Skip to main content

Influence of Environmental Variables on the Abundance and Distribution of the Deep-Water Shrimps Nematocarcinus faxoni Burukovsky, 2001 and N. agassizii Faxon, 1893 (Crustacea, Decapoda, Nematocarcinidae) off Western Mexico

  • Chapter
  • First Online:
Deep-Sea Pycnogonids and Crustaceans of the Americas

Abstract

Two species of the deep-water caridean shrimp genus Nematocarcinus were collected off western Mexico: N. agassizii (6 samples) and N. faxoni (56 samples). The specimens were collected using benthic gear (i.e., benthic sledge and Agassiz dredge) during a series of 12 cruises (228 samples) in the Mexican Pacific and inside the Gulf of California. At each locality, near-bottom temperature, salinity, and dissolved oxygen were measured, and the organic carbon content in the sediments was analyzed. Nematocarcinus faxoni was distributed along all the Mexican Pacific coasts, and N. agassizii was only collected off the western Baja California Peninsula. The density of the two species peaked at different depths, N. agassizii at 701–1000 m and N. faxoni at 1001–1300 m, bathymetric changes in density being overall significant for both species. The females of both species were significantly larger than males, and ovigerous females were larger than the rest of the females. Ovigerous females of N. faxoni measured 17.96–28.33 mm (CL) and those of N. agassizii measured 23.32–31.90 mm. The size of N. faxoni changed with depth, smaller organisms were not collected deeper than 1600 m, and greater proportions of large organisms were found at greater depths. Overall sex ratio was M/F = 1:2, except at 1301–1600 (M/F = 1:1). High densities of N. faxoni were recorded at temperature ranging 3.5–6.5 °C, DO ranging 0–0.5 ml/l, and salinity ranging 34.5–34.6 and 34.7–34.8, and in sediments with 1–2% organic carbon content. Specimens of N. agassizii were mainly found at temperature between 5 and 6 °C and aggregated mostly at DO of 0–0.5 ml/l. No particular trend was found regarding salinity and organic carbon in the sediments. Generalized additive models revealed that the distribution of N. faxoni was associated with environments with intermediate salinity, low organic carbon content in the sediments, and high temperature. Nematocarcinus agassizii distribution was associated with lower salinity and higher organic carbon content than N. faxoni.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen CE, Tyler PA, Varney MS (2000) Lipid profiles of Nematocarcinus gracilis a deep-sea shrimp from below the Arabian Sea oxygen minimum zone. In: Jones MB, JMN A, Neto AI, Costa AC, Frias Martins AM (eds) Island, ocean and deep-sea, Developments in hydrobiology 152. Kluwer Academic, Dordrecht/Boston/London, pp 273–279

    Chapter  Google Scholar 

  • Bauer RT (2004) Remarkable shrimps: adaptations and natural history of the carideans, vol 7. University of Oklahoma Press, Norman

    Google Scholar 

  • Beaulieu SE (2002) Accumulation and fate of phytodetritus on the sea floor. Oceanogr Mar Biol 40:171–232

    Google Scholar 

  • Burukovsky RN (2001) Taxonomy of Nematocarcinus (Decapoda, Nematocarcinidae). Description of Nematocarcinus from waters of the American continent. Zoolog Z 80(11):1429–1443. [In Russian with English abstract]

    Google Scholar 

  • Burukovsky RN (2004) Taxonomy of shrimps of the genus Nematocarcinus (Decapoda, Nematocarcinidae). A review of taxonomic characteristics and a key to identifying species of the genus. Zoolog Z 83(5):549–561. [In Russian with English abstract]

    Google Scholar 

  • Burukovsky RN (2012) Deep sea shrimps of the family Nematocarcinidae (history of study, systematic, distribution, and biology). Prospekt Nauki, St. Petersburg. [In Russian with English abstract]

    Google Scholar 

  • Burukovsky RN, Sudnik SA (2014) Oogenesis and maturation of ovarian as the basis of reproductive strategies of female shrimps Nematocarcinus africanus Crosnier et Forest 1973 (Crustacea, Caridea, Nematocarcinidae). Sci World 12(16), II:16–24 [In Russian]

    Google Scholar 

  • Cardoso IA, Burukovsky RN (2014) Nematocarcinus Milne Edwards, 1881 (Crustacea, Decapoda) from southwestern Atlantic, including the southern mid-Atlantic ridge area. Zootaxa 3887(3):437–458

    Google Scholar 

  • Carey AG (1981) A comparison of benthic infaunal abundance on two abyssal plains in the Northeast Pacific Ocean. Deep-Sea Res 28:467–179

    Article  Google Scholar 

  • Cartes JE (1993a) Diets of two deep-sea decapods: Nematocarcinus exilis (Caridea: Nematocarcinidae) and Munida tenuimana (Anomura: Galatheidae) on the western Mediterranean slope. Ophelia 37(3):213–229

    Article  Google Scholar 

  • Cartes JE (1993b) Feeding habits of oplophorid shrimps in the deep Western Mediterranean. J Mar Biol Assoc UK 73:193–206

    Article  Google Scholar 

  • Cartes JE (1998) Feeding strategies and partition of food resources in deep-water decapod crustaceans (400–2300 m). J Mar Biol Assoc UK 78:509–524

    Article  Google Scholar 

  • Cartes JE, Sardà F (1992) Abundance and diversity of decapod crustaceans in the deep Catalan Sea (Western Mediterranean). J Nat Hist 26:1305–1323

    Article  Google Scholar 

  • Cartes JE, Papiol V, Frutos I, Macpherson E, González-Pola C, Punzón A, Valeiras X, Serrano A (2014) Distribution and biogeographic trends of decapod assemblages from Galicia Bank (NE Atlantic) with connections to regional water masses. Deep-Sea Res II Top Stud Oceanogr 106(6):165–178

    Article  Google Scholar 

  • Chace FA (1986) The caridean shrimps (Crustacea: Decapoda) of the “Albatross” Philippine Expedition 1907–1910, Part 4: Oplophoridae and Nematocarcinidae. Smithson Contrib Zool 432:1–82

    Article  Google Scholar 

  • Childress JJ, Cowles DL, Favuzzi JA, Mickel TJ (1990) Metabolic rates of benthic deep-sea decapod crustaceans decline with increasing depth primarily due to the decline in temperature. Deep-Sea Research 37(6):929–949

    Google Scholar 

  • Childress JJ, Seibel BA (1998) Life at stable low oxygen: adaptations of animals to oceanic oxygen minimum layers. J Exp Biol 201:1223–1232

    CAS  PubMed  Google Scholar 

  • Company JB, Sardà F (1998) Metabolic rates and energy content of deep-sea benthic decapod crustaceans in the western Mediterranean Sea. Deep-Sea Res I Oceanogr Res Pap 45:1861–1880

    Article  Google Scholar 

  • Cowie G (2005) The biogeochemistry of Arabian Sea surficial sediments: a review of recent studies. Prog Oceanogr 65:260–289

    Article  Google Scholar 

  • Cruz-Acevedo E, Tolimieri N, Aguirre-Villaseñor H (2018) Deep-sea fish assemblages (300−2100 m) in the eastern Pacific off northern Mexico. Mar Ecol Progr Ser 592:225–242

    Article  CAS  Google Scholar 

  • Dambach J, Raupach MJ, Mayer C, Schwarzer J, Leese F (2013) Isolation and characterization of nine polymorphic microsatellite markers for the deep-sea shrimp Nematocarcinus lanceopes (Crustacea: Decapoda: Caridea). BMC Res Notes 6(1):75

    Article  PubMed  PubMed Central  Google Scholar 

  • De Grave S, Fransen CHJM (2011) Carideorum catalogus: the recent species of the dendrobranchiate, stenopodidean, procarididean and caridean shrimps. Zool Meded, Leiden 85:195–588

    Google Scholar 

  • Devol AH, Hartnett HE (2001) Role of the oxygen-deficient zone in transfer of organic carbon to the deep ocean. Limnol Oceanogr 46:1684–1690

    Article  CAS  Google Scholar 

  • Diaz RJ, Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr Mar Biol 33:245–303

    Google Scholar 

  • Drazen JC, Seibel BA (2007) Depth-related trends in metabolism of benthic and benthopelagic deep-sea fishes. Limnol Oceanogr 52:2306–2316

    Article  CAS  Google Scholar 

  • Ekau W, Auel H, Pörtner HO, Gilbert D (2010) Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish). Biogeosciences 7:1669–1699

    Article  CAS  Google Scholar 

  • Escobar-Briones EG, Gaytán-Caballero A, Legendre P (2008) Epibenthic megacrustaceans from the continental margin, slope and abyssal plain of the Southwestern Gulf of Mexico: factors responsible for variability in species composition and diversity. Deep-Sea Res II Top Stud Oceanogr 55:2667–2678

    Article  Google Scholar 

  • Escribano R, Hidalgo P, Krautz C (2009) Zooplankton associated with the oxygen minimum zone system in the northern upwelling region of Chile during March 2000. Deep-Sea Res II Top Stud Oceanogr 56:1083–1094

    Article  Google Scholar 

  • Flannery E, Przeslawski R (2015) Comparison of sampling methods to assess benthic marine biodiversity: are spatial and ecological relationships consistent among sampling gear? Record 2015/07. Geoscience Australia, Canberra

    Book  Google Scholar 

  • Gooday AJ, Levin LA, Aranda da Silva A, Bett BJ, Cowie GL, Dissard D, Gage JD, Hughes DJ, Jeffreys R, Lamont PA, Larkin KE, Murty SJ, Schumacher S, Whitcraft C, Woulds C (2009) Faunal responses to oxygen gradients on the Pakistan margin: a comparison of foraminiferans, macrofauna and megafauna. Deep-Sea Res II Top Stud Oceanogr 56:488–502

    Article  CAS  Google Scholar 

  • Gorny M, George MR (1997) Oocyte development and gonad production of Nematocarcinus lanceopes (Decapoda: Caridea) in the eastern Weddell Sea, Antarctica. Polar Biol 17(3):191–198

    Google Scholar 

  • Guzmán G, Quiroga E (2005) Nuevos registros de camarones (Decapoda: Dendrobranchiata y Caridea) en aguas profundas de Chile. Gayana (Concepción) 69(2):285–290

    Article  Google Scholar 

  • Hastie T, Tibshirani R (1986) Generalized additive models. Stat Sci 1:297–318

    Article  Google Scholar 

  • Hendrickx ME (2012) Crustáceos decápodos (Arthropoda: Crustacea: Decapoda) de aguas profundas del Pacífico mexicano: Lista de especies y material recolectado durante el proyecto TALUD. In: Zamorano P, Hendrickx ME, Caso M (eds) Biodiversidad y comunidades del talud continental del Pacífico mexicano. Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT), Instituto Nacional de Ecología (INE), Mexico City, pp 283–317

    Google Scholar 

  • Hendrickx ME, Hernández-Payán JC (2018) Distribution and abundance of Nematocarcinus spp. (Crustacea: Decapoda: Caridea: Nematocarcinidae) off western Mexico, eastern Pacific. Reg Stud Mar Sci 23:47–52

    Article  Google Scholar 

  • Hendrickx ME, Papiol V (2015) Insights on the biology and ecology of the deep-water shrimp Parapontophilus occidentalis (Faxon, 1893) (Crustacea, Caridea, Crangonidae) in the eastern Pacific with notes on its morphology. Zootaxa 4007(3):370–388

    Article  PubMed  Google Scholar 

  • Hendrickx ME, Papiol V (2019) Distribution, relative growth, ecology and fecundity of the deep-water squat lobster Galacantha diomedeae (Crustacea: Decapoda: Galatheoidea: Munidopsidae) in the Mexican Pacific. Inverteb Biol 2019:1–12. (Online). https://doi.org/10.1111/ivb.12248

    Article  Google Scholar 

  • Hendrickx ME, Serrano D (2010) Impacto de la zona de mínimo de oxígeno sobre los corredores pesqueros en el Pacífico mexicano. Interciencia 35(1):12–18

    Google Scholar 

  • Hernández-Payán JC, Hendrickx ME (2016) Two species of the deep-water shrimp genus Nematocarcinus A. Milne–Edwards, 1881 (Crustacea, Decapoda, Caridea, Nematocarcinidae) from the Mexican Pacific. Zootaxa 4126(4):587–599

    Article  PubMed  Google Scholar 

  • Holt R, Foggo A, Neat FC, Howell KL (2013) Distribution patterns and sexual segregation in chimaeras: implications for conservation and management. ICES J Mar Sci 70(6):1198–1205

    Article  Google Scholar 

  • Hunter WR, Oguri K, Kitazato H, Ansari ZA, Witte U (2011) Epi-benthic megafaunal zonation across an oxygen minimum zone at the Indian continental margin. Deep-Sea Res I Oceanogr Res Pap 58:699–710

    Article  CAS  Google Scholar 

  • Jeffreys RM, Levin LA, Lamont PA, Woulds C, Whitcraft CR, Mendoza GF, Wolff GA, Cowie GL (2012) Living on the edge: single-species dominance at the Pakistan oxygen minimum zone boundary. Mar Ecol Prog Ser 470:79–99

    Article  CAS  Google Scholar 

  • Kameya A, Castillo R, Escudero L, Tello E, Blaskovi’c V, Córdova J, Hooker Y, Gutiérrez M, Mayor S (1997) Localización, distribución y concentración de langostinos rojos de profundidad, Crucero BIC Humboldt 9607-08 18 de julio al 6 de agosto de 1996. Publ Espec Inst Mar Perú 7:1–47

    Google Scholar 

  • Kamykowski D, Zentara SJ (1990) Hypoxia in the world ocean as recorded in the historical dataset. Deep-Sea Res I Oceanogr Res Pap 37:1861–1874

    Article  CAS  Google Scholar 

  • Komai T, Segonzac M (2005) Two new species of Nematocarcinus A. Milne-Edwards, 1881 (Crustacea: Decapoda: Caridea: Nematocarcinidae) from hydrothermal vents on the North and South East Pacific Rise. Zoosystema 27(2):343–364

    Google Scholar 

  • Levin LA (2003) Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr Mar Biol 41:1–45

    Google Scholar 

  • Levin LA, Whitcraft CR, Mendoza GF, Gonzalez JP, Cowie G (2009) Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan margin oxygen minimum zone (700–1100 m). Deep-Sea Res II Top Stud Oceanogr 56:449–471

    Article  CAS  Google Scholar 

  • Loring DH, Rantala RTT (1992) Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Sci Rev 32:235–283

    Article  CAS  Google Scholar 

  • Martínez-Guerrero B, López-Pérez A (2018) Richness and large-scale distribution of marine benthic caridean shrimps (Decapoda: Caridea) from the eastern tropical Pacific. Nauplius 26:1–16. https://doi.org/10.1590/2358-2936e2018035

    Article  Google Scholar 

  • Mauchline J (1972) The biology of bathypelagic organisms, especially Crustacea. Deep-Sea Res 19:753–780

    Google Scholar 

  • Maynou F, Cartes JE (1998) Daily ration estimates and comparative study of food consumption in nine species of deep-water decapod crustaceans of the NW Mediterranean. Mar Ecol Progr Ser 171:221–231

    Article  Google Scholar 

  • Méndez N (2007) Relationships between deep-water polychaete fauna and environmental factors in the southeastern Gulf of California, Mexico. Sci Mar 71:605–622

    Article  Google Scholar 

  • Morales-Nin B, Maynou F, Cartes JE, Moranta J, Massutí E, Company B, Rotllant G, Bozzano A, Stefanescu C (2003) Size influence in zonation patterns in fishes and crustaceans from deep-water communities of the western Mediterranean. J Northwest Atl Fish Sci 31:413–430

    Article  Google Scholar 

  • Muñoz I, García-Isarch E, Sobrino I, Burgos C, Funny R, González-Porto M (2012) Distribution, abundance and assemblages of decapod crustaceans in waters off Guinea-Bissau (north-west Africa). J Mar Biol Assoc UK 92(3):475–494

    Article  Google Scholar 

  • Murty SJ, Bett BJ, Gooday AJ (2009) Megafaunal responses to strong oxygen gradients on the Pakistan margin of the Arabian Sea. Deep-Sea Res II Top Stud Oceanogr 56:472–487

    Article  Google Scholar 

  • Nagaraju GP (2011) Reproductive regulators in decapod crustaceans: an overview. J Exp Biol 214:3–16

    Article  CAS  PubMed  Google Scholar 

  • Papiol V, Hendrickx ME (2016a) Community structure and ecology of deep-water decapod crustaceans below the oxygen minimum zone in the SE Gulf of California, Mexico. Mar Freshw Res 67(12):1862–1879

    Article  Google Scholar 

  • Papiol V, Hendrickx ME (2016b) Ecology of Benthesicymus tanneri Faxon, 1893 off Mexican Pacific slopes. J Crustac Biol 36(1):50–60

    Article  Google Scholar 

  • Papiol V, Hendrickx ME, Serrano D (2016) Distribution and ecology of the Pacific lobsterette Nephropsis occidentalis Faxon, 1893 (Crustacea, Decapoda) in the continental slope off western Mexico. In: Riosmena-Rodriguez R (ed) Marine benthos: biology, ecosystem functions and environmental impact. Nova Science, New York, pp 197–223

    Google Scholar 

  • Papiol V, Hendrickx ME, Serrano D (2017) Effects of latitudinal changes in the oxygen minimum zone of the northeast Pacific on the distribution of bathyal benthic decapod crustaceans. Deep-Sea Res II Top Stud Oceanogr 137:113–130

    Article  CAS  Google Scholar 

  • Paramo J, Núñez S (2015) Estructura de tallas, talla media de madurez sexual y razón sexual de camarones de aguas profundas de importancia comercial en el Caribe colombiano. Rev Acad Colomb Cienc Exact Fis Nat 39(152):408–415

    Article  Google Scholar 

  • Quiroga E, Sellanes J, Arntz WE, Gerdes D, Gallardo VA, Hebbeln D (2009) Benthic megafaunal and demersal fish assemblages on the Chilean continental margin: the influence of the oxygen minimum zone on bathymetric distribution. Deep-Sea Res II Top Stud Oceanogr 56:1112–1123

    Article  Google Scholar 

  • Roullier F, Berline L, Guidi L, Sciandra A, Durrieu De Madron X, Picheral M, Pesant S, Stemmann L (2013) Particles size distribution and carbon flux across the Arabian Sea oxygen minimum zone. Biogeosci Discuss 10:19271–19309

    Google Scholar 

  • Rowe GT (1971) Benthic biomass and surface productivity. In: Costlow JD Jr (ed) Fertility of the sea, vol 2. Gordon and Breach, New York, pp 441–454

    Google Scholar 

  • Seibel BA (2011) Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. J Exp Biol 214:326–336

    Article  CAS  PubMed  Google Scholar 

  • Seibel BA, Chausson FC, Lallier FH, Zal F, Childress JJ (1999) Vampire blood: respiratory physiology of the vampire squid (Cephalopoda: Vampyromorpha) in relation to the oxygen minimum layer. Exp Biol Online 4:1–10

    Article  Google Scholar 

  • Smyth GK, Jørgensen B (2002) Fitting Tweedie’s compound Poisson model t insurance claims data: dispersion modelling. ASTIN Bull 32:143–157

    Article  Google Scholar 

  • Storch V, Bluhm BA, Arntz WE (2001) Microscopic anatomy and ultrastructure of the digestive system of three Antarctic shrimps (Crustacea: Decapoda: Caridea). Polar Biology 24:604–614

    Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Fish Res Board Can Bull 167:1–310

    Google Scholar 

  • Thatje S, Bacardit R, Arntz WE (2005) Larvae of the deep-sea Nematocarcinidae (Crustacea: Decapoda: Caridea) from the southern ocean. Polar Biol 28(4):290–302

    Article  Google Scholar 

  • Türkay M (1998) Notes on the Mediterranean nematocarcinid shrimps (Crustacea: Decapoda: Caridea). J Nat Hist 32(10–11):1787–1794

    Article  Google Scholar 

  • Vafidis D, Leontarakis PK, Dailianis T, Kallianiotis A (2008) Population characteristics of four deep-water pandalid shrimps (Decapoda: Caridea) in the northern Aegean Sea (NE Mediterranean). J Nat Hist 42(31–32):2079–2093

    Article  Google Scholar 

  • Wenner EL (1978) Comparative biology of four species of glyphocrangonid and crangonid shrimp from the continental slope of the middle Atlantic Bight. Can J Zool 56(5):1052–1065

    Article  Google Scholar 

  • Wenner EL (1979) Distribution and reproduction of nematocarcinid shrimp (Decapoda: Caridea) from the northwestern North Atlantic. Bull Mar Sci 29(3):380–393

    Google Scholar 

  • Wicksten MK (1989) Ranges of offshore decapod crustaceans in the eastern Pacific Ocean. Trans San Diego Soc Nat Hist 21(19):291–316

    Article  Google Scholar 

  • Wishner KF, Levin LA, Gowing MM, Mullineaux L (1990) Involvement of the oxygen minimum in the benthic zonation on a deep seamount. Nature 346:57–59

    Article  Google Scholar 

  • Wishner KF, Ashjian CJ, Gelfman C, Gowing MM, Levin LA, Mullineaux S, Saltzman J (1995) Pelagic and benthic ecology of the lower interface of the eastern tropical Pacific oxygen minimum zone. Deep-Sea Res I Oceanogr Res Pap 42(1):93–115

    Article  CAS  Google Scholar 

  • Wood SN (2006) Generalized additive models, an introduction with R. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Wood SN, Augustin NH (2002) GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol Model 157:157–177

    Article  Google Scholar 

  • WoRMS Editorial Board (2020) http://www.marinespecies.org/index.php. Accessed January–May 2020

  • Zamorano P, Hendrickx ME, Toledano-Granados A (2007) Distribution and ecology of deep-water mollusks from the continental slope, southeastern Gulf of California, Mexico. Mar Biol 150:883–892

    Article  Google Scholar 

Download references

Acknowledgments

Ship time aboard the R/V “El Puma” was provided by the Instituto de Ciencias del Mar y Limnología and by the Coordinación de la Investigación Científica, UNAM, and partly supported by CONACyT (project 31805-N for the TALUD IV–VII cruises, project 179467 for the TALUD XV and XVI-B cruises). The TALUD project has received laboratory support from the DGAPA (PAPIIT IN-217306-3 and PAPIIT IN-203013-2) and from CONACyT (project 31805-N for the TALUD IV to VII cruises, project 179467 for the TALUD XV and XVIB cruises), Mexico.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papiol, V., Hernández-Payán, J.C., Hendrickx, M.E. (2020). Influence of Environmental Variables on the Abundance and Distribution of the Deep-Water Shrimps Nematocarcinus faxoni Burukovsky, 2001 and N. agassizii Faxon, 1893 (Crustacea, Decapoda, Nematocarcinidae) off Western Mexico. In: Hendrickx, M.E. (eds) Deep-Sea Pycnogonids and Crustaceans of the Americas. Springer, Cham. https://doi.org/10.1007/978-3-030-58410-8_11

Download citation

Publish with us

Policies and ethics