of Hohenlohe (Southwest Germany). Paläontol Z 79:429–460

    Google Scholar 

  • Gordon DP & Wear RGA (1999) new ctenostome bryozoan ectosymbiotic with terminal‐moult paddle crabs (Portunidae) in New Zealand. New Zealand Journal of Zoology, 26:373–380, https://doi.org/10.1080/03014223.1999.9518200

  • Granéli E, Turner JT (2006) Ecology of harmful algae. In: Ecological Studies, vol 189. Springer-Verlag, Berlin, Heidelberg, New York, p 413

    Google Scholar 

  • Grizel H, Tigé G (1979) Observations sur le cycle de Marteilia refringens. Haliotis 8:327–330.

    Google Scholar 

  • Hancock LG, Walker SE, Pérez-Huerta A, Bowser SS (2015) Population dynamics and parasite load of a foraminifer on its Antarctic scallop host with their carbonate biomass contributions. PLoS One 10:e0132534

    Google Scholar 

  • Hauser I, Oschmann W, Gischler E (2008) Taphonomic signatures on modern Caribbean bivalve shells as indicators of environmental conditions (Belize, Central America). PALAIOS 23:586–600

    Google Scholar 

  • Hayami I, Kanie Y (1980) Mode of life of a giant capulid gastropod from the Upper Cretaceous of Saghalien and Japan. Palaeontology 23:689–698

    Google Scholar 

  • Herdman WA, Hornell J (1906) Report on the pearl oyster fisheries of the Gulf of Mannar. Pearl production. In: Herdman WA (ed) Report CO the government of Ceylon on the pearl oyster fisheries of the Gulf of Mannar, Part, vol 5. The Royal Society, London, pp 1–42

    Google Scholar 

  • Howell BF (1962) Worms, p. W144-W177. Treatise on invertebrate paleontology. Geological Society of America and University of Kansas Press, Lawrence, Pt. W. Miscellanea, p 269

    Google Scholar 

  • Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one that is rich in parasites? Trends Ecol Evol 21:381–385

    Google Scholar 

  • Huntley JW (2007) Towards establishing a modern baseline for paleopathology: trace producing parasites in a bivalve host. J Shellfish Res 26:253–259

    Google Scholar 

  • Huntley JW, De Baets K (2015) Trace fossil evidence of trematode-bivalve parasite-host interactions in deep time. In: De Baets K, Littlewood DTJ (eds) Fossil Parasites, Advances in parasitology, vol 90, pp 201–232

    Google Scholar 

  • Huntley JW, Kowalewski M (2007) Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. PNAS 104:15006–15010

    CAS  Google Scholar 

  • Huntley JW, Scarponi D (2012) Evolutionary and ecological implications of trematode parasitism of modern and fossil northern Adriatic bivalves. Paleobiology 38:40–51

    Google Scholar 

  • Huntley JW, Scarponi D (2015) Geographic variation of parasitic and predatory traces on mollusks in the northern Adriatic Sea, Italy: implications for the stratigraphic paleobiology of biotic interactions. Paleobiology 41:134–153

    Google Scholar 

  • Huntley JW, Fürsich FT, Alberti M, Hethke M, Liu C (2014) A complete Holocene record of trematode-bivalve infection and implications for the response of parasitism to climate change. PNAS 111:18150–18155

    CAS  Google Scholar 

  • Ituarte CF, Cremonte F, Deferrari G (2001) Mantle-shell complex reactions elicited by digenean metacercariae in Gaimardia trapesina (Bivalvia: Gaimardiidae) from the southwestern Atlantic Ocean and Magellan Strait. Dis Aquat Org 48:47–56

    CAS  Google Scholar 

  • Ituarte C, Cremonte F, Zelaya DG (2005) Parasite-mediated shell alterations in recent and Holocene sub-Antarctic bivalves: the parasite as modeler of host reaction. Invertebr Biol 124:220–229

    Google Scholar 

  • Ituarte C, Cremonte F, Scarano A (2008) Tissue reaction of Tagelus plebeius (Bivalvia: Psammobiidae) against larval digeneans in mixohaline habitats connected to the South-Western Atlantic. J Mar Biol Assoc U K. https://doi.org/10.1017/S0025315408001793

  • Jackson JW (1909) On some fossil pearl-growths. Proc. Malac Soc 8:318–320

    Google Scholar 

  • Kaim A (2004) The evolution of conch ontogeny in Mesozoic open sea gastropods. Palaeontol Pol 62:1–182

    Google Scholar 

  • Kauffman EG (1990) Giant fossil inoceramid bivalve pearls. In: Boucot AJ (ed) Evolutionary Paleobiology of behavior and coevolution, pp 66–67

    Google Scholar 

  • Kennedy WJ, Walaszczyk I, Klinger HC (2008) Cladoceramus (Bivalvia, Inoceramidae) – ammonite associations from the Santonian of KwaZulu, South Africa. Cretac Res 29:267–293

    Google Scholar 

  • Kent RML (1979) The influence of heavy infestations of Polydora ciliata on the flesh content of Mytilus edulis. J Mar Biol Ass UK 59:289–297

    Google Scholar 

  • Kent RML (1981) The effect of Polydora ciliata on the shell strength of Mytilus edulis. J Cons Int Explor Mer 39:252–255

    Google Scholar 

  • Kinne O (1983) Diseases of marine animals: volume II introduction. Bivalvia to Scaphopoda, Biologische Anstalt Helgoland

    Google Scholar 

  • Klinghardt F (1922) Vergleichende Anatomie der Rudisten, Chamen, Ostreen. In: Archiv Biontologie, vol V. Teil II, Greifwald

    Google Scholar 

  • Klompmaker AA, Boxshall GA (2015) Fossil crustaceans as parasites and hosts. Adv Parasitol 90:233–289

    Google Scholar 

  • Klompmaker AA, Kowalewski M, Huntley JW, Finnegan S (2017) Increase in predator-prey size ratios throughout the Phanerozoic history of marine ecosystems. Science 356:1178–1180

    CAS  Google Scholar 

  • Klug C, Kröger B, Korn D, Rücklin M, Schemm-Gregory M, De Baets K, Mapes RH (2008) Ecological change during the early Emsian (Devonian) in the Tafilalt (Morocco), the origin of the ammonoidea, and the first African pyrgocystid edrioasteroids, machaerids and phyllocarids. Palaeontographica Abt A 283:83–176

    Google Scholar 

  • Knaust D (2010) Remarkably preserved benthic organisms and their traces from a Middle Triassic (Muschelkalk) mud flat. Lethaia 43:344–356

    Google Scholar 

  • Knaust D, Desrochers A (2019) Exceptionally preserved soft-bodied assemblage in Ordovician carbonates of Anticosti Island, eastern Canada. Gondwana Res 71:117–128

    Google Scholar 

  • Kolesnikov JM (1973) Iskopaemy presnovody zhemchug. Dokl Akad Nauk SSSR 211:1195–1197

    Google Scholar 

  • Kříž J (1979) Silurian Cardiolidae (Bivalvia). Sborník Geologických Věd Palaeontologie 22:1–160

    Google Scholar 

  • Kümel F (1935) Fossile perlen im niederösterreichishen jungtertiär. Verhandlungen der Geologischen Bundesanstalt:110–112

    Google Scholar 

  • Kuris AM, Hechinger RF, Shaw JC, Whitney KL, Aguirre-Macedo L, Boch CA, Dobson AP, Dunham EJ, Fredensborg BL, Huspeni TC, Lorda J, Mababa L, Mancini FT, Mora AB, Pickering M, Talhouk NL, Torchin ME, Lafferty KD (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454:515–518

    CAS  Google Scholar 

  • Kutassy A (1937) Die Älteste fossile perle und verletzunsspuren an einem Triadischen Megalodus. Math Naturwiss Anz Ung Akad Wiss 55:1005–1023

    Google Scholar 

  • Lafferty KD, Dobson AP, Kuris AM (2006) Parasites dominate food web links. PNAS 103:11211–11216

    CAS  Google Scholar 

  • Lauckner G (1983) Diseases of Mollusca: Bivalvia. In: Kinne O (ed.) Diseases of Marine Animals, Introduction, Bivalvia to Scaphopoda, vol II. Biologische Anstalt Helgoland, Hamburg

    Google Scholar 

  • Lefèvre T (1873) Une anomalie observée chez Pecten corneus, Sow. Annales de la Société Malacologique de Belgique, 8:73–76, pl. 4

    Google Scholar 

  • Lei F, Poulin R (2011) Effects of salinity on multiplication and transmission of an intertidal trematode parasite. Mar Biol 158:995–1003

    Google Scholar 

  • Leidy J (1889) The boring-sponge, Cliona. Proc Acad Natl Sci Phila 41:70–75

    Google Scholar 

  • Li S-P, Yao P-Y, Li J-F, Ferguson DK, Min L-R, Chi Z-Q, Wang Y, Yao J-X, Sha J-G (2016) Freshwater fossil pearls from the Nihewan Basin, early early Pleistocene. PLoS One 11(10):e0164083. https://doi.org/10.1371/journal.pone.0164083

    Article  CAS  Google Scholar 

  • Liljedahl L (1985) Ecological aspects of a silicified bivalve fauna from the Silurian of Gotland. Lethaia 18:53–66

    Google Scholar 

  • Lim SSL, Green RH (1991) The relationship between parasite load, crawling behaviour, and growth rate of Macoma balthica (L.) (Mollusca, Pelecypoda) from Hudson Bay, Canada. Can J Zool 69:2202–2208

    Google Scholar 

  • Littlewood DTJ (2006) The evolution of parasitism in flatworms. In: Maule AG, Marks NJ (eds) Parasitic flatworms: molecular biology, biochemistry, immunology and physiology. CABI, Wallingford, UK

    Google Scholar 

  • Mackin JG (1951) Histopathology of infection of Crassostrea virginica (Gmelin) by Dermocystidium marinum Mackin, Owen, and Collier. Bulletin of Marine Science of the Gulf and Caribbean 1:72–87.

    Google Scholar 

  • Marwick J (1922) Fossil pearls in New Zealand. New Zeal J Sci Technol 5:202

    Google Scholar 

  • Mouritsen KN, Poulin R (2002) Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology 124:S101–S117

    Google Scholar 

  • Mouritsen KN, Poulin R (2005) Parasites boosts biodiversity and changes animal community structure by trait-mediated indirect effects. Oikos 108:344–350

    Google Scholar 

  • Muscente AD, Allmon WD and Xiao S (2015) The hydroid fossil record and analytical techniques for assessing the affinities of putative hydrozoans and possible hemichordates. Palaeontology, 59:1–17

    Google Scholar 

  • Nawrot R, Scarponi D, Azzarone M, Dexter TA, Kusnerik KM, Wittmer JM, Amorosi A, Kowalewski M (2018) Proc R Soc B 285:20181191. https://doi.org/10.1098/rspb.2018.1191

    Article  Google Scholar 

  • Newton RB (1908) Fossil-pearl growths. Proc Malac Soc 8:128–139

    Google Scholar 

  • Nützel A (2021) Gastropods as parasites and carnivorous grazers – a major guild in marine ecosystems. In: De Baets K, Huntley JW (eds) The evolution and fossil record of parasitism – identification and macroevolution of parasites. Topics in geobiology. Springer, Berlin

    Google Scholar 

  • Nützel A (2021) Gastropods as Parasites and Carnivorous Grazers: A Major Guild in Marine Ecosystems. In: De Baets K, Huntley JW (eds) The evolution and fossil record of Parasitism: Identification and Macroevolution of parasites. Topics in Geobiology 49

    Google Scholar 

  • Ozanne CR, Harries PJ (2002) Role of predation and parasitism in the extinction of the inoceramid bivalves: an evaluation. Lethaia 35:1–19

    Google Scholar 

  • Paillard C, Maes P (1994) Brown ring disease in the Manila clam Ruditapes philippinarum: establishment of a classification system. Dis Aquat Org 19:137–146

    Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75

    Google Scholar 

  • Parkhaev PY (2008) The Early Cambrian radiation of mollusca. In: Ponder WF, Lindberg DR (eds) Phylogeny and evolution of the Mollusca. University of California Press, California, pp 33–70

    Google Scholar 

  • Palmer TJ & Wilson MA (1988) Parasitism of Ordovician bryozoans and the origin of pseudoborings. Palaeontology, 31:939–949

    Google Scholar 

  • Parras A, Casadío S (2006) They oyster Crassostrea? hatcheri (Ortmann, 1897), a physical ecosystem engineer from the Upper Oligocene – Lower Miocene of Patagonia, southern Argentina. PALAIOS 21:168–186

    Google Scholar 

  • Patzkowsky ME, Holland SM (2012) Stratigraphic paleobiology: understanding the distribution of fossil taxa in time and space. The University of Chicago Press, Chicago, p 259

    Google Scholar 

  • Perkins FO (1976) Dermocystidium marinum infection in oysters. Marine Fisheries Review 38:19–21

    Google Scholar 

  • Peters SE (2005) Geologic constraints on the macroevolutionary history of marine animals. PNAS 102:12326–12331

    CAS  Google Scholar 

  • Poinar G Jr (2003) A rhabdocoel turbellarian (Platyhelminthes, Typhloplanoida) in Baltic amber with a review of fossil and sub-fossil platyhelminths. Invertebr Biol 122:308–312

    Google Scholar 

  • Poinar G Jr (2015) The geological record of parasitic nematode evolution. In: De Baets K, Littlewood DTJ (eds) Fossil Parasites, Advances in parasitology, vol 90, pp 53–92

    Google Scholar 

  • Radwańska U, Radwański A (2005) Myzostomid and copepod infestation of Jurassic echinoderms: a general approach, some new occurrences, and/or re-interpretation of previous reports. Acta Geol Pol 55:109–130

    Google Scholar 

  • Riascos JM, Guzmán N, Laudien J, Oliva ME, Heilmayer O, Ortlieb L (2009) Long-term parasitic association between the boring polychaete Polydora bioccipitalis and Mesodesma donacium. Dis Aquat Org 85:209–215

    Google Scholar 

  • Robertson D (1883) On the post-tertiary beds of Garvel Park, Greenock. Trans Geol Soc Glasgow 7:1–37

    Google Scholar 

  • Robin N, Velasquez M, Boura A, Garcia G, Jauvion C, Boiteau J-M, Gomez B, Daviero-Gomez V, Valentin X (2018) The oldest shipworms (Bivalvia, Pholadoidea, Teredinidae) preserved with soft parts (western France): insights into the fossil record and evolution of the pholadoidea. Palaeontology 61:905–918

    Google Scholar 

  • Rodrigues SC (2007) Biotic interactions recorded in shells of recent rhynchonelliform brachiopods from San Juan Island, USA. J Shellfish Res 26:241–252

    Google Scholar 

  • Rodrigues SC, Simões MG, Kowalewski M, Petti MAV, Nonato EF, Martinez S, del Rio CJ (2008) Biotic interaction between spionid polychaetes and bouchardiid brachiopods: Paleoecological, taphonomic, and evolutionary implications. Acta Palaeontol Pol 53:657–668

    Google Scholar 

  • Rogers RR, Curry Rogers KA, Bagley BC, Goodin JJ, Hartman JH, Thole JT, Zatoń M (2018) Pushing the record of trematode parasitism of bivalves upstream and back to the cretaceous. Geology 46:431–434. https://doi.org/10.1130/G40035.1

    Article  Google Scholar 

  • Ruiz GM (1991) Consequences of parasitism to marine invertebrates: host evolution? Am Zool 31:831–839

    Google Scholar 

  • Ruiz GM, Lindberg DR (1989) A fossil record for trematodes: extent and potential uses. Lethaia 22:431–438

    Google Scholar 

  • Sava LA (2007) The molluscan and brachiopod fauna of the late cretaceous Pierre shale (Baculites compressus/Baculites cuneatus biozones) near Kremmling, Colorado. Unpublished MS thesis. University of South Florida, Florida

    Google Scholar 

  • Savazzi E (1995) Parasite-induced teratologies in the Pliocene bivalve Isognomon maxillatus. Palaeogeogr Palaeoclimatol Palaeoecol 116:131–139

    Google Scholar 

  • Scarponi D, Kaufman D, Amorosi A, Kowalewski M (2013) Sequence stratigraphy and the resolution of the fossil record. Geology 41:239–242

    Google Scholar 

  • Scarponi D, Azzarone M, Kowalewski M, Huntley JW (2017) Surges in trematode prevalence linked to centennial-scale flooding events in the Adriatic. Sci Rep 7:5732. https://doi.org/10.1038/s41598-017-05979-6

    Article  CAS  Google Scholar 

  • Schander C, Halanych KM, Dahlgren T, Sundberg P (2003) Test of the monophyly of Odostomiinae and Turbonilliinae (Gastropoda, Heterobranchia, Pyramidellidae) based on 16S mtDNA sequences. Zool Scr 32:243–254

    Google Scholar 

  • Schloz W von (1972) Zur Bildungsgeschichte der Oolithenbank (Hettangium) in Baden-Württemberg. Arbeitsgemeinschaft lnstitut für Geologie und Paläontologie von Universität Stuttgart NF 67:101–212

    Google Scholar 

  • Schweitzer CE, Feldmann RM (2001) Differentiation of the fossil Hexapodidae Miers, 1886 (Decapoda: Brachyura) from similar forms. J. Paleont. 75:330–345

    Google Scholar 

  • Schweitzer CE, Feldmann RM, Garassino A, Karasawa H, Schweigert G (2010) Systematic list of fossil decapod crustacean species. Crustaceana Monographs 10.

    Google Scholar 

  • Scrutton CT (1975) Hydroid-serpulid symbiosis in the Mesozoic and Tertiary. Palaeontology, 18:255–274

    Google Scholar 

  • Seilacher A (1968) Swimming habits of belemnites—recorded by boring barnacles. Palaeogeogr Palaeoclimatol Palaeoecol 4:279–285

    Google Scholar 

  • Seitz O (1967) Die Inoceramen des Santon und Unter-Campan von Nordwestdeutschland. III. Teil. Taxonomie und Stratigraphie der Untergattungen Endocostea, Haenleinia, Platyceramus, Cladoceramus, Selenoceramus und Cordiceramus mit besonderer Berücksichtigung des Parasitismus bei diesen Untergattungen. Beihefte zum Geologischen Jahrbuch 75:1–171

    Google Scholar 

  • Sepkoski JJ (2002) A compendium of fossil marine animal genera. Bulletins of American Paleontology 363:1–560

    Google Scholar 

  • Slattery JS (2011) Late Cretaceous faunal dynamics in the Western interior seaway: the record from the red bird section, eastern Wyoming. Unpublished MS thesis. University of South Florida, Florida

    Google Scholar 

  • Stanley SM (2008) Predation defeats competition on the seafloor. Paleobiology 34:1–21

    Google Scholar 

  • Studer A, Poulin R (2012) Effects of salinity on an intertidal host-parasite system: is the parasite more sensitive than its host? J Exp Mar Biol Ecol 412:110–116

    Google Scholar 

  • Taghon GL, Nowell ARM, Jumars PA (1980) Induction of suspension feeding in spionid polychaetes by high particulate fluxes. Science 210:562–564

    CAS  Google Scholar 

  • Taskinen J (1998) Influence of trematode parasitism on the growth of a bivalve host in the field. Int J Parasitol 28:599–602

    CAS  Google Scholar 

  • Tasnádi-Kubacska A (1962) Paläopathologie: Pathologie der vorzeitlichen tiere. Gustav Fischer Verlag, Jena, Germany

    Google Scholar 

  • Taylor PD (1990) Preservation of soft-bodied and other organisms by bioimmuration - a review. Palaeontology, 33:1–17

    Google Scholar 

  • Taylor J, Strack E (2008) Pearl production. In: Southgate PC, Lucas JS (eds) The pearl oyster. Elsevier, Amsterdam, pp 273–302

    Google Scholar 

  • Teichert C (1945) Parasitic worms in Permian brachiopod and pelecypod shells in Western Australia. Am J Sci 243:197–209

    Google Scholar 

  • Thayer CW (1974) Substrate specificity of Devonian epizoa. J Paleontol 48:881–894

    Google Scholar 

  • Thieltges DW (2006) Effect of infection by the metacercarial trematode Renicola roscovita on growth in intertidal blue mussel Mytilus edulis. Mar Ecol Prog Ser 319:129–134

    Google Scholar 

  • Thorne (1973) Records of fossil pearls. Can Rockhound 17:20–26

    Google Scholar 

  • Todd JA (1993) The bivalve shell as a preservation trap, as illustrated by the Late Jurassic gryphaeid, Deltoideum delta (Smith). Scripta Geologica, Special Issue 2:417–433

    Google Scholar 

  • Todd JA, Harper EM (2011) Stereotypic boring behaviour inferred from the earliest known octopod feeding traces: early Eocene, southern England. Lethaia 44:214–222

    Google Scholar 

  • Todd JA (2020) Chapter 19. Soft-bodied benthos preserved by bioimmuration, bioclaustration and epibiont shadowing. Pp. 349-357 In Martill, D. & Etches, S.(eds), Fossils from the Kimmeridge Clay. Palaeontological Association Field Guides to Fossils. Vol. 1

    Google Scholar 

  • Toots H (1964) Reinterpretation of Endocostea Whitfield. J Paleontol 38:85–86

    Google Scholar 

  • Toula F (1912) Ein neuer Inoceramenfundort im Kahlengebirge. Verhandlungen der k k geologischen Reichsanstalt 8:219–224

    Google Scholar 

  • Vermeij GJ (1987) Evolution and escalation: an ecological history of life. Princeton University Press, Princeton

    Google Scholar 

  • Voigt E (1965) Über parasitische Polychaeten in Kreide-Austern sowie einige andere in Muschelschalen bohrende Würmer. Paläont Z 39:193–211

    Google Scholar 

  • Vokes EH (1955) Cenozoic pearls from the Atlantic coastal plain. J Wash Acad Sci 45:260–262

    Google Scholar 

  • Walaszczyk I, Odin GS, D’Hondt AV (2002) Inoceramids from the upper Campanian and lower Maastrichtian of the Tercis section (SW France), the global Stratotype section and point for the Campanian – Maastrichtian boundary; taxonomy, biostratigraphy and correlation potential. Acta Geol Pol 52:269–305

    Google Scholar 

  • Walker SE (1992) Criteria for recognizing marine hermit crabs in the fossil record using gastropod shells. Journal of Paleontology, 66:535–558

    Google Scholar 

  • Walker SE, Hancock LG, Bowser SS (2017) Diversity, biogeography, body size, and fossil record of parasitic and suspected parasitic foraminifera: a review. J Foraminifer Res 47:34–55

    Google Scholar 

  • Walther K (1906) Zwölf tafeln der verbreitetsten fossilien aus dem Buntsandstein und Muschelkalk der Umgebung von Jena. Verlag von Gustav Fischer, Jena, Germany

    Google Scholar 

  • Warburton FE (1958) The manner in which the sponge Cliona bores in calcareous objects. Can J Zool 36:555–562

    Google Scholar 

  • Wisshak M, Tapanila L (2007) Current developments in bioerosion. Springer-Verlag, Heidelberg, p 499

    Google Scholar 

  • Wittmer JM, Dexter TA, Scarponi D, Amorosi A, Kowalewski M (2014) Quantitative bathymetric models for Late Quaternary transgressive-regressive cycles of the Po Plain, Italy. J Geol 122:649–670

    Google Scholar 

  • Wood CL, Byers JE, Cottingham KL, Altman I, Donahue MJ, Blakeslee AMH (2007) Parasites alter community structure. PNAS 104:9335–9339

    CAS  Google Scholar 

  • Zangerl R, Case GR (1976) Cobelodus aculeatus (cope), an anacanthous shark from Pennsylvanian black shales of North America. Palaeontogr Abt A 154:107–157

    Google Scholar 

  • Zilch A (1934) Eine perle aus der meereszeit der wetterau. Natur und volk 64:93–95

    Google Scholar 

  • Zilch A (1936) Unsre kenntnis von fossilien perlen. Archiv für Molluskenkunde 68:238–252

    Google Scholar 

  • Zottoli RA, Carriker MR (1974) Burrow morphology, tube formation, and microarchitecture of shell dissolution by the spionid polychaetes Polydora websteri. Mar Biol 27:307–316

    Google Scholar 

  • Zullo VA, Chivers DD (1969) Pleistocene symbiosis: Pinnotherid crabs in pelecypods from Cape Blanco, Oregon. The Veliger 12:72–73

    Google Scholar 

Download references

Acknowledgements

JWH gratefully acknowledges the support of the National Science Foundation (EAR CAREER-1650745), the Alexander von Humboldt Stiftung, the Institute of Advanced Studies at the University of Bologna, the University of Missouri Research Council, Faculty Research Leave from the University of Missouri, and the Corey and Heather Long Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Warren Huntley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huntley, J.W. et al. (2021). Bivalve Mollusks as Hosts in the Fossil Record. In: De Baets, K., Huntley, J.W. (eds) The Evolution and Fossil Record of Parasitism. Topics in Geobiology, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-030-52233-9_8

Download citation

Publish with us

Policies and ethics