Skip to main content

Efficient Anonymous Multi-group Broadcast Encryption

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12146))

Included in the following conference series:

Abstract

Nowadays, broadcasters must supply diverse content to multiple groups without delay in platforms such as social media and streaming sites. Unfortunately, conventional broadcast encryption schemes are deemed unsuitable for such platforms since they generate an independent ciphertext for each piece of contents and hence the number of headers generated during encryption increases linearly with the size of contents. The increased number of headers will result in wasting a limited network bandwidth, which makes the application impractical. To resolve this issue, multi-channel broadcast encryption was proposed in the literature, which transmits a single header for multiple channels to several groups of viewers at a time. However, the multi-channel broadcast encryption is also impractical because it requires heavy computations, communications, and storage overheads. Moreover, it should also address additional issues, such as receiver privacy (anonymity), static user-set size, and limited encryption. In this work, we aim to tackle this problem by proposing an efficient broadcast encryption scheme, called “anonymous multi-group broadcast encryption”. This primitive achieves faster encryption and decryption, provides smaller sized public parameters, private keys, and ciphertexts. Hence, it solves the aforementioned issues of the multi-channel broadcast encryption. Specifically, the proposed scheme provides provable anonymity and confidentiality based on the External Diffie-Hellman (XDH) and \(\mathcal{P}\)-Decisional Bilinear Diffie-Hellman (DBDH) assumptions, respectively, in the standard model.

This work is partially supported by the Australian Research Council Discovery Project DP180100665.

I. Kim was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A3A01076090).

S. O. Hwang was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2020R1A2B5B01002145).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\langle \textit{\textbf{a}}, \textit{\textbf{b}} \rangle \) is the inner product for two vectors \(\textit{\textbf{a}}\) and \(\textit{\textbf{b}}\).

  2. 2.

    This condition prevents the attacker from directly distinguishing which challenge group vector \(\textit{\textbf{v}}\) the challenge ciphertext was made of by the private key obtained from the simulator.

References

  1. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

    Chapter  Google Scholar 

  2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Better security for functional encryption for inner product evaluations. IACR Cryptol. ePrint Arch. 2016, 11 (2016)

    Google Scholar 

  3. Acharya, K., Dutta, R.: Constructions of secure multi-channel broadcast encryption schemes in public key framework. In: Camenisch, J., Papadimitratos, P. (eds.) CANS 2018. LNCS, vol. 11124, pp. 495–515. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00434-7_25

    Chapter  Google Scholar 

  4. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_6

    Chapter  MATH  Google Scholar 

  5. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007 IEEE Symposium on Security and Privacy, SP’07, pp. 321–334. IEEE (2007)

    Google Scholar 

  6. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_20

    Chapter  Google Scholar 

  7. Blömer, J., Liske, G.: Construction of fully CCA-secure predicate encryptions from pair encoding schemes. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 431–447. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8_25

    Chapter  Google Scholar 

  8. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_16

    Chapter  Google Scholar 

  9. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16

    Chapter  Google Scholar 

  10. Canard, S., Phan, D.H., Pointcheval, D., Trinh, V.C.: A new technique for compacting ciphertext in multi-channel broadcast encryption and attribute-based encryption. Theor. Comput. Sci. 723, 51–72 (2018)

    Article  MathSciNet  Google Scholar 

  11. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_7

    Chapter  Google Scholar 

  12. Delerablée, C.: Identity-based broadcast encryption with constant size ciphertexts and private keys. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 200–215. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_12

    Chapter  Google Scholar 

  13. Ducas, L.: Anonymity from asymmetry: new constructions for anonymous HIBE. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 148–164. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5_11

    Chapter  Google Scholar 

  14. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_40

    Chapter  Google Scholar 

  15. Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems (with short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_10

    Chapter  MATH  Google Scholar 

  16. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 89–98. ACM (2006)

    Google Scholar 

  17. Kim, I.T., Hwang, S.O., Kim, S.: An efficient anonymous identity-based broadcast encryption for large-scale wireless sensor networks. Ad Hoc Sens. Wireless Netw. 14(1), 27–39 (2012)

    Google Scholar 

  18. Kim, I., Hwang, S.O., Park, J.H., Park, C.: An efficient predicate encryption with constant pairing computations and minimum costs. IEEE Trans. Comput. 65(10), 2947–2958 (2016)

    Article  MathSciNet  Google Scholar 

  19. Kim, I., Hwang, S.: An optimal identity-based broadcast encryption scheme for wireless sensor networks. IEICE Trans. Commun. 96(3), 891–895 (2013)

    Article  Google Scholar 

  20. Kim, S., Kim, J., Seo, J.H.: A new approach to practical function-private inner product encryption. Theor. Comput. Sci. 783, 22–40 (2019)

    Article  MathSciNet  Google Scholar 

  21. Lee, K., Lee, D.H.: Two-input functional encryption for inner products from bilinear maps. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101(6), 915–928 (2018)

    Article  Google Scholar 

  22. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4

    Chapter  Google Scholar 

  23. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_3

    Chapter  Google Scholar 

  24. Park, J.H., Lee, D.H.: Fully collusion-resistant traitor tracing scheme with shorter ciphertexts. Des. Codes Crypt. 60(3), 255–276 (2011)

    Article  MathSciNet  Google Scholar 

  25. Phan, D.H., Pointcheval, D., Trinh, V.C.: Multi-channel broadcast encryption. In: Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications Security, pp. 277–286. ACM (2013)

    Google Scholar 

  26. Ramanna, S.C., Sarkar, P.: Efficient adaptively secure IBBE from the SXDH assumption. IEEE Trans. Inf. Theor. 62(10), 5709–5726 (2016)

    Article  MathSciNet  Google Scholar 

  27. Ren, Y., Gu, D.: Fully CCA2 secure identity based broadcast encryption without random oracles. Inf. Process. Lett. 109(11), 527–533 (2009)

    Article  MathSciNet  Google Scholar 

  28. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  29. Sun, J., Bao, Y., Nie, X., Xiong, H.: Attribute-hiding predicate encryption with equality test in cloud computing. IEEE Access 6, 31621–31629 (2018)

    Article  Google Scholar 

  30. Tomida, J., Abe, M., Okamoto, T.: Adaptively secure functional encryption for inner-product values. In: Symposium on Cryptography and Information Security (2016)

    Google Scholar 

  31. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_36

    Chapter  Google Scholar 

  32. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_4

    Chapter  Google Scholar 

  33. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 206–233. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_8

    Chapter  Google Scholar 

  34. Xiong, H., Zhang, H., Sun, J.: Attribute-based privacy-preserving data sharing for dynamic groups in cloud computing. IEEE Syst. J. 13(3), 2739–2750 (2019)

    Article  Google Scholar 

  35. Yamada, K., Attrapadung, N., Emura, K., Hanaoka, G., Tanaka, K.: Generic constructions for fully secure revocable attribute-based encryption. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 101(9), 1456–1472 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank anonymous reviewers in ACNS 2020 for their useful comments and suggestions which helped us improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Intae Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, I., Hwang, S.O., Susilo, W., Baek, J., Kim, J. (2020). Efficient Anonymous Multi-group Broadcast Encryption. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds) Applied Cryptography and Network Security. ACNS 2020. Lecture Notes in Computer Science(), vol 12146. Springer, Cham. https://doi.org/10.1007/978-3-030-57808-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57808-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57807-7

  • Online ISBN: 978-3-030-57808-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics