Skip to main content

Bioactive Compounds from Medicinal Plants in Myanmar

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 114

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 114))

Abstract

Myanmar is a country with rich natural resources and of these, medicinal plants play a vital role in the primary health care of its population. The people of Myanmar have used their own system of traditional medicine inclusive of the use of medicinal plants for 2000 years. However, systematic and scientific studies have only recently begun to be reported. Researchers from Japan, Germany, and Korea have collaborated with researchers in Myanmar on medicinal plants since 2000. During the past two decades, over 50 publications have been published in peer-reviewed journals. Altogether, 433 phytoconstituents, including 147 new and 286 known compounds from 26 plant species consisting of 29 samples native to Myanmar, have been collated. In this contribution, phytochemical and biological investigations of these plants, including information on traditional knowledge are compiled and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta GL, Nigam SS (1970) Chemical examination of the leaves of Acacia concinna. Planta Med 18:55

    Article  Google Scholar 

  2. Sekine T, Fukasawa N, Ikegami F, Saito K, Fujii Y, Murakoshi I (1997) Structure and synthesis of a new monoterpenoidal carboxamide from the seeds of the Thai medicinal plant Acacia concinna. Chem Pharm Bull 45:148

    Article  CAS  Google Scholar 

  3. Tezuka Y, Honda K, Banskota AH, Thet MM, Kadota S (2000) Kinmoonosides A−C, three new cytotoxic saponins from the fruits of Acacia concinna, a medicinal plant collected in Myanmar. J Nat Prod 63:1658

    Article  CAS  PubMed  Google Scholar 

  4. Kiuchi F, Gafur MA, Obata T, Tachibana A, Tsuda Y (1997) Acacia concinna saponins. II. Structures of monoterpenoid glycosides in the alkaline hydrolysate of the saponin fraction. Chem Pharm Bull 45:807

    Google Scholar 

  5. Okada Y, Koyama K, Takahashi K, Okuyama T, Shibata S (1980) Gleditsia saponins I. Structures of monoterpene moieties of Gleditsia saponin C. Planta Med 40:185

    Google Scholar 

  6. Ikeda T, Fujiwara S, Kinjo J, Nohara T, Ida Y, Shoji J, Shingu T, Isobe R, Kajimoto T (1995) Three new triterpenoidal saponins acylated with monoterpenic acid from Albizziae Cortex. Bull Chem Soc Jpn 68:3483

    Article  CAS  Google Scholar 

  7. Ikeda T, Fujiwara S, Araki K, Kinjo J, Nohara T, Miyoshi T (1997) Cytotoxic glycosides from Albizia julibrissin. J Nat Prod 60:102

    Article  CAS  PubMed  Google Scholar 

  8. Pal BC, Achari B, Yoshikawa K, Arihara S (1995) Saponins from Albizia lebbeck. Phytochemistry 38:1287

    Article  CAS  PubMed  Google Scholar 

  9. Gafur MA, Obata T, Kiuchi F, Tsuda Y (1997) Acacia concinna saponins. I. Structures of prosapogenols, concinnosides A−F, isolated from the alkaline hydrolysate of the highly polar saponin fraction. Chem Pharm Bull 45:620

    Google Scholar 

  10. Franks LM, Teich NM (eds) (1997) Introduction to the cellular and molecular biology of cancer, 3rd edn. Oxford University Press, Oxford, UK, p 343

    Google Scholar 

  11. Anonymous (1995) Medicinal herb index in Indonesia, 2nd ed. PT Eisai Indonesia, Jakarta, p 263

    Google Scholar 

  12. Bwin M, Gwan S, eds (1967) Burmese indigenous medicinal plants 1. Plants with reputed hypoglycemic action. Burma Medical Research Institute, Yangon, p 126

    Google Scholar 

  13. Anonymous (1999) Health and Myanmar traditional medicine, Ministry of Health, Government of Union of Myanmar, Yangon, p 103

    Google Scholar 

  14. Anonymous (1970) WHO Regional Office for the Western Pacific Manila and Institute of Material Medica Hanoi. In: Tran K (ed) Medicinal plants in Vietnam. Science and Technology Publishing House, Hanoi, p 271

    Google Scholar 

  15. Takeda Y, Matsumoto T, Terao H, Shingu T, Futatsuishi Y, Nohara T, Kajimoto T (1993) Orthosiphol D and E, minor diterpenes from Orthosiphon stamineus. Phytochemistry 33:411

    Article  CAS  Google Scholar 

  16. Masuda T, Masuda K, Shiragami S, Jitoe A, Nakatani N (1992) Orthosiphol A and B, novel diterpenoid inhibitors of TPA (12-O-tetradecanoylphorbol-13-acetate)-induced inflammation, from Orthosiphon stamineus. Tetrahedron 48:6787

    Article  CAS  Google Scholar 

  17. Sumaryono W, Proksch P, Wray V, Witte L, Hartmann T (1991) Qualitative and quantitative analysis of the phenolic constituents from Orthosiphon aristatus. Planta Med 57:176

    Article  CAS  PubMed  Google Scholar 

  18. Guerin JC, Reveillere HP, Ducrey P, Toupet L (1989) Orthosiphon stamineus as a potent source of methylripariochromene A. J Nat Prod 52:171

    Article  CAS  Google Scholar 

  19. Malterud KE, Hanche-Olsen IM, Smith-Kielland I (1989) Flavonoids from Orthosiphon spicatus. Planta Med 55:569

    Article  CAS  PubMed  Google Scholar 

  20. Wollenweber E, Mann K (1985) Weitere Flavonoide aus Orthosiphon spicatus (Further flavonoids from Orthosiphon spicatus). Planta Med 51:459

    Article  CAS  PubMed  Google Scholar 

  21. Shibuya H, Bohgami T, Matsubara T, Watarai M, Ohashi K, Kitagawa I (1999) Indonesian medicinal plants. XXII. Chemical structures of two new isopimarane-type diterpenes, orthosiphonones A and B, and a new benzochromene, orthochromene A, from the leaves of Orthosiphon aristatus (Lamiaceae). Chem Pharm Bull 47:695

    Google Scholar 

  22. Ohashi K, Bohgami T, Matsubara T, Shibuya H (2000) Indonesian medicinal plants. XXIII. Chemical structure of two new migrated pimarane-type diterpenes, neoorthosiphols A and B, and suppressive effects on rat thoracic aorta of chemical constituents isolated from the leaves of Orthosiphon aristatus (Lamiaceae). Chem Pharm Bull 48:433

    Google Scholar 

  23. Shibuya H, Bohgami T, Ohashi K (1999) Two novel migrated pimarane-type diterpenes, neoorthosiphols A and B, from the leaves of Orthosiphon aristatus (Lamiaceae). Chem Pharm Bull 47:911

    Article  CAS  Google Scholar 

  24. Tezuka Y, Stampoulis P, Banskota AH, Awale S, Tran KQ, Saiki I, Kadota S (2000) Constituents of the Vietnamese medicinal plant Orthosiphon stamineus. Chem Pharm Bull 48:1711

    Article  CAS  Google Scholar 

  25. Stampoulis P, Tezuka Y, Banskota AH, Tran KQ, Saiki I, Kadota S (1999) Staminol A, a novel diterpene from Orthosiphon stamineus. Tetrahedron Lett 40:4239

    Article  CAS  Google Scholar 

  26. Stampoulis P, Tezuka Y, Banskota AH, Tran KQ, Saiki I, Kadota S (1999) Staminolactones A and B and norstaminol A: three highly oxygenated staminane-type diterpenes from Orthosiphon stamineus. Org Lett 1:1367

    Article  CAS  PubMed  Google Scholar 

  27. Awale S, Tezuka Y, Banskota AH, Kouda K, Tun KM, Kadota S (2001) Five novel highly oxygenated diterpenes of Orthosiphon stamineus from Myanmar. J Nat Prod 64:592

    Article  CAS  PubMed  Google Scholar 

  28. Awale S, Tezuka Y, Banskota AH, Kouda K, Tun KM, Kadota S (2002) Four novel highly oxygenated isopimarane-type diterpenes of Orthosiphon stamineus. Planta Med 68:286

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, Montanari AM, Widmer WW (1997) Two new polymethoxylated flavones, a class of compounds with potential anticancer activity, isolated from cold pressed Dancy tangerine peel oil solids. J Agric Food Chem 45:364

    Article  CAS  Google Scholar 

  30. Nagao T, Abe F, Kinjo J, Okabe H (2002) Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis Briq. and consideration of structure-activity relationship. Biol Pharm Bull 25:875

    Google Scholar 

  31. Das B, Chakravarty AK (1993) Three flavone glycosides from Gelonium multiflorum. Phytochemistry 33:493

    Article  CAS  PubMed  Google Scholar 

  32. Bianchini JP, Gaydou EM (1981) Role of water in qualitative and quantitative determination of polymethoxylated flavones by straight-phase high-performance liquid chromatography: application to orange peel oils. J Chromatogr 211:61

    Article  CAS  Google Scholar 

  33. Nakata H, Sashida Y, Shimomura H (1982) A new phenolic compound from Heracleum lanatum MICHX. var. nippinicum HARA. II. Chem Pharm Bull 30:4554

    Google Scholar 

  34. Awale S, Tezuka Y, Banskota AH, Kadota S (2003) Inhibition of NO production by highly-oxygenated diterpenes of Orthosiphon stamineus and their structure-activity relationship. Biol Pharm Bull 26:468

    Article  CAS  PubMed  Google Scholar 

  35. Wen J, Zimmer EA (1996) Phylogeny and biogeography of Panax L. (the Ginseng genus, Araliaceae): Inferences from ITS sequences of nuclear ribosomal DNA. Mol Phylogenet Evol 6:167

    Google Scholar 

  36. Tanaka O, Kasai R, Norita T (1986) Chemistry of ginseng and related plants. Rec Adv Abstr Chin Med 1:130

    Google Scholar 

  37. Park JD (1996) Recent studies on the chemical constituents of Korean ginseng (Panax ginseng C.A. Meyer). Korean J Ginseng Sci 20:389

    Google Scholar 

  38. Yun TK, Choi SY, Lee YS, eds (1997) Nontoxic and non-organ specific cancer preventive effect of Panax ginseng C.A. Meyer. In: Shibamoto T, Tirao J, Osawa T (eds) Functional foods for disease prevention II, Medicinal plants and other foods, Symposium Series No. 702, American Chemical Society Books, Washington DC, p 162

    Google Scholar 

  39. Siegel RK (1979) Ginseng abuse syndrome. Problems with the panacea. JAMA 241:1614

    Article  CAS  PubMed  Google Scholar 

  40. Liu CX, Xiao PG (1992) Recent advances on ginseng research in China. J Ethnopharmacol 36:27

    Article  CAS  PubMed  Google Scholar 

  41. Sticher O (1998) Getting to the root of ginseng. Chemtech 28:26

    CAS  Google Scholar 

  42. Tanaka O (1990) Recent studies on glycosides from plant drugs of Himalaya and south-western China: chemo-geographical correlation of Panax species. Pure Appl Chem 62:1281

    Article  CAS  Google Scholar 

  43. Zhou J, Huang WG, Wu MZ, Yang CR, Feng GM, Wu ZY (1975) Triterpenoids from Panax Linn., and their relationship with taxonomy and geographical distribution. Acta Phytotaxon Sin 13:29

    Google Scholar 

  44. Tran QL, Than MM, Tezuka Y, Banskota AH, Kouda K, Watanabe H, Zhu S, Komatsu K, Thet MM, Swe T, Maruyama Y, Kadota S (2003) Wild ginseng grows in Myanmar. Chem Pharm Bull 51:679

    Article  CAS  Google Scholar 

  45. Nagai Y, Tanaka O, Shibata S (1971) Chemical studies on the oriental plant drugs−XXIV: structure of ginsenoside-Rg1, a neutral saponin of ginseng root. Tetrahedron 27:881

    Article  CAS  Google Scholar 

  46. Yahara S, Kaji K, Tanaka O (1979) Further study on dammarane-type saponins of roots, leaves, flower-buds, and fruits of Panax ginseng C.A. MEYER. Chem Pharm Bull 27:88

    Google Scholar 

  47. Sanada S, Kondo N, Shoji J, Tanaka O, Shibata S (1972) Studies on the saponins of ginseng. I. Structures of ginsenoside-Ro, -Rb1, -Rb2, -Rc and -Rd. Chem Pharm Bull 22:421

    Google Scholar 

  48. Kondo N, Shoji J, Nagumo N, Komatsu N (1969) Studies on the constituents of Panacis japonici Rhizoma. II. The structure of chikusetsusaponin IV and some observations on the structural relationship with araloside A. Yakugaku Zasshi 89:846

    Google Scholar 

  49. Lin TD, Kondo N, Shoji J (1976) Studies on the constituents of Panacis japonici Rhizoma. V. The structures of chikusetsusaponin I, Ia, Ib, IVa and glycoside P1. Chem Pharm Bull 24:253

    Google Scholar 

  50. Yang CR, Jiang ZD, Wu MZ, Zhou J, Tanaka O (1984) Studies on saponins of rhizomes of Panax zingiberensis Wu et Feng. Acta Pharm Sin 19:232

    CAS  Google Scholar 

  51. Walter KS, Gillet HJ (1998) 1997 IUCN Red List of Threatened Plants, IUCN, The World Conservation Monitoring Center, Gland, Switzerland and Cambridge UK

    Google Scholar 

  52. Ministry of Science and Technology (2001) The effective Myanmar traditional medicinal plants. Yangon, Myanmar, vol 1, p 67

    Google Scholar 

  53. Department of Traditional Medicine (2001) Resources of Myanmar traditional medicine. Ministry of Health, Myanmar, p 2002

    Google Scholar 

  54. Anonymous (1986) Medicinal herb index in Indonesia, 1st edn. PT Eisai Indonesia: Jakarta, p 140

    Google Scholar 

  55. Hemalatha K, Kiran AS, Bannappa U, Satyanarayana D (2007) Analgesic activity of Caesalpinia sappan Heartwood. Pharm Biol 45:360

    Article  Google Scholar 

  56. Zanin JL, de Carvalho BA, Martineli PS, dos Santos MH, Lago JH, Sartorelli P, Viegas C Jr, MG Soares (2012) The genus Caesalpinia L. (Caesalpiniaceae): phytochemical and pharmacological characteristics. Molecules 17:7887

    Google Scholar 

  57. Banskota AH, Attamimi F, Usia T, Linn TZ, Tezuka Y, Kalauni SK, Kadota S (2003) Novel norcassane-type diterpene from the seed kernels of Caesalpinia crista. Tetrahedron Lett 44:6879

    Article  CAS  Google Scholar 

  58. Linn TZ, Awale S, Tezuka Y, Banskota AH, Kalauni SK, Attamimi F, Ueda J, Kadota S (2005) Cassane- and norcassane-type diterpenes from Caesalpinia crista of Indonesia and their antimalarial activity against the growth of Plasmodium falciparum. J Nat Prod 68:706

    Article  CAS  PubMed  Google Scholar 

  59. Jiang RW, Ma SC, But PPH, Mak TCW (2001) New antiviral cassane furanoditerpenes from Caesalpinia minax. J Nat Prod 64:1266

    Article  CAS  PubMed  Google Scholar 

  60. Patil AD, Freyer AJ, Webb RL, Zuber G, Reichwein R, Bean MF, Faucette L, Johnson RK (1997) Pulcherrimins A-D, novel diterpene dibenzoates from Caesalpinia pulcherrima with selective activity against DNA repair-deficient yeast mutants. Tetrahedron 53:1583

    Article  CAS  Google Scholar 

  61. Kalauni SK, Awale S, Tezuka Y, Banskota AH, Linn TZ, Kadota S (2004) Cassane- and norcassane-type diterpenes of Caesalpinia crista from Myanmar. J Nat Prod 67:1859

    Article  CAS  PubMed  Google Scholar 

  62. Kalauni SK, Awale S, Tezuka Y, Banskota AH, Linn TZ, Kadota S (2005) New cassane-type diterpenes of Caesalpinia crista from Myanmar. Chem Pharm Bull 53:214

    Article  CAS  Google Scholar 

  63. Kalauni SK, Awale S, Tezuka Y, Banskota AH, Linn TZ, Kadota S (2005) Methyl migrated cassane-type furanoditerpenes of Caesalpinia crista from Myanmar. Chem Pharm Bull 53:1300

    Article  CAS  Google Scholar 

  64. Canonica L, Jommi G, Mannito P, Pagnoni UM, Pelizzoni F, Scolastico C (1966) Structure of caesalpines III. Gazz Chim Ital 96:698

    CAS  Google Scholar 

  65. Pascoe KO, Burke BA, Chan WR (1986) Caesalpin F: a new furanoditerpene from Caesalpinia bonducella. J Nat Prod 49:913

    Article  CAS  Google Scholar 

  66. Awale S, Linn TZ, Tezuka Y, Kalauni SK, Banskota AH, Attamimi F, Ueda J, Kadota S (2006) Constituents of Caesalpinia crista from Indonesia. Chem Pharm Bull 54:213

    Article  CAS  Google Scholar 

  67. Purushothaman KK, Kalyani K, Subramanian K, Shanmuganathan S (1981) Zeta caesalpin, a new caesalpin from Caesalpinia bonducella. Indian J Chem Sect B 20:625

    Google Scholar 

  68. Peter SR, Tinto WF, Mclean S, Reynolds WF, Yu M (1997) Bonducellpins A–D, new cassane furanoditerpenes of Caesalpinia bonduc. J Nat Prod 60:1219

    Article  CAS  Google Scholar 

  69. Jiang RW, But PPH, Ma SC, Mak TCW (2001) Furanoditerpenoid lactones from the seeds of Caesalpinia minax Hance. Phytochemistry 57:517

    Article  CAS  PubMed  Google Scholar 

  70. Kitagawa I, Simanjuntak P, Mahmud T, Kobayashi M, Fujii S, Uji T, Shibuya H (1996) Three additional cassane-type furanoditerpenes from the roots of Caesalpinia major (Fabaceae). Several interesting reaction products of caesaldekarin A provided by N-bromosuccinimide treatment. Chem Pharm Bull 44:1157

    Google Scholar 

  71. Balmain A, Bjamer K, Connolly JD, Ferguson G (1967) The constitution and stereochemistry of ε-caesalpin. Tetrahedron Lett 8:5027

    Article  Google Scholar 

  72. Balmain A, Connolly JD, Ferrari M, Ghisalberti EL, Pagnoni UM, Pelizzoni F (1970) The stereochemistry of the furanoditerpenoids α-, β-, and δ-caesalpin. J Chem Soc D:1244

    Google Scholar 

  73. Kalauni SK, Awale S, Tezuka Y, Banskota AH, Linn TZ, Asih PBS, Syafruddin D, Kadota S (2006) Antimalarial activity of cassane- and norcassane-type diterpenes from Caesalpinia crista and their structure–activity relationship. Biol Pharm Bull 29:1050

    Article  CAS  PubMed  Google Scholar 

  74. Kiritikar KD, Basu BD (1991) Indian medicinal plants, 2nd edn. Deharadun, International Book Distributors, p 1328

    Google Scholar 

  75. Poli A, Nicolau M, Simoes CMO, Nicolau, RMR, Zanin M (1992) Preliminary pharmacologic evaluation of crude whole plant extracts of Elephantopus scaber. Part I. In vivo studies. J Ethnopharmacol 37:71

    Google Scholar 

  76. Rasoanaivo P, Petitjean A, Ratsimamanga-Urverg S, Rakoto-Ratsimamanga A (1992) Medicinal plants used to treat malaria in Madagascar. J Ethnopharmacol 37:117

    Article  CAS  PubMed  Google Scholar 

  77. Hammer MLA, Johns EA (1993) Tapping an Amazonian plethora: four medicinal plants of Marajo Island, Para (Brazil). J Ethnopharmacol 40:53

    Article  CAS  PubMed  Google Scholar 

  78. Hui C, But PPH (1998) Current advance in ethnopharmacology of ‘‘Kudidan’’ (Herba Elephantopi). Chin J Integr Med 4:229

    Google Scholar 

  79. Chuakul W, Soonthornchareonnon N, Sappakun S (2006) Medicinal plants used in Kungkrabaen Royal Development Study Center. Chanthaburi Province. Thai J Phytopharm 13:27

    Google Scholar 

  80. Inta A, Shengji P, Balslev H, Wangpakapattanawong P, Trisonthi C (2008) A comparative study on medicinal plants used in Akha’s traditional medicine in China and Thailand, cultural coherence or ecological divergence? J Ethnopharmacol 116:508

    Article  PubMed  Google Scholar 

  81. Udayan PS, Harinarayanan MK, Tushar KV, Balchandran I (2008) Some common plants used by Kurichiar tribes of Tirunelli forest, Wayanad district, Kerala in medicine and other traditional uses. Indian J Tradit Knowl 7:250

    Google Scholar 

  82. Personal communication with traditional medicine practitioners I, Traditional Medicine Hospital, Yangon, Myanmar

    Google Scholar 

  83. Chaturvedi D (2011) Sesquiterpene lactones: structural diversity and their biological activities. Opportunity, challenges and scope natural products in medicinal chemistry, p 313

    Google Scholar 

  84. Sim KY, Lee HT (1969) Constituents of Elephantopus scaber (Compositae). Phytochemistry 8:933

    Article  CAS  Google Scholar 

  85. de Silva LBD, Herath WHMW, Jennings RC, Mahendran M, Wannigama GE (1982) A new sesquiterpene lactone from Elephantopus scaber. Phytochemistry 21:1173

    Article  Google Scholar 

  86. Su M, Wu X, Chung HY, Li Y, Ye W (2009) Antiproliferative activities of five Chinese medicinal herbs and active compounds in Elephantopus scaber. Nat Prod Commun 4:1025

    CAS  PubMed  Google Scholar 

  87. Than NN, Fotso S, Sevvana M, Sheldrick GM, Fiebig HH, Kelter G, Laatsch H (2005) Sesquiterpene lactones from Elephantopus scaber. Z Naturforsch 60b:200

    Google Scholar 

  88. But PPH, Hon PM, Cao H, Chan TWD, Wu BM, Mak TCW, Che CT (1997) Sesquiterpene lactones from Elephantopus scaber. Phytochemistry 44:113

    Article  CAS  Google Scholar 

  89. Ahmad S, Rauf A (2003) Use of phenylselenyl chloride in the preparation of methyl 11-phenylseleno-10-acetamido- and ethyl phenylselenoethoxy fatty alkanoates. J Am Oil Chem Soc 80:1049

    Article  CAS  Google Scholar 

  90. Cao R, Ma Y, Mizuno T (1996) Chemical constituents of a heat-dried Chinese mushroom Hohenbuehelia serotina. Biosci Biotechnol Biochem 60:654

    Article  CAS  Google Scholar 

  91. Siddiqui BS, Rasheed M, Ilyas F, Gulzar T, Tariq RM, Naqvi SNH (2004) Analysis of insecticidal Azadirachta indica A. Juss. fractions. Z Naturforsch 59c:104

    Google Scholar 

  92. Matsuo A, Nakayama M, Hayashi S, Nagai K (1980) Fatty acid ethyl esters in the liverwort Conocephalum conicum. Phytochemistry 19:1848

    Article  CAS  Google Scholar 

  93. Sholichin M, Yamasaki K, Kasai R, Tanaka O (1980) 13C nuclear magnetic resonance of lupane-type triterpenes, lupeol, betulin, and betulinic acid. Chem Pharm Bull 28:1006

    Article  CAS  Google Scholar 

  94. Leitão SG, Kaplan MAC, Monache F, Akihisa T, Tamura T (1992) Sterols and sterol glucosides from two Aegiphila species. Phytochemistry 31:2813

    Google Scholar 

  95. Lee KH, Cowherd CM, Wolo MT (1975) Antitumor agents XV: deoxyelephantopin, an antitumor principle from Elephantopus carolinianus Willd. J Pharm Sci 64:1572

    Article  CAS  PubMed  Google Scholar 

  96. Kupchan SM, Aynehchi Y, Cassady JM, McPhail AT, Sim GA, Schnoes HK, Burlingame AL (1966) The isolation and structural elucidation of two novel sesquiterpenoid tumor inhibitors from Elephantopus elatus. J Am Chem Soc 88:3674

    Article  CAS  Google Scholar 

  97. Kupchan SM, Aynehchi Y, Cassady JM, Schnoes HK, Burlingame AL (1969) Tumor inhibitors. XL. The isolation and structural elucidation of elephantin and elephantopin, two novel sesquiterpenoid tumor inhibitors from Elephantopus elatus. J Org Chem 34:3867

    Google Scholar 

  98. Lee KH, Ibuka T, Wu RY, Geissman TA (1977) Structure-antimicrobial activity relationships among the sesquiterpene lactones and related compounds. Phytochemistry 16:1177

    Article  CAS  Google Scholar 

  99. Hall IH, Lee KH, Starnes CO, Eigebaly SA, Ibuka T, Wu YS, Kimura T, Haruna M (1978) Antitumor agents XXX: evaluation of α-methylene-γ-lactone-containing agents for inhibition of tumor growth, respiration, and nucleic acid synthesis. J Pharm Sci 67:1235

    Article  CAS  PubMed  Google Scholar 

  100. Hall IH, Lee KH, Starnes CO, Sumida Y, Wu RY, Waddell TG, Cochran JW, Gerhart KG (1979) Anti-inflammatory activity of sesquiterpene lactones and related compounds. J Pharm Sci 68:537

    Article  CAS  PubMed  Google Scholar 

  101. Hall IH, Lee KH, Starnes CO, Muraoka O, Sumida Y, Waddell TG (1980) Antihyperlipidemic activity of sesquiterpene lactones and related compounds. J Pharm Sci 69:694

    Article  CAS  PubMed  Google Scholar 

  102. Hall IH, Starnes CO Jr, Lee KH, Waddell TG (1980) Mode of action of sesquiterpene lactones as anti-inflammatory agents. J Pharm Sci 69:537

    Article  CAS  PubMed  Google Scholar 

  103. Geethangili M, Ding ST (2018) A review of the phytochemistry and pharmacology of Phyllanthus urinaria L. Front Pharmacol 9:1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chopra RN, Nayar SL, Chopra IC (1986) Glossary of Indian medicinal plants. Catholic Press, Ranchi, CSIR, New Delhi, India

    Google Scholar 

  105. Burkill IH (1996) A dictionary of the economic products of Malay peninsula. Ministry of Agriculture Malaysia, Kuala Lumpur, p 1748

    Google Scholar 

  106. Personal communication with traditional medicine practitioners II. Traditional Medicine Hospital, Yangon, Myanmar

    Google Scholar 

  107. Somanabandhu A, Nitayangkura S, Mahidol C, Ruchirawat S, Likhitwitayawuid K, Shieh HL, Chai H, Pezzuto JM, Cordell GA (1993) 1H- and 13C-NMR assignments of phyllanthin and hypophyllanthin: lignans that enhance cytotoxic responses with cultured multidrug-resistant cells. J Nat Prod 56:233

    Article  CAS  PubMed  Google Scholar 

  108. Huang YL, Chen CC, Ou JC (1992) Isolintetralin: a new lignan from Phyllanthus niruri. Planta Med 58:473

    Article  CAS  PubMed  Google Scholar 

  109. Quader MA, Khatun M, Mosihuzzaman M (1994) Isolation of 4-hydroxysesamin and ent-norsecurinine from Phyllanthus niruri and their chemotaxonomic significance. J Bangladesh Acad Sci 18:229

    CAS  Google Scholar 

  110. Hassarajani SA, Mulchandani NB (1990) Securinine type alkaloids from Phyllanthus niruri. Indian J Chem 29B:801

    CAS  Google Scholar 

  111. Mulchandani NB, Hassarajani SA (1984) 4-Methoxy-nor-securinine, a new alkaloid from Phyllanthus niruri. Planta Med 50:104

    Article  CAS  PubMed  Google Scholar 

  112. Ishimaru K, Yoshimatsu K, Yamakawa T, Kamada H, Shimomura K (1992) Phenolic constituents in tissue cultures of Phyllanthus niruri. Phytochemistry 31:2015

    Article  CAS  Google Scholar 

  113. Ueno H, Horie S, Nishi Y, Shogawa H, Kawasaki M, Suzuki S, Hayashi T, Arisawa M, Shimizu M, Yoshizaki M, Morita N, Berganza LH, Ferro E, Basualdo I (1988) Chemical and pharmaceutical studies on medicinal plants in Paraguay. Geraniin. An angiotensin-converting enzyme inhibitor from “Paraparai mi”, Phyllanthus niruri. J Nat Prod 51:357

    Google Scholar 

  114. Wei WX, Pan YJ, Zhang H, Lin CW, Wie TY (2004) Two new compounds from Phyllanthus niruri. Chem Nat Com 40:460

    Article  CAS  Google Scholar 

  115. Iizuka T, Nagai M, Taniguchi A, Moriyama H, Hoshi K (2007) Inhibitory effects of methyl brevifolincarboxylate isolated from Phyllanthus niruri L. on platelet aggregation. Biol Pharm Bull 30:382

    Google Scholar 

  116. Singh B, Agrawal PK, Thakur RS (1991) Isolation of trans-phytol from Phyllanthus niruri. Planta Med 57:98

    Article  CAS  PubMed  Google Scholar 

  117. Singh B, Agrawal PK, Thakur RS (1989) An acyclic triterpene from Phyllanthus niruri. Phytochemistry 28:1980

    Article  CAS  Google Scholar 

  118. Singh B, Agrawal PK, Thakur RS (1986) Chemical constituents of Phyllanthus niruri Linn. Indian J Chem 25B:600

    CAS  Google Scholar 

  119. Tabassum N, Chattervedi S, Agrawal SS, Ahmed N (2005) Hepatoprotective studies of Phyllanthus niruri on paracetamol-induced liver cell damage in albino mice. JK Practitioner 12:211

    Google Scholar 

  120. Higashino H, Suzuki A, Tanaka Y, Pootakham K (1992) Hypoglycemic effects of Siamese Momordica charantia and Phyllanthus urinaria extracts in streptozotocin-induced diabetic rats. Nippon Yakurigaku Zasshi 100:415

    Article  CAS  PubMed  Google Scholar 

  121. Ogata T, Higuchi H, Mochida S, Matsumoto H, Kato A, Endo T, Kaji A, Kaji H (1992) HIV-1 reverse transcriptase inhibitor from Phyllanthus niruri. AIDS Res Hum Retroviruses 8:1937

    Article  CAS  PubMed  Google Scholar 

  122. Naik AD, Juvekar AR (2003) Effects of alkaloidal extract of Phyllanthus niruri on HIV replication. Indian J Med Sci 57:387

    CAS  PubMed  Google Scholar 

  123. Tona L, Ngimbi NP, Tsakala M, Mesia K, Cimanga K, Apers S, de Bruyne T, Pieters L, Totte J, Vlietinck AJ (1999) Antimalarial activity of 20 crude extracts from nine African medicinal plants used in Kinshasa, Congo. J Ethnopharmacol 68:193

    Article  CAS  PubMed  Google Scholar 

  124. Cimanga RK, Tona L, Luyindula N, Mesia K, Lusakibanza M, Musuamba CT, Apers S, de Bruyne T, van Miert S, Hermans N, Totte J, Pieters L, Vlietinck AJ (2004) In vitro antiplasmodial activity of callus culture extracts and fractions from fresh apical stems of Phyllanthus niruri L. (Euphorbiaceae): 2. J Ethnopharmacol 95:399

    Google Scholar 

  125. Khanna AK, Rizvi F, Chander R (2002) Lipid lowering activity of Phyllanthus niruri in hyperlipemic rats. J Ethnopharmacol 82:19

    Article  CAS  PubMed  Google Scholar 

  126. Santos ARS, Filho VC, Niero R, Viana AM, Moreno FN, Campos MM, Yunes RA, Calixto JB (1994) Analgesic effects of callus culture extracts from selected species of Phyllanthus in mice. J Pharm Pharmacol 46:755

    Article  CAS  PubMed  Google Scholar 

  127. Martini LH, Souza CR, Marques PB, Calixto JB, Yunes RA, Souza DO (2000) Compounds extracted from Phyllanthus and Jatropha elliptica inhibit the binding of (3H)glutamate and (3H)GMP-PNP in rat cerebral cortex membrane. Neurochem Res 25:211

    Article  CAS  PubMed  Google Scholar 

  128. Thabrew MI, Hughes RD (1996) Phytogenic agents in the therapy of liver disease. Phytother Res 10:461

    Article  Google Scholar 

  129. Nishiura JL, Campos AH, Boim MA, Heilberg IP, Schor N (2004) Phyllanthus niruri normalizes elevated urinary calcium levels in calcium stone forming (CSF) patients. Urol Res 32:362

    Article  CAS  PubMed  Google Scholar 

  130. Syamasundar KV, Singh B, Thakur RS, Husain A, Kiso Y, Hikino H (1985) Antihepatotoxic principles of Phyllanthus niruri herbs. J Ethnopharmacol 14:41

    Article  CAS  PubMed  Google Scholar 

  131. Shimizu M, Horie S, Terashima S, Ueno H, Hayashi T, Arisawa M, Suzuki S, Yoshizaki M, Morita N (1989) Studies on aldose reductase inhibitors from natural products. II. Active components of a Paraguayan crude drug “Para-parai mi” from Phyllanthus niruri. Chem Pharm Bull 37:2531

    Google Scholar 

  132. Than NN, Fotso S, Poeggeler B, Hardeland R, Laatsch H (2006) Niruriflavone, a new antioxidant flavone sulfonic acid from Phyllanthus niruri. Z Naturforsch 61b:57

    Google Scholar 

  133. Markham KR, Ternai B, Stanley R, Geiger H, Mabry TJ (1978) Carbon-13 NMR studies of flavonoids. III. Naturally occurring flavonoid glycosides and their acylated derivatives. Tetrahedron 34:1389

    Google Scholar 

  134. Takagi S, Yamaki M, Masuda K, Kubota M (1976) On the constituents of the fruits of Rosa multiflora Thunb. I. Yakugaku Zasshi. 96:284

    Google Scholar 

  135. Latté KP, Kolodziej H (2000) Pelargoniins, new ellagitannins from Pelargonium reniforme. Phytochemistry 54:701

    Article  PubMed  Google Scholar 

  136. Abdel-Mogib M (1999) A lupane triterpenoid from Maerua oblongifolia. Phytochemistry 51:445

    Article  CAS  Google Scholar 

  137. Nawwar MAM, Buddrus J, Bauer H (1982) Dimeric phenolic constituents from the roots of Tamarix nilotica. Phytochemistry 21:1755

    Article  CAS  Google Scholar 

  138. Yoshida T, Itoh H, Matsunaga S, Tanaka R, Okuda T (1992) Tannins and related polyphenols of Euphorbiaceous plants. IX. Hydrolyzable tannins with 1C4 glucose core from Phyllanthus flexuosus Muell. Arg. Chem Pharm Bull 40:53

    Google Scholar 

  139. Zhong Y, Zuo C, Li F, Ding X, Yao Q, Wu K, Zhang Q, Wang Z, Zhou LW, Lan J, Wang X (1998) Chemical constituents of Phyllanthus urinaria L. and its antiviral activity against hepatitis B virus. Zhongguo Zhong Yao Za Zhi 23:363

    Google Scholar 

  140. Kress WJ, DeFilipps RA, Farr E, Kyi YY (2003) A checklist of the trees, shrubs, herbs, and climbers of Myanmar. Contribution from the United States National Herbarium, Washington, DC, vol 45, p 157

    Google Scholar 

  141. Khine MM, Arnold N, Franke K, Porzel A, Schmidt J, Wessjohann L (2007) Phytoconstituents from the root of Streptocaulon tomentosum and their chemotaxonomical relevance for separation from S. juventas. Biochem System Ecol 35:517

    Google Scholar 

  142. Ueda J, Tezuka Y, Banskota AH, Tran QL, Tran QK, Saiki I, Kadota S (2003) Constituents of the Vietnamese medicinal plant Streptocaulon juventas and their antiproliferative activity against the human HT-1080 fibrosarcoma cell line. J Nat Prod 66:1427

    Article  CAS  PubMed  Google Scholar 

  143. Ueda J, Tezuka Y, Banskota AH, Tran QL, Tran QK, Saiki I, Kadota S (2003) Antiproliferative activity of cardenolides isolated from Streptocaulon juventas. Biol Pharm Bull 26:1431

    Article  CAS  PubMed  Google Scholar 

  144. Pham TT, Tran H (2002) Isolation and structural determination of 3β-acetoxyurs-12-ene extracted from Radix Streptocauli. Tap Chi Duoc Hoc 1:13

    Google Scholar 

  145. Khine MM, Franke K, Arnold N, Porzel A, Schmidt J, Wessjohann LA (2004) A new cardenolide from the roots of Streptocaulon tomentosum. Fitoterapia 75:779

    Article  CAS  Google Scholar 

  146. Khine MM (2006) Isolation and characterization of phytoconstituents from Myanmar medicinal plants. PhD Thesis, Martin-Luther-Universität Halle-Wittenberg, Halle. https://sundoc.bibliothek.uni-halle.de/diss-online/06/06H045/prom.pdf

  147. Kawaguchi K, Hirotani M, Furuya T (1988) Biotransformation of digitoxigenin by cell suspension cultures of Strophanthus amboensis. Phytochemistry 27:3475

    Article  CAS  Google Scholar 

  148. Drakenberg T, Brodelius PE, Mcintyre DD, Vogel HJ (1990) Structural studies of digitoxin and related cardenolides by two-dimensional NMR. Can J Chem 68:272

    Article  CAS  Google Scholar 

  149. Furuya T, Kawaguchi K, Hirotani M (1988) Biotransformation of digitoxigenin by cell-suspension cultures of Strophanthus gratus. Phytochemistry 27:2129

    Article  CAS  Google Scholar 

  150. Feleke S, Brehane A (2005) Triterpene compounds from the latex of Ficus sur I. Bull Chem Soc Ethiop 19:307

    CAS  Google Scholar 

  151. Matsunaga S, Tanaka R, Akagi M (1988) Triterpenoids from Euphorbia maculata. Phytochemistry 27:535

    Article  CAS  Google Scholar 

  152. Sashida Y, Ogawa K, Mori N, Yamanouchi T (1992) Triterpenoids from the fruit galls of Actinidia polygama. Phytochemistry 31:2801

    Article  CAS  Google Scholar 

  153. Kojima H, Ogura H (1986) Triterpenoids from Prunella vulgaris. Phytochemistry 25:729

    Article  CAS  Google Scholar 

  154. Yaguchi Y, Sakurai N, Nagai M, Inoue T (1988) Constituents of Myrica rubra. III: structures of two glycosides of myricanol. Chem Pharm Bull 36:1419

    Google Scholar 

  155. Chow YL, Quon HH (1970) Biogenetically related triterpenes from Elateriospermum tapos bark. Phytochemistry 9:1151

    Article  CAS  Google Scholar 

  156. de Pascual TJ, Urones JG, Marcos IS, Basabe P, Cuadrado MJS, Moro RF (1987) Triterpenes from Euphorbia broteri. Phytochemistry 26:1767

    Article  Google Scholar 

  157. Cowan S, Stewart M, Abbiw DK, Latif Z, Sarker SD, Nash RJ (2001) Lignans from Strophanthus gratus. Fitoterapia 72:80

    Article  CAS  PubMed  Google Scholar 

  158. Rashan LJ, Franke K, Khine MM, Kelter G, Fiebig HH, Neumann J, Wessjohann LA (2011) Characterization of the anticancer properties of monoglycosidic cardenolides isolated from Nerium oleander and Streptocaulon tomentosum. J Ethnopharmacol 134:781

    Article  CAS  PubMed  Google Scholar 

  159. Li B, Gilbert MG, Stevens WD (1995) Asclepiadaceae R. Brown. Flora of China, Science Press, Beijing and Missouri Botanical Garden, St. Louis, MO, vol 16, p 189

    Google Scholar 

  160. Kress WJ, DeFilipps RA, Farr E, Kyi YY (2003) A checklist of the trees, shrubs, herbs, and climbers of Myanmar. United States National Herbarium, Washington, DC, vol 45, p 120

    Google Scholar 

  161. Suksamrarn A, Ponglikitmongkol M, Wongkrajang K, Chindaduang A, Kittidanairak S, Jankam A, Yingyongnarongkul B, Kittipanumat N, Chokchaisiri R, Khetkam P, Piyachaturawat P (2008) Diarylheptanoids, new phytoestrogens from the rhizomes of Curcuma comosa: isolation, chemical modification and estrogenic activity evaluation. Bioorg Med Chem 16:6891

    Article  CAS  PubMed  Google Scholar 

  162. Qu Y, Xu F, Nakamura S, Matsuda H, Pongpiriyadacha Y, Wu L, Yoshikawa M (2009) Sesquiterpenes from Curcuma comosa. J Nat Med 63:102

    Article  CAS  PubMed  Google Scholar 

  163. Aggarwal BB, Kumar A, Bharti AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363

    CAS  PubMed  Google Scholar 

  164. Kiuchi F, Goto Y, Sugimoto N, Akao N, Kondon K, Tsuda Y (1993) Nematocidal activity of turmeric: synergistic action of curcuminoids. Chem Pharm Bull 41:1640

    Article  CAS  Google Scholar 

  165. Simon A, Allais DP, Duroux JL, Basly JP, Durand-Fontanier S, Delage C (1998) Inhibitory effect of curcuminoids on MCF-7 cell proliferation and structure-activity relationships. Cancer Lett 129:111

    Article  CAS  PubMed  Google Scholar 

  166. Roth GN, Chandra A, Nair MG (1998) Novel bioactivities of Curcuma longa constituents. J Nat Prod 61:542

    Article  CAS  PubMed  Google Scholar 

  167. Soudamini KK, Unnikrishnan MC, Soni KB, Kuttan R (1992) Inhibition of lipid peroxidation and cholesterol levels in mice by curcumin. Indian J Physiol Pharmacol 36:239

    CAS  PubMed  Google Scholar 

  168. Rajakrishnan V, Menon VP, Rajashekaran KN (1998) Protective role of curcumin in ethanol toxicity. Phytother Res 12:55

    Article  CAS  Google Scholar 

  169. Rasmussen HB, Christense SB, Kvist LP, Karazmi A (2000) A simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa. Planta Med 66:396

    Article  CAS  PubMed  Google Scholar 

  170. Harimaya K, Gao JF, Ohkura T, Kawamata T, Iitaka Y, Guo YT, Inayama S (1991) A series of sesquiterpenes with a 7α-isopropyl side chain and related compounds isolated from Curcuma wenyujin. Chem Pharm Bull 39:843

    Article  CAS  Google Scholar 

  171. Shibuya H, Hamamoto Y, Cai Y, Kitagawa I (1987) A reinvestigation of the structure of zederone, a furanogermacrane-type sesquiterpene from zedoary. Chem Pharm Bull 35:924

    Article  CAS  Google Scholar 

  172. Hikino H, Sakurai Y, Numabe S, Takemoto T (1968) Structure of curcumenol. Chem Pharm Bull 16:39

    Article  CAS  Google Scholar 

  173. Hikino H, Agatsuma K, Takemoto T (1969) Structure of isocurcumenol. Chem Pharm Bull 17:959

    Article  CAS  Google Scholar 

  174. Yoshikawa M, Hatakeyama S, Tanaka N, Fukuda Y, Murakami N, Yamahara J (1992) Orientalols A, B, and C, sesquiterpene constituents from Chinese Alismatis Rhizoma, and revised structures of alismol and alismoxide. Chem Pharm Bull 40:2582

    Article  CAS  Google Scholar 

  175. Ohshiro M, Kuroyanagi M, Ueno A (1990) Structures of sesquiterpenes from Curcuma longa. Phytochemistry 29:2201

    Article  CAS  Google Scholar 

  176. Kuroyanagi M, Ueno A, Koyama K, Natori S (1990) Structures of sesquiterpenes of Curcuma aromatica SALISB. II: studies on minor sesquiterpenes. Chem Pharm Bull 38:55

    Google Scholar 

  177. Kuroyanagi M, Ueno A, Ujiie K, Sato S (1987) Structures of sesquiterpenes from Curcuma aromatica SALISB. Chem Pharm Bull 35:53

    Article  CAS  Google Scholar 

  178. Takano I, Yasuda I, Takeya K, Itokawa H (1995) Guaiane sesquiterpene lactones from Curcuma aeruginosa. Phytochemistry 40:1197

    Article  CAS  Google Scholar 

  179. Matsuda H, Morikawa T, Toguchida I, Ninomiya K, Yoshikawa M (2001) Medicinal foodstuffs. XXVIII. Inhibitors of nitric oxide production and new sesquiterpenes, zedoarofuran, 4-epicurcumenol, neocurcumenol, gajutsulactones A and B, and zedoarolides A and B, from Zedoariae Rhizoma. Chem Pharm Bull 49:1558

    Google Scholar 

  180. Li A, Yue G, Li Y, Pan X, Yang TK (2003) Total asymmetric synthesis of (7S,9R)-(+)-bisacumol. Tetrahedron Asymmetry 14:75

    Article  CAS  Google Scholar 

  181. Shiobara Y, Asakawa Y, Kodama M, Yasuda K, Takemoto T (1985) Curcumenone, curcumanolide A and curcumanolide B, three sesquiterpenoids from Curcuma zedoaria. Phytochemistry 24:2629

    Article  CAS  Google Scholar 

  182. Kikuzaki H, Kobayashi M, Nakatani N (1991) Diarylheptanoids from rhizomes of Zingiber officinale. Phytochemistry 30:3647

    Article  CAS  Google Scholar 

  183. Department of Traditional Medicine (1999) Ministry of Health. Yangon, Government of Union of Myanmar, p 119

    Google Scholar 

  184. Wang YH, Zhang ZK, He HP, Wang JS, Zhou H, Ding M, Hao XJ (2007) Stilbene C-glucosides from Cissus repens. J Asian Nat Prod Res 9:631

    Article  CAS  PubMed  Google Scholar 

  185. Li WW, Ding LS, Li BG, Chen YZ (1996) Oligostilbenes from Vitis heyneana. Phytochemistry 42:1163

    Article  CAS  Google Scholar 

  186. Bawm S, Tiwananthagorn S, Lin KS, Hirota J, Irie T, Htun LL, Maw NN, Myaing TT, Phay N, Miyazaki S, Sakurai T, Oku Y, Matsuura H, Katakura K (2010) Evaluation of Myanmar medicinal plants extracts for antitrypanosomal and cytotoxic activities. J Vet Med Sci 72:525

    Article  PubMed  Google Scholar 

  187. Nyunt KS, Elkhateeb A, Tosa Y, Nabata K, Katakura K, Matsuura H (2012) Isolation of antitrypanosomal compounds from Vitis repens, a medicinal plant of Myanmar. Nat Prod Commun 7:609

    CAS  PubMed  Google Scholar 

  188. Yoshida T, Seno K, Takama Y, Okuda T (1982) Bergenin derivatives from Mallotus japonicus. Phytochemistry 21:1180

    Article  CAS  Google Scholar 

  189. Jiang ZH, Tanaka T, Sakamoto M, Jiang T, Kouno I (2001) Studies on a medicinal parasitic plant: lignans from the stems of Cynomorium songaricum. Chem Pharm Bull 49:1036

    Article  CAS  Google Scholar 

  190. Tsukamoto S, Tomise K, Aburatani M, Onuki H, Hirorta H, Ishiharajima E, Ohta T (2004) Isolation of cytochrome P450 inhibitors from strawberry fruit, Fragaria ananassa. J Nat Prod 67:1839

    Article  CAS  PubMed  Google Scholar 

  191. Hashimoto F, Nonaka GI, Nishioka I (1987) Tannins and related compounds LVI. Isolation of four new acylated flavan-3-ols from Oolong tea (1). Chem Pharm Bull 35:611

    Google Scholar 

  192. Zhang HL, Nagatsu A, Okuyama H, Mizukami H, Sakakibara J (1998) Sesquiterpene glycosides from cotton oil cake. Phytochemistry 48:665

    Article  CAS  Google Scholar 

  193. Khan MA, Nabi SG, Prakash S, Zaman A (1986) Pallidol, a resveratrol dimer from Cissus pallida. Phytochemistry 25:1945

    Article  CAS  Google Scholar 

  194. Mattivi F, Renicro F, Korhammer S (1995) Isolation, characterization, and evolution in red wine vinification of resveratrol monomers. J Agric Food Chem 43:1820

    Article  CAS  Google Scholar 

  195. Wang GC, Liang JP, Wang Y, Li Q, Ye WC (2008) Chemical constituents from Flueggea virosa. Chin J Nat Med 6:251

    Article  CAS  Google Scholar 

  196. Lee J, Kim NH, Nam JW, Lee YM, Jang DS, Kim YS, Nam SH, Seo EK, Yang MS, Kim JS (2010) Scopoletin from the flower buds of Magnolia fargesii inhibits protein glycation, aldose reductase, and cataractogenesis ex vivo. Arch Pharm Res 33:1317

    Article  CAS  PubMed  Google Scholar 

  197. The Plant List. http://www.theplantlist.org/tpl1.1/record/kew-221874, http://www.theplantlist.org/tpl1.1/record/kew-221860. Accessed 20 Feb 2020

  198. Department of Traditional Medicine (1990) The traditional medicine formulations used in Myanmar traditional medicine, Ministry of Health, Myanmar, p 81

    Google Scholar 

  199. Tuchinda P, Reutrakul V, Claeson P, Pongprayoon U, Sematong T, Santisuk T, Taylor WC (2002) Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurata. Phytochemistry 59:169

    Article  CAS  PubMed  Google Scholar 

  200. Trakoontivakorn G, Nakahara K, Shinmoto H, Takenaka M, Onishi-Kameyama M, Ono H, Yoshida M, Nagata T, Tsushida T (2001) Structural analysis of a novel antimutagenic compound, 4-hydroxypanduratin A, and the antimutagenic activity of flavonoids in a Thai spice, fingerroot (Boesenbergia pandurata Schult.) against mutagenic heterocyclic amines. J Agric Food Chem 49:3046

    Google Scholar 

  201. Sawangjaroen N, Subhadhirasakul S, Phongpaichit S, Siripanth C, Jamjaroen K, Sawangjaroen K (2005) The in vitro anti-giardial activity of extracts from plants that are used for self-medication by AIDS patients in Southern Thailand. Parasitol Res 95:17

    Article  CAS  PubMed  Google Scholar 

  202. Cheenpracha S, Karalai C, Ponglimanont C, Subhadhirasakul S, Tewtrakul S (2006) Anti-HIV-1 protease activity of compounds from Boesenbergia pandurata. Bioorg Med Chem 14:1710

    Article  CAS  PubMed  Google Scholar 

  203. Hwang JK, Chung JY, Baek NI, Park JH (2004) Isopanduratin A from Kaempferia pandurata as an active antibacterial agent against cariogenic Streptococcus mutans. Int J Antimicrob Agents 23:377

    Article  CAS  PubMed  Google Scholar 

  204. Yun JM, Kwon H, Hwang JK (2003) In vitro anti-inflammatory activity of panduratin A isolated from Kaempferia pandurata in RAW264.7 cells. Planta Med 69:1102

    Google Scholar 

  205. Panthong A, Tassaneeyakul W, Kanjanapothi D, Tuntiwachwuttikul P, Reutrakul V (1989) Anti-inflammatory activity of 5,7-dimethoxyflavone. Planta Med 55:133

    Article  CAS  PubMed  Google Scholar 

  206. Yun JM, Kweon MH, Kwon H, Hwang JK, Mukhtar H (2006) Induction of apoptosis and cell cycle arrest by a chalcone panduratin A isolated from Kaempferia pandurata in androgen-independent human prostate cancer cells PC3 and DU145. Carcinogenesis 27:1454

    Article  CAS  PubMed  Google Scholar 

  207. Shindo K, Kato M, Kinoshita A, Kobayashi A, Koike Y (2006) Analysis of antioxidant activities contained in the Boesenbergia pandurata Schult. rhizome. Biosci Biotechnol Biochem 70:2281

    Google Scholar 

  208. Pandji C, Grimm C, Wray V, Witte L, Proksch P (1993) Insecticidal constituents from four species of the Zingiberaceae. Phytochemistry 34:415

    Article  CAS  Google Scholar 

  209. Izuishi K, Kato K, Ogura T, Kinoshita T, Esumi H (2000) Remarkable tolerance of tumor cells to nutrient deprivation: possible new biochemical target for cancer therapy. Cancer Res 60:6201

    CAS  PubMed  Google Scholar 

  210. Lu J, Kunimoto S, Yamazaki Y, Kaminishi M, Esumi H (2004) Kigamicin D, a novel anticancer agent based on a new anti-austerity strategy targeting cancer cells’ tolerance to nutrient starvation. Cancer Sci 95:547

    Article  CAS  PubMed  Google Scholar 

  211. Win NN, Awale S, Esumi H, Tezuka Y, Kadota S (2007) Bioactive secondary metabolites from Boesenbergia pandurata of Myanamar and their preferential cytotoxicity against human pancreatic cancer PANC-1 cell line in nutrient-deprived medium. J Nat Prod 70:1582

    Article  CAS  PubMed  Google Scholar 

  212. Win NN, Awale S, Esumi H, Tezuka Y, Kadota S (2008) Panduratins D−I, novel secondary metabolites from rhizomes of Boesenbergia pandurata. Chem Pharm Bull 56:491

    Article  CAS  Google Scholar 

  213. Tuntiwachwuttikul P, Pancharoen O, Reutrakul V, Byrne LT (1984) (1′RS,2′SR,6′RS)-(2,6-Dihydroxy-4-methoxyphenyl)-[3′-methyl-2′-(3″-methylbut-2″-enyl)-6′-phenyl-cyclohex-3′-enyl]methanone (panduratin A) — a constituent of the red rhizomers of a variety of Boesenbergia pandurata. Aust J Chem 37:449

    Article  CAS  Google Scholar 

  214. Pancharoen O, Picker K, Reutrakul V, Taylor WC, Tuntiwachwuttikul P (1987) Constituents of the Zingiberaceae. X. Diastereomers of [7-hydroxy-5-methoxy-2-methyl-2-(4′-methylpent-3′-enyl)-2H-chromen-8-yl][3″-methyl-2″-(3″′-methylbut-2″′-enyl]-6″-phenylcyclohex-3″-enyl]methanone (panduratin B), a constituent of the red rhizomes of a variety of Boesenbergia pandurata. Aust J Chem 40:455

    Google Scholar 

  215. Gu JQ, Park EJ, Vigo JS, Graham JG, Fong HHS, Pezzuto JM, Kinghorn AD (2002) Activity-guided isolation of constituents of Renealmia nicolaioides with the potential to induce the phase II enzyme quinone reductase. J Nat Prod 65:1616

    Article  CAS  PubMed  Google Scholar 

  216. Reisch J, Gombos M, Szendrei K, Novák I (1976) A flavanone with an isoprenoid C10-side chain isolated from Amorpha fruticosa seeds. Arch Pharm 309:152

    Article  CAS  Google Scholar 

  217. Wang Y, Tan W, Li WZ, Li Y (2001) A facile synthetic approach to prenylated flavanones: first total syntheses of (±)-bonannione A and (±)-sophoraflavanone A. J Nat Prod 64:196

    Article  CAS  PubMed  Google Scholar 

  218. Agrawal PK, Thakur RS, Bansal MC (1989) Flavonoids. In: Carbon-13 NMR of flavonoids; Agrawal PK (ed). Elsevier, Amsterdam, vol 39, p 127

    Google Scholar 

  219. Jaipetch T, Kanghae S, Pancharoen O, Patrick VA, Reutrakul V, Tuntiwachwuttikul P, White AH (1982) Constituents of Boesenbergia pandurata (syn. Kaempferia pandurata): isolation, crystal structure and synthesis of (±)-boesenbergin A. Aust J Chem 35:351

    Google Scholar 

  220. Itokawa H, Morita M, Mihashi S (1981) Phenolic compounds from the rhizomes of Alpinia speciosa. Phytochemistry 20:2503

    Article  CAS  Google Scholar 

  221. Norbedo C, Ferraro G, Coussio JD (1981) A new flavanone from Achyrocline flaccida. J Nat Prod 45:635

    Article  Google Scholar 

  222. Bandaranayake WM, Crombie L, Whiting DA (1971) Pyridine-catalysed chromenylation of mono-chelated meta-dihydric phenols with mono-, sesqui- and di-terpene aldehydes: synthesis of rubranine and flemingins A-, B-, and C-methyl ethers. J Chem Soc C:804

    Google Scholar 

  223. Dharmaratne HRW, Nanayakkara NPD, Khan IA (2002) Kavalactones from Piper methysticum, and their 13C NMR spectroscopic analyses. Phytochemistry 59:429

    Article  CAS  PubMed  Google Scholar 

  224. Mahidol C, Tuntiwachwuttikul P, Reutrakul V, Taylor WC (1984) Constituents of Boesenbergia pandurata (syn. Kaempferia pandurata). III. Isolation and synthesis of (±)-boesenbergin B. Aust J Chem 37:1739

    Google Scholar 

  225. Awale S, Lu J, Kalauni SK, Kurashima Y, Tezuka Y, Kadota S, Esumi H (2006) Identification of arctigenin as an antitumor agent having the ability to eliminate the tolerance of cancer cells to nutrient starvation. Cancer Res 66:1751

    Article  CAS  PubMed  Google Scholar 

  226. Win NN, Kyaw MM, Prema Ngwe H, Ito T, Asakawa Y, Okamoto Y, Tanaka M, Abe I, Morita H (2019) Dinorcassane diterpenoid from Boesenbergia rotunda rhizomes collected in lower Myanmar. Chem Biodivers 16:e1800657

    Article  PubMed  CAS  Google Scholar 

  227. Ching AYL, Wah TS, Sukari MA, Lian GEC, Rahmani M, Khalid K (2007) Characterization of flavonoid derivatives from Boesenbergia rotunda (L.). Malays J Anal Sci 11:154

    Google Scholar 

  228. Zhang J, Guo Q, Kong L (2003) Flavonoids from rhizome of Alpinia tonkinensis. China J Chin Mater Med 28:41

    CAS  Google Scholar 

  229. Morita H, Itokawa H (1986) New diterpenes from Alpinia galanga Wild. Chem Lett 15:1205

    Article  Google Scholar 

  230. Kanjilal UN, Kanjilal PC, Das A (1934) Flora of Assam. The Government of Assam, Assam, India

    Google Scholar 

  231. Department of Traditional Medicine (1990) The Traditional Medicine Formulations used in Myanmar Traditional Medicine. Ministry of Health, Myanmar vol 49, p 69

    Google Scholar 

  232. Bordoloi M, Mohan S, Barua NC, Dutta SC, Mathur RK, Ghosh AC (1997) An alkylated coumarin from Kayea assamica. Phytochemistry 44:939

    Article  CAS  Google Scholar 

  233. Lee KH, Chai HB, Tamez PA, Pezzuto JM, Cordell GA, Win KK, Tin-Wa M (2003) Biologically active alkylated coumarins from Kayea assamica. Phytochemistry 64:535

    Article  CAS  PubMed  Google Scholar 

  234. Fernandes EGR, Silva AMS, Cavaleiro JAS, Silva FM, Borges MFM, Pinto MMM (1998) 1H and 13C NMR spectroscopy of mono-, di-, tri- and tetrasubstituted xanthones. Magn Reson Chem 36:305

    Article  CAS  Google Scholar 

  235. Westerman PW, Gunasekera SP, Uvais M, Sultanbawa S, Kazlauskas R (1977) Carbon-13 n.m.r. study of naturally occurring xanthones. Org Magn Reson 9:631

    Google Scholar 

  236. Carpenter I, Locksley HD, Scheinmann F (1969) Extractives from Guttiferae. Part X1V. The structures of seven xanthones from the heartwood of Mammea africana L. J Chem Soc C:2421

    Google Scholar 

  237. Likhitwitayawuid K, Angerhofer CK, Cordell GA, Pezzuto JM, Ruangrungsi N (1993) Cytotoxic and antimalarial bisbenzylisoquinolie alkaloids from Stephania erecta. J Nat Prod 56:30

    Article  CAS  PubMed  Google Scholar 

  238. Win NN, Awale S, Esumi H, Tezuka Y, Kadota S (2008) Novel anticancer agents, kayeassamins A and B from the flower of Kayea assamica of Myanmar. Bioorg Med Chem Lett 18:4688

    Article  CAS  PubMed  Google Scholar 

  239. Win NN, Awale S, Esumi H, Tezuka Y, Kadota S (2008) Novel anticancer agents, kayeassamins C−I from the flowers of Kayea assamica of Myanmar. Bioorg Med Chem 16:8653

    Article  CAS  PubMed  Google Scholar 

  240. Crombie L, Games DE, McCormick A (1967) Extractives of Mammea americana L. Part II. The 4-phenylcoumarins. Isolation and structure of mammea A/AA, A/A cyclo D, A/BA, A/AB, and A/BB. J Chem Soc C:2553

    Google Scholar 

  241. Prachyawarakorn V, Mahidol C, Ruchirawat S (2000) NMR study of seven coumarins from Mammea siamensis. Pharm Biol 38(Suppl 1):58

    Article  CAS  PubMed  Google Scholar 

  242. Morel C, Dartiguelongue C, Youhana T, Oger JM, Séraphin D, Duval O, Richomme P, Bruneton J (1999) New coumarins from Mesua racemosa: isolation and synthesis. Heterocycles 51:2183

    Article  CAS  Google Scholar 

  243. Crombie L, Games DG, Haskins NJ, Reed GF (1972) Extractives of Mammea americana L. Part IV. Identification of new 7,8-annulated relatives of the coumarins mammea A/AA, A/AB, B/AA, and B/AB, and new members of the 6-acyl family B/AA, B/AB, and B/AC. J Chem Soc Perkin Trans 1:2248

    Google Scholar 

  244. Crombie L, Jones RCF, Palmer CJ (1987) Synthesis of the Mammea coumarins. Part 1. The coumarins of the mammea A, B, and C Series. J Chem Soc Perkin Trans 1:317

    Google Scholar 

  245. Thebtaranonth C, Imraporn S, Padungkul N (1981) Phenylcoumarins from Ochrocarpus siamensis. Phytochemistry 20:2305

    Article  CAS  Google Scholar 

  246. Morel C, Guilet D, Oger JM, Séraphin D, Sévenet T, Wiart C, Hadi AHA, Richomme P, Bruneton J (1999) 6-Acylcoumarins from Mesua racemosa. Phytochemistry 50:1243

    Article  CAS  Google Scholar 

  247. Mahidol C, Prawat H, Kaweetripob W, Ruchirawat S (2007) Regioisomers of acylcoumarins from the flowers of Mammea siamensis. Nat Prod Commun 2:557

    CAS  Google Scholar 

  248. Chung CY, Murphy-Ullrich JE, Erickson HP (1996) Mitogenesis, cell migration, and loss of focal adhesions induced by tenascin-C interacting with its cell surface receptor, annexin II. Mol Biol Cell 7:883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Kress WJ, DeFilipps RA, Farr E, Kyi YY (2003) A checklist of the trees, shrubs, herbs, and climbers of Myanmar. Contributions from the United States National Herbarium, Washington 45:p176

    Google Scholar 

  250. Laloo RC, Kharlukhi L, Jeeva S, Mishra BP (2006) Status of medicinal plants in the disturbed and the undisturbed sacred forests of Meghalaya, Northeast India: population structure and regeneration efficacy of some important species. Curr Sci 90:225

    Google Scholar 

  251. Bieber LW, Messana I, Lins SCN, da Silva Filho AA, Chiappeta AA, de Méllo JF (1990) Meroterpenoid naphthoquinones from Cordia corymbosa. Phytochemistry 29:1955

    Article  CAS  Google Scholar 

  252. Ioset JR, Wolfender JL, Marston A, Gupta MP, Hostettmann K (1999) Identification of two isomeric meroterpenoid naphthoquinones from Cordia linnaei by liquid chromatography-mass spectrometry and liquid chromatography-nuclear magnetic resonance spectroscopy. Phytochem Anal 10:137

    Article  CAS  Google Scholar 

  253. Ioset JR, Marston A, Gupta MP, Hostettmann K (2000) Antifungal and larvicidal cordiaquinones from the roots of Cordia curassavica. Phytochemistry 53:613

    Article  CAS  PubMed  Google Scholar 

  254. Ioset JR, Marston A, Gupta MP, Hostettmann K (1998) Antifungal and larvicidal meroterpenoid naphthoquinones and a naphthoxirene from the roots of Cordia linnaei. Phytochemistry 47:729

    Article  CAS  PubMed  Google Scholar 

  255. Freitas HPS, Maia AIV, Silveira ER, Marinho Filho JDB, Moraes MO, Pessoa C, Costa Lotufo LV, Pessoa ODL (2012) Cytotoxic cordiaquinones from the roots of Cordia polycephala. J Braz Chem Soc 23:1558

    Article  CAS  Google Scholar 

  256. Diniz JC, Viana FA, Oliveira OF, Maciel MAM, Torres MCM, Braz-Filho R, Silveira ER, Pessoa ODL (2009) 1H and 13C NMR assignments for two new cordiaquinones from roots of Cordia leucocephala. Magn Reson Chem 47:190

    Article  CAS  PubMed  Google Scholar 

  257. Takahashi M, Fuchino H, Satake M, Agatsuma Y, Sekita S (2004) In vitro screening of leishmanicidal activity in Myanmar timber extracts. Biol Pharm Bull 27:921

    Article  CAS  PubMed  Google Scholar 

  258. Mori K, Kawano M, Fuchino H, Ooi T, Satake M, Agatsuma Y, Kusumi T, Sekita S (2008) Antileishmanial compounds from Cordia fragrantissima collected in Burma (Myanmar). J Nat Prod 71:18

    Article  CAS  PubMed  Google Scholar 

  259. Moir M, Thomson RH, Hausen BM, Simatupang MH (1972) Cordiachromes: a new group of terpenoid quinones from Cordia spp. J Chem Soc Chem Commun:363

    Google Scholar 

  260. Moir M, Thomson RH (1973) Naturally occurring quinones. Part XXII. Terpenoid quinones in Cordia spp. J Chem Soc Perkin Trans 1:1352

    Google Scholar 

  261. Menezes JESA, Lemos TLG, Silveira ER, Braz-Filho R, Pessoaa ODL (2001) Trichotomol, a new cadinenediol from Cordia trichotoma. J Braz Chem Soc 12:787

    Article  CAS  Google Scholar 

  262. Manners GD, Jurd L (1977) The hydroquinone terpenoids of Cordia alliodora. J Chem Soc Perkin Trans 1:405

    Article  Google Scholar 

  263. Stevens KL, Jurd L, Manners G (1973) Alliodorin, a phenolic terpenoid from Cordia alliodora. Tetrahedron Lett 14:2955

    Article  Google Scholar 

  264. The Plant List. http://www.theplantlist.org/tpl1.1/record/tro-50172365, http://www.theplantlist.org/tpl1.1/record/tro-50172375. Accessed 28 Feb 2020

  265. Kress WJ, DeFilipps RA, Farr E, Kyi YY (2003) A checklist of the trees, shrubs, herbs, and climbers of Myanmar. Contributions from the United States National Herbarium, Washington, DC 45:359

    Google Scholar 

  266. Nayar MNS, Sutar CV, Bhan MK (1971) Alkaloids of the stem bark of Hesperethusa crenulata. Phytochemistry 10:2843

    Article  CAS  Google Scholar 

  267. Nayar MNS, Bhan MK (1972) Coumarins and other constituents of Hesperethusa crenulata. Phytochemistry 11:3331

    Article  CAS  Google Scholar 

  268. Ghosh P, Sil P, Majumdar SG, Thakur S (1982) A coumarin from Limonia acidissima. Phytochemistry 21:240

    Article  CAS  Google Scholar 

  269. Patra A, Misra SK, Chaudhuri SK (1988) Constituents of Limonia acidissima. Applications of two-dimensional NMR spectroscopy in structure elucidation. J Indian Chem Soc 65:205

    Google Scholar 

  270. Bandara BMR, Gunatilaka AAL, Wijeratne EMK, Adikaram NKB (1988) Antifungal constituents of Limonia acidissima. Planta Med 54:374

    Article  CAS  PubMed  Google Scholar 

  271. MacLeod JK, Moeller PDR, Bandara BMR, Gunatilaka AAL, Wijeratne EMK (1989) Acidissimin, a new limonoid from Limonia acidissima. J Nat Prod 52:882

    Article  CAS  Google Scholar 

  272. Ghosh P, Ghosh MK, Thakur S, Datta JD, Akihisa T, Tamura T, Kimura Y (1994) Dihydroxy acidissiminol and acidissiminol epoxide, two tyramine derivatives from Limonia acidissima. Phytochemistry 37:757

    Article  CAS  Google Scholar 

  273. Ghosh P, Sil P, Das S, Thakur S, Kokke WCMC, Akihisa T, Shimizu N, Tamura T, Matsumoto T (1991) Tyramine derivatives from the fruit of Limonia acidissima. J Nat Prod 54:1389

    Article  CAS  Google Scholar 

  274. Joo SH, Lee SC, Kim SK (2004) UV absorbent, marmesin, from the bark of Thanakha, Hesperethusa crenulata L. J Plant Biol 47:163

    Article  CAS  Google Scholar 

  275. Murray RDH, Sutcliffe M, Maccabe PH (1971) Claisen rearrangements-IV: oxidative cyclisation of two coumarin o-isoprenylphenols. Tetrahedron 27:4901

    Article  CAS  Google Scholar 

  276. Elgamal MHA, Elewa NH, Elkhrisy EAM, Duddeck H (1979) 13C NMR chemical shifts and carbon-proton coupling constants of some furocoumarins and furochromones. Phytochemistry 18:139

    Article  CAS  Google Scholar 

  277. Kim KH, Lee IK, Kim KR, Ha SK, Kim SY, Lee KR (2009) New benzamide derivatives and NO production inhibitory compounds from Limonia acidissima. Planta Med 75:1146

    Article  CAS  PubMed  Google Scholar 

  278. Kim KH, Ha SK, Kim SY, Kim SH, Lee KR (2009) Limodissimin A: a new dimeric coumarin from Limonia acidissima. Bull Kor Chem Soc 30:2135

    Article  CAS  Google Scholar 

  279. Kim KH, Ha SK, Kim SY, Youn HJ, Lee KR (2010) Constituents of Limonia acidissima inhibit LPS-induced nitric oxide production in BV-2 microglia. J Enzyme Inhib Med Chem 25:887

    Article  CAS  PubMed  Google Scholar 

  280. Wu TS, Furukawa H (1983) Acridone alkaloids. VII. Constituents of Citrus sinensis OSBECK var. brasiliensis Tanaka. Isolation and characterization of three new acridone alkaloids, and a new coumarin. Chem Pharm Bull 31:901

    Google Scholar 

  281. Ju-Ichi M, Inoue M, Ikegaki M. New coumarins from Citrus funadoko (1988) Heterocycles 27:1451

    Google Scholar 

  282. Riviere C, Goossens L, Pommery N, Fourneau C, Delelis A, Henichart JP (2006) Antiproliferative effects of isopentenylated coumarins isolated from Phellolophium madagascariense Baker. Nat Prod Res 20:909

    Article  CAS  PubMed  Google Scholar 

  283. Lemmich J (1995) Monoterpene, chromone and coumarin glucosides of Diplolophium buchananii. Phytochemistry 38:427

    Article  CAS  Google Scholar 

  284. Afek U, Carmeli S, Aharoni N (1995) Columbianetin, a phytoalexin associated with celery resistance to pathogens during storage. Phytochemistry 39:1347

    Article  CAS  Google Scholar 

  285. Furukawa H, Ju-Ichi M, Kajiura I, Hirai M (1986) Ponfolin: a new coumarin from trifoliate orange. Chem Pharm Bull 34:3922

    Article  CAS  Google Scholar 

  286. Bohlmann F, Abraham WR (1980) Ein neues Syringaalkohol-Derivat aus Erechtites hieracifolia. Phytochemistry 19:469

    Article  CAS  Google Scholar 

  287. MacRae DW, Towers GHN (1985) Non-alkaloidal constituents of Virola elongata bark. Phytochemistry 24:561

    Article  CAS  Google Scholar 

  288. Ito A, Shamon LA, Yu B, Mata-Greenwood E, Lee SK, van Breemen RB, Mehta RG, Farnsworth NR, Fong HHS, Pezzuto JM, Kinghorn AD (1998) Antimutagenic constituents of Casimiroa edulis with potential cancer chemopreventive activity. J Agric Food Chem 46:3509

    Article  CAS  Google Scholar 

  289. Venkatraman G, Thombare PS, Sabata BK (1994) A tetracyclic triterpenoid from Garuga pinnata. Phytochemistry 36:417

    Article  CAS  Google Scholar 

  290. Niu XM, Li SH, Peng LY, Lin ZW, Rao GX, Sun HD (2001) Constituents from Limonia crenulata. J Asian Nat Prod Res 3:299

    Article  CAS  PubMed  Google Scholar 

  291. Nakatani M, Taka H, Iwashita T, Naoki H, Hase T (1987) The structure of graucin A, a new bitter limonoid from Evodia grauca Miq. (Rutaceae). Bull Chem Soc Jpn 60:2503

    Google Scholar 

  292. Tori K, Seo S, Shimaoka A, Tomita Y (1974) Carbon-13 NMR spectra of olean-12-enes. Full signal assignments including quaternary carbon signals assigned by use of indirect 13C, 1H spin couplings. Tetrahedron Lett 48:4227

    Google Scholar 

  293. Yosioka I, Inada A, Kitagawa I (1974) Soil bacterial hydrolysis leading to genuine aglycon. VIII. Structures of a genuine sapogenol protobasic acid and a prosapogenol of seed kernels of Madhuca longifolia L. Tetrahedron 30:707

    Google Scholar 

  294. Herath HMTB, Athukoralage PS (1998) Oleanane triterpenoids from Gordonia ceylanica. Nat Prod Sci 4:253

    CAS  Google Scholar 

  295. Miyake Y, Yokomizo K (1998) Determination of cis- and trans-18:1 fatty acid isomers in hydrogenated vegetable oils by high-resolution carbon nuclear magnetic resonance. J Am Oil Chem Soc 75:801

    Article  CAS  Google Scholar 

  296. Roberts IO, Baird MS, Liu Y (2004) The absolute stereochemistry of cascarillic acid. Tetrahedron Lett 45:8685

    Article  CAS  Google Scholar 

  297. Naidu SV, Gupta P, Kumar P (2007) Enantioselective syntheses of (−)-pinellic acid, α- and β-dimorphecolic acid. Tetrahedron 63:7624

    Article  CAS  Google Scholar 

  298. Brodowsky ID, Hamberg M, Oliw EH (1992) A linoleic acid (8R)-dioxygenase and hydroperoxide isomerase of the fungus Gaeumannomyces graminis. Biosynthesis of (8R)-hydroxylinoleic acid and (7S,8S)-dihydroxylinoleic acid from (8R)-hydroperoxylinoleic acid. J Biol Chem 267:14738

    Google Scholar 

  299. Chang HW, Jang KH, Lee D, Kang HR, Kim TY, Lee BH, Choi BW, Kim S, Shin J (2008) Monoglycerides from the brown alga Sargassum sagamianum: isolation, synthesis, and biological activity. Bioorg Med Chem Lett 18:3589

    Article  CAS  PubMed  Google Scholar 

  300. Iadecola C (1997) Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20:132

    Article  CAS  PubMed  Google Scholar 

  301. Lwin T (1982) A manual of traditional medicine practitioners (Myanmar version), 3rd edn. Phoeyarzar Publishing House, Yangon 51, 53, 55, 85, 97

    Google Scholar 

  302. Chopra RN, Nayar SL, Chopra IC (1956) Glossary of Indian medicinal plants CSIR, New Delhi, p 232

    Google Scholar 

  303. Diwan PV, Singh AK (1993) Anti-inflammatory activity of “Soymida febrifuga” (Mansa rohini) in rats and mice. Phytother Res 7:255

    Article  Google Scholar 

  304. Karunasree V, Veeresham C, Rao KRSS, Asres K (2012) Antioxidant, 5-lipoxygenase inhibitory and anticancer activities of Soymida febrifuga A. Juss. Mol Clin Pharmacol 3:134

    Google Scholar 

  305. Yadav PA, Suresh G, Prasad KR, Rao MSA, Babu KS (2012) New phragmalin-type limonoids from Soymida febrifuga. Tetrahedron Lett 53:773

    Article  CAS  Google Scholar 

  306. Yadav PA, Suresh G, Rao MSA, Shankaraiah G, Rani PU, Babu KS (2014) Limonoids from the leaves of Soymida febrifuga and their insect antifeedant activities. Bioorg Med Chem Lett 24:888

    Article  CAS  PubMed  Google Scholar 

  307. Ambaye RY, Indap MA, Panse TB (1971) Identification of methyl angolensate in the bark of Soymida febrifuga (Roxb.) A. Juss. Curr Sci 158:7

    Google Scholar 

  308. Adesida GA, Taylor DAH (1972) Extractives from Soymida febrifuga. Phytochemistry 11:1520

    Article  CAS  Google Scholar 

  309. Purushothaman KK, Chandrasekharan S (1974) Occurrence of methyl angolensate and deoxyandirobin in Soymida febrifuga A. Juss. Indian J Chem 12:207

    CAS  Google Scholar 

  310. Purushothaman KK, Chandrasekharan S, Connolly JD, Rycroft DS (1977) Tetranortriterpenoids and related substances. Part 18. Two new tetranortriterpenoids with a modified furan ring from the bark of Soymida febrifuga A. Juss. (Meliaceae). J Chem Soc Perkin Trans 1:1873

    Google Scholar 

  311. Awale S, Miyamoto T, Linn TZ, Li F, Win NN, Tezuka Y, Esumi H, Kadota S (2009) Cytotoxic constituents of Soymida febrifuga from Myanmar. J Nat Prod 72:1631

    Article  CAS  PubMed  Google Scholar 

  312. Zheng QA, Li HZ, Zhang YJ, Yang CR (2004) Flavonoids from the resin of Dracaena cochinchinensis. Helv Chim Acta 87:1167

    Article  CAS  Google Scholar 

  313. Camarda L, Merlini L, Nasini G (1983) Dragon’s blood from Dracaena draco, structure of novel homoisoflavanoids. Heterocycles 20:39

    Article  CAS  Google Scholar 

  314. Mutanyatta J, Matapa BG, Shushu DD, Abegaz BM (2003) Homoisoflavonoids and xanthones from the tubers of wild and in vitro regenerated Ledebouria graminifolia and cytotoxic activities of some of the homoisoflavonoids. Phytochemistry 62:797

    Article  CAS  PubMed  Google Scholar 

  315. Ioset JR, Marston A, Gupta MP, Hostettmann K (2001) A methylflavan with free radical scavenging properties from Pancratium littorale. Fitoterapia 72:35

    Article  CAS  PubMed  Google Scholar 

  316. Pan WB, Chang FR, Wei LM, Wu YC (2003) New flavans, spirostanol sapogenins, and a pregnane genin from Tupistra chinensis and their cytotoxicity. J Nat Prod 66:161

    Article  CAS  PubMed  Google Scholar 

  317. Achenbach H, Stöcker M, Constenla MA (1988) Flavonoid and other constituents of Bauhinia manca. Phytochemistry 27:1835

    Article  CAS  Google Scholar 

  318. Ma XM, Liu Y, Shi YP (2007) Phenolic derivatives with free-radical-scavenging activities from Ixeridium gracile (DC.) Shih. Chem Biodivers 4:2172

    Google Scholar 

  319. Tanaka S, Kuwai Y, Tabata M (1987) Isolation of monoamine oxidase inhibitors from Glycyrrhiza uralensis roots and the structure-activity relationship. Planta Med 53:5

    Article  CAS  PubMed  Google Scholar 

  320. Carlson RE, Dolphin DH (1982) Pisum sativum stress metabolites: two cinnamylphenols and a 2′-methoxychalcone. Phytochemistry 21:1733

    Article  CAS  Google Scholar 

  321. Meksuriyen D, Cordell GA (1988) Retrodihydrochalcones from Dracaena loureiri. J Nat Prod 51:1129

    Article  CAS  PubMed  Google Scholar 

  322. Chatterjea JN, Prasad R (1973) Condensation of Mannich base salts with phenols. Orientation of adducts. Indian J Chem 11:214

    CAS  Google Scholar 

  323. González AG, León F, Sánchez-Pinto L, Padrón JI, Bermejo J (2000) Phenolic compounds of dragon’s blood from Dracaena draco. J Nat Prod 63:1297

    Article  PubMed  CAS  Google Scholar 

  324. Ichikawa K, Kitaoka M, Taki M, Takaishi S, Iijima Y, Boriboon M, Akiyama T (1997) Retrodihydrochalcones and homoisoflavones isolated from Thai medicinal plant Dracaena loureiri and their estrogen agonist activity. Planta Med 63:540

    Article  CAS  PubMed  Google Scholar 

  325. Fuendjiep V, Wandji J, Tillequin F, Mulholland DA, Budzikiewicz H, Fomum ZT, Nyemba AM, Koch M (2002) Chalconoid and stilbenoid glycosides from Guibourtia tessmanii. Phytochemistry 60:803

    Article  CAS  PubMed  Google Scholar 

  326. Kalabin GA, Kushnarev DF, Tyukavkina NA, Gromova AS, Lutskii VI (1976) PMR spectra of natural stilbene compounds. Khim Prir Soedin:3

    Google Scholar 

  327. Peungvicha P, Temsiririrkkul R, Prasain JK, Tezuka Y, Kadota S, Thirawarapan SS, Watanabe H (1998) 4-Hydroxybenzoic acid: a hypoglycemic constituent of aqueous extract of Pandanus odorus root. J Ethnopharmacol 62:79

    Article  CAS  PubMed  Google Scholar 

  328. Yang XW, Zhao PJ, Ma YL, Xiao HT, Zuo YQ, He HP, Li L, Hao XJ (2007) Mixed lignan-neolignans from Tarenna attenuata. J Nat Prod 70:521

    Article  CAS  PubMed  Google Scholar 

  329. Department of Traditional Medicine (1990) Medicinal plants of Myanmar. Myanmar, Ministry of Health, p 115

    Google Scholar 

  330. Jabeen UBA, Ahmed A, Siddiqui MA (2015) Therapeutic uses of Vitex nigundo. World J Pharm Res 4:589

    Google Scholar 

  331. Awale S, Linn TZ, Li F, Tezuka Y, Myint A, Tomida A, Yamori T, Esumi H, Kadota S (2011) Identification of chrysoplenetin from Vitex negundo as a potential cytotoxic agent against PANC-1 and a panel of 39 human cancer cell lines (JFCR-39). Phytother Res 25:1770

    Article  CAS  PubMed  Google Scholar 

  332. Sy LK, Brown GD (1998) Three sesquiterpenes from Artemisia annua. Phytochemistry 48:1207

    Article  CAS  Google Scholar 

  333. Marco JA, Barbera O, Rodriguez S, Domingo C, Adell J (1988) Flavonoids and other phenolics from Artemisia hispanica. Phytochemistry 27:3155

    Article  CAS  Google Scholar 

  334. Kress WJ, DeFilipps RA, Farr E, Kyi YY (2003) A checklist of the trees, shrubs, herbs, and climbers of Myanmar. United States National Herbarium, Washington, DC 45:209

    Google Scholar 

  335. Mori-Yasumoto K, Izumoto R, Fuchino H, Ooi T, Agatsuma Y, Kusumi T, Satake M, Sekita S (2012) Leishmanicidal activities and cytotoxicities of bisnaphthoquinone analogues and naphthol derivatives from Burman Diospyros burmanica. Bioorg Med Chem 20:5215

    Article  CAS  PubMed  Google Scholar 

  336. Sidhu GS, Sankaram AVB, Mahmood Ali S (1968) Extractives from Diospyros species: Part III. new naphthoquinones and naphthols from the heartwood of Diospyros melanoxylon Roxb. Indian J Chem 6:681

    Google Scholar 

  337. Mahmood Ali S, Prasad KK, Sankaram AVB, Sidhu GS (1971) Double bond fixation in methylnaphthalene derivatives. Tetrahedron Lett 21:2305

    Article  Google Scholar 

  338. Bungard CJ, Morris JC (2002) A convenient preparation of functionalized 1,8-dioxygenated naphthalenes from 6-alkoxybenzocyclobutenones. J Org Chem 67:2361

    Article  CAS  PubMed  Google Scholar 

  339. Parker KA, Tallman EA (1984) Annelative phenol synthesis: preparation of 7-methyljuglone and 7,9,11-trideoxydaunomycinone. Tetrahedron 40:4781

    Article  CAS  Google Scholar 

  340. Ganapaty S, Thomas PS, Karagianis G, Waterman PG, Brun R (2006) Antiprotozoal and cytotoxic naphthalene derivatives from Diospyros assimilis. Phytochemistry 67:1950

    Article  CAS  PubMed  Google Scholar 

  341. Likhitwitayawuid K, Kaewamatawong R, Ruangrungsi N, Krungkrai J (1998) Antimalarial naphthoquinones from Nepenthes thorelii. Planta Med 64:237

    Article  CAS  PubMed  Google Scholar 

  342. Baker RW, Liu S, Sargent MV (1998) Synthesis and absolute configuration of axially chiral binaphthoquinones. Aust J Chem 51:255

    Article  CAS  Google Scholar 

  343. Sidhu GS, Sankaram AVB (1966) Ein neues Naphthochinon aus dem Kernholz Diospyros melanoxylon Roxb. Ann Chem 691:172

    CAS  Google Scholar 

  344. Sankaram AVB, Narayama Reddy VV, Marthandamurthi M (1986) 13C NMR spectra of some naturally occurring binaphthoquinones and related compounds. Phytochemistry 25:2867

    Article  CAS  Google Scholar 

  345. Ali A, Assimopoulou AN, Papageorgiou VP, Kolodziej H (2011) Structure/antileishmanial activity relationship study of naphthoquinones and dependency of the mode of action on the substitution patterns. Planta Med 77:2003

    Article  CAS  PubMed  Google Scholar 

  346. Kress WJ, DeFilipps RA, Farr E, Kyi YY (2003) A checklist of the trees, shrubs, herbs, and climbers of Myanmar. United States National Herbarium, Washington, DC, vol 45, p 276

    Google Scholar 

  347. Lwin T (1982) A manual of traditional medicine practitioners (Myanmar version), 3rd edn. Phoeyarzar Publishing House, Yangon, pp 41, 78, 93

    Google Scholar 

  348. Unlu M, Ergene E, Unlu GV, Zeytinoglu HS, Vural N (2010) Composition, antimicrobial activity and in vitro cytotoxicity of essential oil from Cinnamomum zeylanicum Blume (Lauraceae). Food Chem Toxicol 48:3274

    Article  CAS  PubMed  Google Scholar 

  349. Cheng SS, Liu JY, Huang CG, Hsui YR, Chen WJ, Chang ST (2009) Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Biores Technol 100:457

    Article  CAS  Google Scholar 

  350. Fuchino H, Yazawa A, Kiuchi F, Kawahara N, Takahashi Y, Satake M (2015) Novel monoterpene lactones from Cinnamomum inunctum. Chem Pharm Bull 63:833

    Article  CAS  Google Scholar 

  351. Ahmed AA, Hussein TA, Mahmoud AA, Farag MA, Paré PW, Wojcińska M, Karchesy J, Mabry TJ (2004) Nor-ent-kaurane diterpenes and hydroxylactones from Antennaria geyeri and Anaphalis margaritacea. Phytochemistry 65:2539

    Article  CAS  PubMed  Google Scholar 

  352. Lwin T (1982) A manual of traditional medicine practitioners (Myanmar version), 3rd edn. Phoeyarzar Publishing House, Yangon, pp 55, 57, 59, 81, 93, 97

    Google Scholar 

  353. Tuchinda P, Udchachon J, Reutrakul V, Santisuk T, Skelton BW, White AH, Taylor WC (1994) Pimarane diterpenes from Kaempferia pulchra. Phytochemistry 36:731

    Article  CAS  Google Scholar 

  354. Prasad S, Yadav VR, Sundaram C, Reuter S, Hema PS, Nair MS, Chaturvedi MM, Aggarwal BB (2010) Crotepoxide chemosensitizes tumor cells through inhibition of expression of proliferation, invasion, and angiogenic proteins linked to proinflammatory pathway. J Biol Chem 285:26987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Prawat U, Tuntiwachwuttikul P, Taylor WC, Engelhardt LM, Skelton BW, White AH (1993) Diterpenes from a Kaempferia species. Phytochemistry 32:991

    Article  CAS  Google Scholar 

  356. Win NN, Ito T, Aimaiti S, Imagawa H, Ngwe H, Abe I, Morita H (2015) Kaempulchraols A-H, diterpenoids from the rhizomes of Kaempferia pulchra collected in Myanmar. J Nat Prod 78:1113

    Article  CAS  PubMed  Google Scholar 

  357. Win NN, Ito T, Aimaiti S, Kodama T, Imagawa H, Ngwe H, Asakawa Y, Abe I, Morita H (2015) Kaempulchraols I−O: new isopimarane diterpenoids from Kaempferia pulchra rhizomes collected in Myanmar and their antiproliferative activity. Tetrahedron 71:4707

    Article  CAS  Google Scholar 

  358. Win NN, Ito T, Aimaiti S, Kodama T, Tanaka M, Ngwe H, Asakawa Y, Abe I, Morita H (2015) Kaempulchraols P−T, diterpenoids from Kaempferia pulchra rhizomes collected in Myanmar. J Nat Prod 78:2306

    Article  CAS  PubMed  Google Scholar 

  359. Win NN, Ito T, Matsui T, Aimaiti S, Kodama T, Ngwe H, Okamoto Y, Tanaka M, Asakawa Y, Abe I, Morita H (2016) Isopimarane diterpenoids from Kaempferia pulchra rhizomes collected in Myanmar and their Vpr inhibitory activity. Bioorg Med Chem Lett 26:1789

    Article  CAS  PubMed  Google Scholar 

  360. Win NN, Hardianti B, Ngwe H, Hayakawa Y, Morita H (2020) Anti-inflammatory activities of isopimara-8(9),15-diene diterpenoids and mode of action of kaempulchraols B−D from Kaempferia pulchra rhizomes. J Nat Med 74:487

    Article  CAS  PubMed  Google Scholar 

  361. Win NN, Hardiantia B, Kasahara S, Ngwe H, Hayakawa Y, Morita H (2020) Anti-inflammatory activities of isopimara-8(14),15-diene diterpenoids and mode of action of kaempulchraols P and Q from Kaempferia pulchra rhizomes. Bioorg Med Chem Lett 30:126841

    Article  CAS  Google Scholar 

  362. Chang CI, Tseng MH, Kuo YH (2005) Five new diterpenoids from the bark of Taiwania cryptomerioides. Chem Pharm Bull 53:286

    Article  CAS  Google Scholar 

  363. Xia X, Zhang J, Zhang Y, Wei F, Liu X, Jia A, Liu C, Li W, She Z, Lin Y (2012) Pimarane diterpenes from the fungus Epicoccum sp. HS-1 associated with Apostichopus japonicus. Bioorg Med Chem Lett 22:3017

    Google Scholar 

  364. Thongnest S, Mahidol C, Sutthivaiyakit S, Ruchirawat S (2005) Oxygenated pimarane diterpenes from Kaempferia marginata. J Nat Prod 68:1632

    Article  CAS  PubMed  Google Scholar 

  365. Touché EMG, Lopez EG, Reyes AP, Sánchez H, Honecker F, Achenbach H (1997) Parryin, a diterpene with a tricyclic 6-7-5-ring system from Salvia parryi. Phytochemistry 45:387

    Article  Google Scholar 

  366. Nagashima F, Murakami M, Takaoka S, Asakawa Y (2003) ent-Isopimarane-type diterpenoids from the New Zealand liverwort Trichocolea mollissima. Phytochemistry 64:1319

    Article  CAS  PubMed  Google Scholar 

  367. Win NN, Ngwe H, Abe I, Morita H (2017) Naturally occurring Vpr inhibitors from medicinal plants of Myanmar. J Nat Med 71:579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Richter SN, Frasson I, Palù G (2009) Strategies for inhibiting function of HIV-1 accessory proteins: a necessary route to AIDS therapy? Curr Med Chem 16:267

    Article  CAS  PubMed  Google Scholar 

  369. Tristem M, Marshall C, Karpas A, Hill F (1992) Evolution of the primate lentiviruses: evidence from Vpx and Vpr. EMBO J 11:3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Stewart SA, Poon B, Jowett JB, Chen IS (1997) Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest. J Virol 71:5579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Stewart SA, Poon B, Song JY, Chen IS (2000) Human immunodeficiency virus type 1 Vpr induces apoptosis through caspase activation. J Virol 74:3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Watanabe N, Nishihara Y, Yamaguchi T, Koito A, Miyoshi H, Kakeya H, Osada H (2006) Fumagillin suppresses HIV-1 infection of macrophages through the inhibition of Vpr activity. FEBS Lett 580:2598

    Article  CAS  PubMed  Google Scholar 

  373. Kamata M, Wu RP, An DS, Saxe JP, Damoiseaux R, Phelps ME, Huang J, Chen IS (2006) Cell-based chemical genetic screen identifies damnacanthal as an inhibitor of HIV-1 Vpr induced cell death. Biochem Biophys Res Commun 348:1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  374. Shimura M, Zhou Y, Asada Y, Yoshikawa T, Hatake K, Takaku F, Ishizaka Y (1999) Inhibition of Vpr-induced cell cycle abnormality by quercetin: a novel strategy for searching compounds targeting Vpr. Biochem Biophys Res Commun 261:308

    Article  CAS  PubMed  Google Scholar 

  375. Ong EB, Watanabe N, Saito A, Futamura Y, Abd El Galil KH, Koito A, Najimudin N, Osada H (2011) Vipirinin, a coumarin-based HIV-1 Vpr inhibitor, interacts with a hydrophobic region of Vpr. J Biol Chem 286:14049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Kress WJ, DeFilipps RA, Farr E, Kyi YY (2003) A checklist of the trees, shrubs, herbs, and climbers of Myanmar. United States National Herbarium, Washington, DC 45:373

    Google Scholar 

  377. Koike K, Yokoh M, Furukawa M, Ishii S, Ohmoto T (1995) Picrasane quassinoids from Picrasma javanica. Phytochemistry 40:233

    Article  CAS  Google Scholar 

  378. Koike K, Ohmoto T, Uchida A, Oonishi I (1994) Javacarboline, a new β-carboline alkaloid from the stem of Picrasma javanica in Java. Heterocycles 38:1413

    Article  CAS  Google Scholar 

  379. Yoshikawa M, Harada E, Aoki S, Yamahara J, Murakami N, Shibuya H, Kitagawa I (1993) Indonesian medicinal plants. VI. On the chemical constituents of the bark of Picrasma javanica BL. (Simaroubaceae) from Flores Island. Absolute stereostructures of picrajavanins A and B. Chem Pharm Bull 41:2101

    Google Scholar 

  380. Koike K, Ohmoto T (1992) New quassinoid glucosides, javanicinosides I, J, K, and L, from Picrasma javanica. J Nat Prod 55:482

    Article  CAS  Google Scholar 

  381. Ishii K, Koike K, Ohmoto T (1991) Javanicinosides D−H, quassinoid glucosides from Picrasma javanica. Phytochemistry 30:4099

    Article  CAS  Google Scholar 

  382. Koike K, Ishii K, Mitsunaga K, Ohmoto T (1991) New quassinoids from Picrasma javanica. Structures of javanicins U, V, W, X and Y. Chem Pharm Bull 39:2021

    Google Scholar 

  383. Koike K, Ishii K, Mitsunaga K, Ohmoto T (1991) New des-4-methylpicrasane quassinoids from Picrasma javanica. J Nat Prod 54:837

    Article  CAS  Google Scholar 

  384. Koike K, Ishii K, Mitsunaga K, Ohmoto T (1991) Javanicins N, P and Q, New quassinoids from Picrasma javanica. Chem Pharm Bull 39:939

    Article  CAS  Google Scholar 

  385. Koike K, Ishii K, Mitsunaga K, Ohmoto T (1991) Quassinoids from Picrasma javanica. Phytochemistry 30:933

    Article  CAS  Google Scholar 

  386. Koike K, Ohmoto T (1990) Constituents from Picrasma javanica. Part 4. Quassinoids from Picrasma javanica. Phytochemistry 29:2617

    Google Scholar 

  387. Koike K, Ishii K, Ohmoto T (1990) Quassinoids from Picrasma javanica. Tennen Yuki Kagobutsu Toronkai Koen Yoshishu 32:175

    Google Scholar 

  388. Koike K, Mitsunaga K, Ohmoto T (1990) New quassinoids from Indonesian Picrasma javanica. Structures of javanicins E, F, G and M. Chem Pharm Bull 38:2746

    Google Scholar 

  389. Arbain D, Byrne LT, Sargent MV, Skelton BW, White AH (1990) The alkaloids of Picrasma javanica: Further studies. Aust J Chem 43:433

    Article  CAS  Google Scholar 

  390. Ohmoto T, Koike K, Mitsunaga K, Fukuda H, Kagei K (1989) Studies on the constituents of Indonesian Picrasma javanica. III. Structures of new quassinoids, javanicins A, C and D. Chem Pharm Bull 37:2991

    Google Scholar 

  391. Ohmoto T, Koike K, Mitsunaga K, Fukuda H, Kagei K, Kawai T, Sato T (1989) Studies on the constituents of Indonesian Picrasma javanica. II. Structure of a new quassinoid glucoside, javanicinoside A. Chem Pharm Bull 37:993

    Google Scholar 

  392. Ohmoto T, Koike K, Kagei K (1987) Alkaloids from Picrasma javanica growing in Indonesia. Shoyakugaku Zasshi 41:338

    CAS  Google Scholar 

  393. Arbain D, Sargent MV (1987) The alkaloids of Picrasma javanica. Aust J Chem 40:1527

    Article  CAS  Google Scholar 

  394. Johns SR, Lamberton JA, Sioumis AA (1970) 4-Methoxy-1-vinyl-β-carboline, a new alkaloid from Picrasma javanica (Simaroubaceae). Aust J Chem 23:629

    Article  CAS  Google Scholar 

  395. Win NN, Ito T, Ismail Kodama T, Win YY, Tanaka M, Ngwe H, Asakawa Y, Abe I, Morita H (2015) Picrajavanicins A−G, quassinoids from Picrasma javanica collected in Myanmar. J Nat Prod 78:3024

    Article  CAS  PubMed  Google Scholar 

  396. Win NN, Ito T, Ismail Kodama T, Win YY, Tanaka M, Okamoto Y, Imagawa H, Ngwe H, Asakawa Y, Abe I, Morita H (2016) Picrajavanicins H−M, new quassinoids from Picrasma javanica collected in Myanmar and their antiproliferative activities. Tetrahedron 72:746

    Article  CAS  Google Scholar 

  397. Jiao WH, Gao H, Zhao F, He F, Zhou GX, Yao XS (2011) A new neolignan and a new sesterterpenoid from the stems of Picrasma quassioides Bennet. Chem Biodivers 8:1163

    Article  CAS  PubMed  Google Scholar 

  398. Win NN, Ito T, Win YY, Ngwe H, Kodama T, Abe I, Morita H (2016) Quassinoids: viral protein R inhibitors from Picrasma javanica bark collected in Myanmar for HIV infection. Bioorg Med Chem Lett 26:4620

    Article  CAS  PubMed  Google Scholar 

  399. Prema Wong CP, Nugroho AE, Awouafack MD, Win YY, Win NN, Ngwe H, Morita H, Morita H (2019) Two new quassinoids and other constituents from Picrasma javanica wood, and their biological activities. J Nat Med 73:589

    Article  CAS  PubMed  Google Scholar 

  400. Mendes CC, Sandes LQ, Cruz FG, Roque NF (2009) New (9βH)-lanostanes and lanostanes from Mikania aff. jeffreyi (Asteraceae). Chem Biodivers 6:1463

    Google Scholar 

  401. Darmawan A, Kosela S, Kardono LBS, Syah YM (2012) Scopoletin, a coumarin derivative compound isolated from Macaranga gigantifolia Merr. J Appl Pharm Sci 2:175

    Google Scholar 

  402. Koike K, Ohmoto T (1985) Carbon-13 nuclear magnetic resonance study of canthin-6-one alkaloids. Chem Pharm Bull 33:5239

    Article  CAS  Google Scholar 

  403. Alan-Sheeja DB, Nair MS (2012) Phytochemical constituents of Curcuma amada. Biochem Syst Ecol 44:264

    Article  CAS  Google Scholar 

  404. Firman K, Kinoshita T, Itai K, Sankawa U (1988) Terpenoids from Curcuma heyneana. Phytochemistry 27:3887

    Article  CAS  Google Scholar 

  405. Abas A, Lajis NH, Shaari K, Israf DA, Stanslas J, Yusuf UK, Raof SM (2005) A labdane diterpene glucoside from the rhizomes of Curcuma mangga. J Nat Prod 68:1090

    Article  CAS  PubMed  Google Scholar 

  406. Liu Y, Nair MG (2011) Labdane diterpenes in Curcuma mangga rhizomes inhibit lipid peroxidation, cyclooxygenase enzymes and human tumour cell proliferation. Food Chem 124:527

    Article  CAS  Google Scholar 

  407. Schramm A, Ebrahimi SN, Raith M, Zaugg J, Rueda DC, Hering S, Hamburger M (2013) Phytochemical profiling of Curcuma kwangsiensis rhizome extract, and identification of labdane diterpenoids as positive GABAA receptor modulators. Phytochemistry 96:318

    Article  CAS  PubMed  Google Scholar 

  408. Itokawa H, Morita M, Mihashi S (1980) Labdane and bisnorlabdane type diterpenes from Alpinia speciosa K. Schum. Chem Pharm Bull 28:3452

    Article  CAS  Google Scholar 

  409. Itokawa HI, Yoshimoto S, Morita H (1988) Diterpenes from the rhizomes of Alpinia formosana. Phytochemistry 27:435

    Article  CAS  Google Scholar 

  410. Morita H, Itokawa H (1988) Cytotoxic and antifungal diterpenes from the seeds of Alpinia galanga. Planta Med 54:117

    Article  CAS  PubMed  Google Scholar 

  411. Sirat HM, Masri D, Rahman AA (1994) The distribution of labdane diterpenes in the Zingiberaceae of Malaysia. Phytochemistry 36:699

    Article  CAS  Google Scholar 

  412. Xu HX, Dong H, Sim KY (1996) Labdane diterpenes from Alpinia zerumbet. Phytochemistry 42:149

    Article  CAS  Google Scholar 

  413. Sy LK, Brown GD (1997) Labdane diterpenoids from Alpinia chinensis. J Nat Prod 60:904

    Article  CAS  Google Scholar 

  414. Ngo KS, Brown GD (1998) Stilbenes, monoterpenes, diarylheptanoids, labdanes and chalcones from Alpinia katsumadai. Phytochemistry 47:1117

    Article  CAS  Google Scholar 

  415. Zhang J, Kong LY (2004) Chemical constituents from Alpinia tonkinensis. J Asian Nat Prod Res 6:199

    Article  CAS  PubMed  Google Scholar 

  416. Nuntawong N, Susksamrarn A (2008) Chemical constituents of the rhizomes of Alpinia malaccensis. Biochem Syst Ecol 36:661

    Article  CAS  Google Scholar 

  417. Li QM, Luo JG, Yang MH, Kong LY (2015) Terpenoids from rhizomes of Alpinia japonica inhibiting nitric oxide production. Chem Biodivers 12:388

    Article  PubMed  CAS  Google Scholar 

  418. Singh S, Gray AI, Waterman PG (1993) 14,15,16-Trinorlabda-8(17),11-(E)-dien-13-al: A trinorlabdane diterpene from the rhizome of Hedychium coronarium. Nat Prod Lett 3:163

    Article  CAS  Google Scholar 

  419. Itokawa H, Morita H, Katou I, Takeya K, Cavalheiro AJ, Oliveira RC, Ishige M, Motidome M (1988) Cytotoxic diterpenes from the rhizomes of Hedychium coronarium. Planta Med 54:311

    Article  CAS  PubMed  Google Scholar 

  420. Xiao P, Sun C, Zahid M, Ishrud O, Pan Y (2001) New diterpene from Hedychium villosum. Fitoterapia 72:837

    Article  CAS  PubMed  Google Scholar 

  421. Chimnoi N, Pisutjaroenpong S, Ngiwsara L, Dechtrirut D, Chokchaichamnankit D, Khunnawutmanotham N, Mahidol C, Techasakul S (2008) Labdane diterpenes from the rhizomes of Hedychium coronarium. Nat Prod Res 22:1249

    Article  CAS  PubMed  Google Scholar 

  422. Chen JJ, Ting CW, Wu YC, Hwang TL, Cheng MJ, Sung PJ, Wang TC, Chen JF (2013) New labdane-type diterpenoids and anti-inflammatory constituents from Hedychium coronarium. Int J Mol Sci 14:13063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  423. Akiyama K, Kikuzaki H, Aoki T, Okuda A, Lajis NH, Nakatani N (2006) Terpenoids and a diarylheptanoid from Zingiber ottensii. J Nat Prod 69:1637

    Article  CAS  PubMed  Google Scholar 

  424. Kimbu SF, Ngadjui B, Sondengam LB, Njimi TK, Connolly JD, Fakunle CO (1987) A new labdane diterpenoid from the seeds of Aframomum daniellii. J Nat Prod 50:230

    Article  CAS  Google Scholar 

  425. Duker-Eshun G, Jaroszewski JW, Asomaning WA, Oppong-Boachie F, Olsen CE, Christensen SB (2002) Antiplasmodial activity of labdanes from Aframomum latifolium and Aframomum sceptrum. Planta Med 68:642

    Article  CAS  PubMed  Google Scholar 

  426. Nissankara Rao LS, Kilari EK, Kola PK (2019) Protective effect of Curcuma amada acetone extract against high-fat and high-sugar diet-induced obesity and memory impairment. Nutr Neurosci May 31:1

    Google Scholar 

  427. Policegoudra RS, Rehna K, Rao LJ, Aradhya SM (2010). Antimicrobial, antioxidant, cytotoxicity and platelet aggregation inhibitory activity of a novel molecule isolated and characterized from mango ginger (Curcuma amada Roxb.) rhizome. J Biosci 35:231

    Google Scholar 

  428. Policegoudra RS, Aradhya SM, Singh L (2011) Mango ginger (Curcuma amada Roxb.) a promising spice for phytochemicals and biological activities. J Biosci 36:739

    Google Scholar 

  429. Win NN, Ito T, Ngwe H, Win YY, Prema Okamoto Y, Tanaka M, Asakawa Y, Abe I, Morita H (2017) Labdane diterpenoids from Curcuma amada rhizomes collected in Myanmar and their antiproliferative activities. Fitoterapia 122:34

    Article  CAS  PubMed  Google Scholar 

  430. Singh S, Kumar JK, Saikia D, Shanker K, Thakur JP, Negi AS, Banerjee S (2010) A bioactive labdane diterpenoid from Curcuma amada and its semisynthetic analogues as antitubercular agents. Eur J Med Chem 45:4379

    Article  CAS  PubMed  Google Scholar 

  431. Singh S, Gray AI, Skelton BW, Waterman PG, White AH (1991) (+)-14-Hydroxylabda-8(17),12-dieno-16,15-lactone ((+)-isocoronarin-D): a new diterpene from Hedychium coronarium (Zingiberaceae). Aust J Chem 44:1789

    Article  CAS  Google Scholar 

  432. Dibwe DF, Awale S, Morita H, Tezuka Y (2015) Anti-austeritic constituents of the Congolese medicinal plant Aframomum melegueta. Nat Prod Commun 10:997

    PubMed  Google Scholar 

  433. Department of Traditional Medicine (1999) Ministry of Health. Yangon, Government of Union of Myanmar, p 117

    Google Scholar 

  434. Mohanbabu AV, Kishore MK, Chandrashekar BR, Pradeepa HD, Christopher R, Nandit PB (2015) Evaluation of potential antiamnesic activities of aqueous extract of Vitex trifolia leaves against scopolamine induced amnesia and in normal rats. J Basic Clin Physiol Pharmacol 26:201

    Article  CAS  PubMed  Google Scholar 

  435. Mathankumar M, Tamizhselvi R, Manickam V, Purohit G (2015) Assessment of anticarcinogenic potential of Vitex trifolia and Triticum aestivum Linn. by in vitro rat liver microsomal degranulation. Toxicol Int 22:114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. Wu J, Zhou T, Zhang SW, Zhang XH, Xuan LJ (2009) Cytotoxic terpenoids from the fruits of Vitex trifolia L. Planta Med 75:367

    Article  CAS  PubMed  Google Scholar 

  437. Li WX, Cui CB, Cai B, Yao XS (2005) Labdane-type diterpenes as new cell cycle inhibitors and apoptosis inducers from Vitex trifolia L. J Asian Nat Prod Res 7:95

    Article  CAS  PubMed  Google Scholar 

  438. Li WX, Cui CB, Cai B, Wang HY, Yao XS (2005) Flavonoids from Vitex trifolia L. inhibit cell cycle progression at G2/M phase and induce apoptosis in mammalian cancer cells. J Asian Nat Prod Res 7:615

    Google Scholar 

  439. Matsui M, Adib-Conquy M, Coste A, Kumar-Roine S, Pipy B, Laurent D, Pauillac S (2012) Aqueous extract of Vitex trifolia L. (Labiatae) inhibits LPS-dependent regulation of inflammatory mediators in RAW 264.7 macrophages through inhibition of nuclear factor kappa B translocation and expression. J Ethnopharmacol 143:24

    Google Scholar 

  440. Matsui M, Kumar-Roine S, Darius HT, Chinain M, Laurent D, Pauillac S (2009) Characterisation of the anti-inflammatory potential of Vitex trifolia L. (Labiatae), a multipurpose plant of the Pacific traditional medicine. J Ethnopharmacol 126:427

    Google Scholar 

  441. Kannathasan K, Senthilkumar A, Venkatesalu V (2011) Mosquito larvicidal activity of methyl-p-hydroxybenzoate isolated from the leaves of Vitex trifolia Linn. Acta Trop 120:115

    Article  CAS  PubMed  Google Scholar 

  442. Manjunatha BK, Vidya SM, Krishna V, Mankani KL, Singh SD, Manohara YN (2007) Comparative evaluation of wound healing potency of Vitex trifolia L. and Vitex altissima L. Phytother Res 21:457

    Google Scholar 

  443. Geetha V, Doss A, Doss AP (2004) Antimicrobial potential of Vitex trifolia Linn. Anc Sci Life 23:30

    CAS  PubMed  PubMed Central  Google Scholar 

  444. Hossain MM, Paul N, Sohrab MH, Rahman E, Rashid MA (2001) Antibacterial activity of Vitex trifolia. Fitoterapia 72:695

    Article  CAS  PubMed  Google Scholar 

  445. Hernández MM, Heraso C, Villarreal ML, Vargas-Arispuro I, Aranda E (1999) Biological activities of crude plant extracts from Vitex trifolia L. (Verbenaceae). J Ethnopharmacol 67:37

    Google Scholar 

  446. Zheng CJ, Zhu JY, Yu W, Ma XQ, Rahman K, Qin LP (2013) Labdane-type diterpenoids from the fruits of Vitex trifolia. J Nat Prod 76:287

    Article  CAS  PubMed  Google Scholar 

  447. Gu Q, Zhang XM, Zhou J, Qiu SX, Chen JJ (2008) One new dihydrobenzofuran lignan from Vitex trifolia. J Asian Nat Prod Res 10:499

    Article  CAS  PubMed  Google Scholar 

  448. Ono M, Ito Y, Noharab T (2001) Four new halimane-type diterpenes, vitetrifolins D−G, from the fruit of Vitex trifolia. Chem Pharm Bull 49:1220

    Article  CAS  Google Scholar 

  449. Suksamrarn A, Werawattanametin K, Brophy JJ (1991) Variation of essential oil constituents in Vitex trifolia species. Flavour Fragr J 6:97

    Article  CAS  Google Scholar 

  450. Suchitra M, Cheriyan BV (2018) Vitex trifolia: An ethnobotanical and pharmacological review. Asian J Pharm Clin Res 11:12

    CAS  Google Scholar 

  451. Nishina A, Itagaki M, Sato D, Kimura H, Hirai Y, Phay N, Makishima M (2017) The rosiglitazone-like effects of vitexilactone, a constituent from Vitex trifolia L. in 3T3-L1 preadipocytes. Molecules 22:2030

    Google Scholar 

  452. Ono M, Yamamoto M, Yanaka T, Ito Y, Nohara T (2001) Ten new labdane-type diterpenes from the fruit of Vitex rotundifolia. Chem Pharm Bull 49:82

    Article  CAS  Google Scholar 

  453. You KM, Son KH, Chang HW, Kang SS, Kim HP (1998) Vitexicarpin, a flavonoid from the fruits of Vitex rotundifolia, inhibits mouse lymphocyte proliferation and growth of cell lines in vitro. Planta Med 64:546

    Article  CAS  PubMed  Google Scholar 

  454. Seebacher W, Simic N, Weis R, Saf R, Kunert O (2003) Complete assignments of 1H and 13C NMR resonances of oleanolic acid, 18α-oleanolic acid, ursolic acid and their 11-oxo derivatives. Magn Reson Chem 41:636

    Article  CAS  Google Scholar 

  455. Ukiya M, Sato D, Kimura H, Koketsu M, Phay N, Nishina A (2020) (−)-O-Methylcubebin from Vitex trifolia enhanced adipogenesis in 3T3-L1 cells via the inhibition of ERK1/2 and p38MAPK phosphorylation. Molecules 25:73

    Article  CAS  Google Scholar 

  456. Kiralj R, Ferreira MM, Donate PM, da Silva R, Albuquerque S (2007) Conformational study of (8α,8′β)-bis(substituted phenyl)-lignano-9,9′-lactones by means of combined computational, database mining, NMR, and chemometric approaches. J Phys Chem A 111:6316

    Article  CAS  PubMed  Google Scholar 

  457. Marco JA, Sanz-Cervera JF, Morante MD, Garcia-Lliso V, Valles-Xirau J, Jakupovic J (1996) Tricyclic sesquiterpenes from Artemisia chamaemelifolia. Phytochemistry 41:837

    Article  CAS  Google Scholar 

  458. de Pascoli IC, Nascimento IR, Lopes LM (2006) Configurational analysis of cubebins and bicubebin from Aristolochia lagesiana and Aristolochia pubescens. Phytochemistry 67:735

    Article  PubMed  CAS  Google Scholar 

  459. Lwin T (1982) A manual of traditional medicine practitioners (Myanmar version), 3rd edn. Phoeyarzar Publishing House, Yangon, p 49

    Google Scholar 

  460. Tiew P, Takayama H, Kitajima M, Aimi N, Kokpol U, Chavasiri W (2003) A novel neolignan, mansoxetane, and two new sesquiterpenes, mansonones R and S, from Mansonia gagei. Tetrahedron Lett 44:6759

    Article  CAS  Google Scholar 

  461. Tiew P, Puntumchai A, Kokpol U, Chavasiri W (2002) Coumarins from the heartwood of Mansonia gagei Drumm. Phytochemistry 60:773

    Article  CAS  PubMed  Google Scholar 

  462. Tiew P, Ioset JR, Kokpol U, Chavasiri W, Hostettmann K (2003) Antifungal, antioxidant and larvicidal activities of compounds isolated from the heartwood of Mansonia gagei. Phytother Res 17:190

    Article  CAS  PubMed  Google Scholar 

  463. Tiew P, Ioset JR, Kokpol U, Schenk K, Jaiboon N, Chaichit N, Chavasiri W, Hostettmann K (2002) Four new sesquiterpenoid derivatives from the heartwood of Mansonia gagei. J Nat Prod 65:1332

    Article  CAS  PubMed  Google Scholar 

  464. El-Halawany AM, Chung MH, Ma CM, Komatsu K, Nishihara T, Hattori M (2007) Anti-estrogenic activity of mansorins and mansonones from the heartwood of Mansonia gagei DRUMM. Chem Pharm Bull 55:1332

    Article  CAS  Google Scholar 

  465. Puckhaber LS, Stipanovic RD (2004) Thespesenone and dehydrooxoperezinone-6-methyl ether, new sesquiterpene quinones from Thespesia populnea. J Nat Prod 67:1571

    Article  CAS  PubMed  Google Scholar 

  466. Baghdadi MA, Al-Abbasi FA, El-Halawany AM, Aseeri AH, Al-Abd AM (2018) Anticancer profiling for coumarins and related O-naphthoquinones from Mansonia gagei against solid tumor cells in vitro. Molecules 23:1020

    Article  PubMed Central  CAS  Google Scholar 

  467. Nishina A, Miura A, Goto M, Terakado K, Sato D, Kimura H, Hirai Y, Sato H, Phay N (2018) Mansonone E from Mansonia gagei inhibited α-MSH-induced melanogenesis in B16 cells by inhibiting CREB expression and phosphorylation in the PI3K/Akt pathway. Biol Pharm Bull 41:770

    Article  CAS  PubMed  Google Scholar 

  468. Boonsri S, Karalai C, Ponglimanont C, Chantrapromma S, Kanjana-Opas A (2008) Cytotoxic and antibacterial sesquiterpenes from Thespesia populnea. J Nat Prod 71:1173

    Article  CAS  PubMed  Google Scholar 

  469. Kress WJ, DeFilipps RA, Farr E, Kyi YY (2003) A checklist of the trees, shrubs, herbs, and climbers of Myanmar. United States National Herbarium. Washington, DC, vol 45 p 390

    Google Scholar 

  470. Gopal RH, Purushothaman KK (1984) Effect of plant isolates on coagulation of blood: an in vitro study. Bull Medico-Ethnobot Res 5:171

    Google Scholar 

  471. Rathore RS, Prakash A, Singh PP (1977) Premna integrifolia Linn. Preliminary study of anti-inflammatory and anti-arthritic activity. Rheumatism 12:130

    Google Scholar 

  472. Dash GK, Patrolm CP, Maiti AK (2005) A study on the anti-hyperglycaemic effect of roots of Premna corymbosa Rottl. J Nat Remedies 5:31

    Google Scholar 

  473. Rajendran R, Basha NS (2010) Antimicrobial activity of crude extracts and fractions of Premna serratifolia Linn. root. Med Plants 2:33

    Google Scholar 

  474. Yadav D, Masood N, Luqman S, Brindha P, Gupta MM (2013) Antioxidant furofuran lignans from Premna integrifolia. Ind Crops Prod 41:397

    Article  CAS  Google Scholar 

  475. Mali PY (2015) Premna integrifolia L.: a review of its biodiversity, traditional uses and phytochemistry. Anc Sci Life 35:4

    Google Scholar 

  476. Win NN, Woo SY, Ngwe H, Prema Wong CP, Ito T, Okamoto Y, Tanaka M, Imagawa H, Asakawa Y, Abe I, Morita H (2018) Tetrahydrofuran lignans: melanogenesis inhibitors from Premna integrifolia wood collected in Myanmar. Fitoterapia 127:308

    Article  CAS  PubMed  Google Scholar 

  477. Ju Y, Still CC, Sacalis JN, Li J, Ho CT (2001) Cytotoxic coumarins and lignans from extracts of the northern prickly ash (Zanthoxylum americanum). Phytother Res 15:441

    Article  CAS  PubMed  Google Scholar 

  478. Okazaki M, Ishibashi F, Shuto Y, Taniguchi E (1997) Total synthesis of (+)-paulownin. Biosci Biotech Biochem 61:743

    Article  CAS  Google Scholar 

  479. Anjaneyulu ASR, Rao AM, Rao VK, Row LR (1977) Novel hydroxyl lignans from the heartwood of Gmelina arborea. Tetrahedron 33:133

    Article  CAS  Google Scholar 

  480. Choi HG, Choi YH, Kim JH, Kim HH, Kim SH, Kim JA, Lee SM, Na MK, Lee SH (2014) A new neolignan and lignans from the stems of Lindera obtusiloba Blume and their anti-allergic inflammatory effects. Arch Pharm Res 37:467

    Article  CAS  PubMed  Google Scholar 

  481. Tsukamoto H, Hisada S, Nishibe S (1985) Lignans from the bark of the Olea plants II. Chem Pharm Bull 33:1232

    Article  CAS  Google Scholar 

  482. Woo SY, Hoshino S, Wong CP, Win NN, Awouafack MD, Prema Ngwe H, Zhang H, Hayashi F, Abe I, Morita H (2019) Lignans with melanogenesis effects from Premna serratifolia wood. Fitoterapia 133:35

    Article  CAS  PubMed  Google Scholar 

  483. Woo SY, Wong CP, Win NN, Hoshino S, Prema Ngwe H, Abe I, Morita H (2019) A new tetrahydrofuran type lignan from Premna serratifolia wood. Nat Prod Commun 14:113

    Google Scholar 

  484. Endres D, Lausberg V, Signore GD, Berner OM (2002) A general approach to the asymmetric synthesis of lignans: (−)-methylpiperitol, (−)-sesamin, (−)-aschantin, (+)-yatein, (+) dihydroclusin, (+)-burseran, and (−)-isostegane. Synthesis 4:515

    Article  Google Scholar 

  485. Lin RW, Tsai IL, Duh CY, Lee KH, Cehn IS (2004) New lignans and cytotoxic constituents from Wikstroemia lanceolata. Planta Med 70:234

    Article  CAS  PubMed  Google Scholar 

  486. Marchand PA, Kato MJ, Lewis NG (1997) (+)-Episesaminone, a Sesamum indicum furofuran lignan. Isolation and hemisynthesis. J Nat Prod 60:1189

    Article  CAS  Google Scholar 

  487. Fatope MO, Salihu L, Asante SK, Takeda Y (2002) Larvicidal activity of extracts and triterpenoids from Lantana camara. Pharm Biol 40:564

    Article  CAS  Google Scholar 

  488. Wen X, Sun H, Liu J, Cheng K, Zhang P, Zhang L, Hao J, Zhang L, Ni P, Zographos SE, Leonidas DD, Alexacou KM, Gimisis T, Hayes JM, Oikonomakos NG (2008) Naturally occurring pentacyclic triterpenes as inhibitors of glycogen phosphorylase: synthesis, structure-activity relationships, and X-ray crystallographic studies. J Med Chem 51:3540

    Article  CAS  PubMed  Google Scholar 

  489. Huang D, Ding Y, Li Y, Zhang W, Fang W, Chen X (2006) Anti-tumor activity of a 3-oxo derivative of oleanolic acid. Cancer Lett 233:289

    Article  CAS  PubMed  Google Scholar 

  490. Woo SY (2019) Melanogenesis regulatory constituents from Premna serratifolia, Jatropha multifida and Clathria prolifera collected in Myanmar. PhD Thesis, University of Toyama

    Google Scholar 

  491. The Plant List. www.theplantlist.org/tpl1.1/record/kew-2549267, 2018. Accessed 14 Feb 2018

  492. Kress WJ, DeFilipps RA, Farr E, Kyi YY (2003) A checklist of the trees, shrubs, herbs, and climbers of Myanmar. United States National Herbarium, Washington, DC 45:371

    Google Scholar 

  493. Lwin T (1982) A manual of traditional medicine practitioners (Myanmar version), 3rd Ed. Phoeyarzar Publishing House, Yangon, pp 41, 52, 71, 91, 92

    Google Scholar 

  494. Joy KL, Rajeshkumar NV, Kuttan G, Kuttan R (2000) Effect of Picrorrhiza kurroa extract on transplanted tumors and chemical carcinogenesis in mice. J Ethnopharmacol 71:261

    Article  CAS  Google Scholar 

  495. Dhawan BN (1995) Picroliv–a new hepatoprotective agent from an Indian medicinal plant. Picrorrhiza kurroa. Med Chem Res 5:595

    CAS  Google Scholar 

  496. Engels F, Renirie BF, Hart BA, Labadie RP, Nijkamp FP (1992) Effects of apocynin, a drug isolated from the roots of Picrorhiza kurroa, on arachidonic acid metabolism. FEBS Lett 305:254

    Article  CAS  PubMed  Google Scholar 

  497. Dorsch W, Stuppner H, Wagner H, Gropp M, Demoulin S, Ring J (1991) Antiasthmatic effects of Picrorhiza kurroa: androsin prevents allergen- and PAF-induced bronchial obstruction in guinea pigs. Int Arch Allergy Appl Immunol 95:128

    Article  CAS  PubMed  Google Scholar 

  498. Puri A, Saxena RP, Sumati Guru PY, Kulshreshtha DK, Saxena KC, Dhawan BN (1992) Immunostimulant activity of Picroliv, the iridoid glycoside fraction of Picrorhiza kurroa, and its protective action against Leishmania donovani infection in hamsters. Planta Med 58:528

    Article  CAS  PubMed  Google Scholar 

  499. Chander R, Kapoor NK, Dhawan BN (1992) Picroliv, picroside-I and kutkoside from Picrorhiza kurroa are scavengers of superoxide anions. Biochem Pharmacol 44:180

    Article  CAS  PubMed  Google Scholar 

  500. Mehrotra R, Rawat S, Kulshreshltha D (1990) In vitro studies on the effect of certain natural products against hepatitis B virus. Indian J Med Res 92:133

    CAS  PubMed  Google Scholar 

  501. Gupta PP (2001) Picroliv: hepatoprotective immunomodulator. Drugs Fut 26:25

    Article  CAS  Google Scholar 

  502. Basu K, Dasgupta B, Bhattacharya SK, Debnath PK (1971) Chemistry and pharmacology of apocynin, isolated from Picrorhiza kurroa Royle ex Benth. Curr Sci 40:603

    CAS  Google Scholar 

  503. Stuppner H, Wagner H (1989) New cucurbitacin glycosides from Picrorhiza kurroa. Planta Med 55:559

    Article  CAS  PubMed  Google Scholar 

  504. Stuppner H, Wagner H (1989) Minor iridoid and phenol glycosides of Picrorhiza kurroa. Planta Med 55:467

    Article  CAS  PubMed  Google Scholar 

  505. Stuppner H, Kähling HP, Seligmann O, Wagner H (1990) Minor cucurbitacin glycosides from Picrorhiza kurrooa. Phytochemistry 29:1633

    Article  CAS  Google Scholar 

  506. Rastogi RP, Sharma VN, Siddiqui S (1949) Chemical examination of Picrorhiza kurroa Benth., part 1. J Sci Ind Res 8:173

    Google Scholar 

  507. Kitagawa I, Hino K, Nishimura T, Mukai E, Yosioak I, Inouye H, Yoshida T (1969) Picroside I, a bitter principle of Picrorhiza kurroa. Tetrahedron Lett 10:3837

    Article  Google Scholar 

  508. Jia Q, Hong MF, Minter D (1999) Pikuroside: a novel iridoid from Picrorhiza kurroa. J Nat Prod 62:901

    Article  CAS  PubMed  Google Scholar 

  509. Win NN, Kodama T, Lae KZW, Win YY, Ngwe H, Abe I, Morita H (2019) Bis-iridoid and iridoid glycosides: viral protein R inhibitors from Picrorhiza kurroa collected in Myanmar. Fitoterapia 134:101

    Article  CAS  PubMed  Google Scholar 

  510. Murai F, Tagawa M, Matsuda S, Kikuchi T, Uesato S, Inouye H (1985) Abeliosides A and B, secoiridoid glucosides from Abelia grandiflora. Phytochemistry 24:2329

    Article  CAS  Google Scholar 

  511. Keawpradub N, Takayama H, Aimi N, Sakai SI (1994) Indole alkaloids from Alstonia glaucescens. Phytochemistry 37:1745

    Article  CAS  Google Scholar 

  512. Bianco A, Passacantilli P (1981) 8-Epiloganin, an iridoid glucoside from Odontites verna. Phytochemistry 20:1873

    Article  CAS  Google Scholar 

  513. Venditti A, Frezza C, Sciubba F, Foddai S, Serafini M, Nicoletti M, Bianco A (2016) Secoiridoids and other chemotaxonomically relevant compounds in Pedicularis: phytochemical analysis and comparison of Pedicularis rostratocapitata Crantz and Pedicularis verticillata L. from Dolomites. Nat Prod Res 30:1698

    Google Scholar 

  514. Chen Y, Yu H, Guo F, Wu Y, Li Y (2018) Antinociceptive and anti-inflammatory activities of a standardized extract of bis-iridoids from Pterocephalus hookeri. J Ethnopharmacol 216:233

    Article  CAS  PubMed  Google Scholar 

  515. Jensen SR, Franzyk H, Wallander E (2002) Chemotaxonomy of the Oleaceae: iridoids as taxonomic markers. Phytochemistry 60:213

    Article  CAS  PubMed  Google Scholar 

  516. Inouye H, Uesato S (1986) Biosynthesis of iridoids and secoiridoids. Prog Chem Org Nat Prod 50:169

    CAS  Google Scholar 

  517. Sabandar CW, Ahmat N, Jaafar FM, Sahidin I (2013) Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae): a review. Phytochemistry 85:7

    Article  CAS  PubMed  Google Scholar 

  518. Lwin T (1982) A manual of traditional medicine practitioners (Myanmar version), 3rd edn Phoeyarzar Publishing House, Yangon, pp 51,76

    Google Scholar 

  519. Falodun A, Imieje V, Erharuyi O, Joy A, Langer P, Jacob M, Khan S, Abaldry M, Hamann M (2014) Isolation of antileishmanial, antimalarial and antimicrobial metabolites from Jatropha multifida. Asian Pac J Trop Biomed 4:374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  520. Anani K, Adjarah Y, Améyapoh Y, Karou SD, Agbonon A, de Souza C, Gbeassor M (2016) Antimicrobial, anti-inflammatory and antioxidant activities of Jatropha multifida L. (Euphorbiaceae). Pharmacog Res 8:142

    Google Scholar 

  521. Kosasi S, Van Der Sluis WG, Labadie RP (1989) Multifidol and multifidol glucoside from the latex of Jatropha multifida. Phytochemistry 28:2439

    Article  CAS  Google Scholar 

  522. Das B, Ravikanth B, Reddy KR, Thirupathi P, Raju TV, Sridhar B (2008) Diterpenoids from Jatropha multifida. Phytochemistry 69:2639

    Article  CAS  PubMed  Google Scholar 

  523. Zhu JY, Zhang CY, Dai JJ, Rahman K, Zhang H (2017) Diterpenoids with thioredoxin reductase inhibitory activities from Jatropha multifida. Nat Prod Res 31:2753

    Article  CAS  PubMed  Google Scholar 

  524. Das B, Kashinatham A, Venkataiah B, Srinivas KVNS, Mahender G, Reddy MR (2003) Cleimiscosin A, a coumarino-lignoid from Jatropha gossypifolia. Biochem Syst Ecol 31:1189

    Article  CAS  Google Scholar 

  525. Shoji M, Woo SY, Masuda A, Win NN, Ngwe H, Takahashi E, Kido H, Morita H, Ito T, Kuzuhara T (2017) Anti-influenza virus activity of extracts from the stems of Jatropha multifida Linn. collected in Myanmar. BMC Complement Altern Med 17:96

    Google Scholar 

  526. Woo SY, Wong CP, Win NN, Lae KZW, Woo B, Elsabbagh SA, Liu QQ, Ngwe H, Morita H (2019) Anti-melanin deposition activity and active constituents of Jatropha multifida stems. J Nat Med 73:805

    Article  CAS  PubMed  Google Scholar 

  527. Gao W, Li Q, Chen J, Wang Z, Hua C (2013) Total synthesis of six 3,4-unsubstituted coumarins. Molecules 18:15613

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  528. Lima OOA, Braz-Filho R (1997) Dibenzylbutyrolactone lignans and coumarins from Ipomoea cairica. J Braz Chem Soc 8:235

    Article  Google Scholar 

  529. Aguiar RM, Alves CQ, David JM, Lima LCRL, David JP, Queiróz LP (2012) Antioxidant activities of isolated compounds from stems of Mimosa invisa. Mart. ex Colla. Quim Nova 35:567

    Article  CAS  Google Scholar 

  530. Kinjo J, Higuchi H, Fukui K, Nohara T (1991) Lignoids from Albizziae Cortex. II. A biodegradation pathway of syringaresinol. Chem Pharm Bull 39:2952

    Google Scholar 

  531. Abe F, Yamaguchi T (1988) 9α-Hydroxypinoresinol, 9α-hydroxymedioresinol and related lignans from Allamandra neriifolia. Phytochemistry 27:575

    Article  CAS  Google Scholar 

  532. Xie LH, Akao T, Hamasaki K, Deyama T, Hattori M (2003) Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of Enterococcus faecalis strain PDG-1 responsible for the transformation of (+)-pinoresinol to (+)-lariciresinol. Chem Pharm Bull 51:508

    Article  CAS  Google Scholar 

  533. Kumor V, Staden JV (2016) A review of Swertia chirayita (Gentianaceae) as a traditional medicinal plant. Front Pharmacol 6:308

    Google Scholar 

  534. Zhou NJ, Geng CA, Huang XY, Ma YB, Zhang XM, Wang JL, Chen JJ (2015) Anti-hepatitis B virus active constituents from Swertia chirayita. Fitoterapia 100:27

    Article  CAS  PubMed  Google Scholar 

  535. Kumar V, Chandra S (2015) LC-ESI/MS determination of xanthone and secoiridoid glycosides from in vitro regenerated and in vivo Swertia chirayita. Physiol Mol Biol Plants 21:51

    Article  CAS  PubMed  Google Scholar 

  536. Padhan JK, Kumar V, Sood H, Singh TR, Chauhan RS (2015) Contents of therapeutic metabolites in Swertia chirayita correlate with the expression profiles of multiple genes in corresponding biosynthesis pathways. Phytochemistry 116:38

    Article  CAS  PubMed  Google Scholar 

  537. Woo SY, Win NN, Oo WMN, Ngwe H, Ito T, Abe I, Morita H (2019) Viral Protein R inhibitors from Swertia chirata of Myanmar. J Biosci Bioeng 128:445

    Article  CAS  PubMed  Google Scholar 

  538. Alaribe S, Shode F, Coker HA, Ayoola G, Sunday A, Singh N, Iwuanyanwu S (2011) Antimicrobial activities of hexane extract and decussatin from stembark extract of Ficus congensis. Int J Mol Sci 12:2750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  539. Basnet P, Kadota S, Shimizu M, Namba T (1994) Bellidifolin: a potent hypoglycemic agent in streptozotocin (STZ)-induced diabetic rats from Swertia japonica. Planta Med 60:507

    Article  CAS  PubMed  Google Scholar 

  540. Li ZY, Wang C, Zang Z, Xiao H (2011) Study on chemical constituents of Swertia binchuanensis. Lishizhen Med Mater Med Res 22:1086

    CAS  Google Scholar 

  541. Zheng XY, Yang YF, Li W, Zhao X, Sun Y, Sun H, Wang YH, Pu XP (2014) Two xanthones from Swertia punicea with hepatoprotective activities in vitro and in vivo. J Ethnopharmacol 153:854

    Article  CAS  PubMed  Google Scholar 

  542. Csuk R, Siewert B (2011) A convenient separation of ursolic and oleanolic acid. Tetrahedron Lett 52:6616

    Article  CAS  Google Scholar 

  543. Kashiwada Y, Wang HK, Nagao T, Kitanaka S, Yasuda I, Fujioka T, Yamagishi T, Cosentino LM, Kozuka M, Okabe H, Ikeshiro Y, Hu CQ, Yeh E, Lee KH (1998) Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J Nat Prod 61:1090

    Google Scholar 

  544. Urbain A, Marston A, Sintra Grilo L, Bravo J, Purev O, Purevsuren B, Batsuren D, Reist M, Carrupt PA, Hostettmann K (2008) Xanthones from Gentianella amarella ssp. acuta with acetylcholinesterase and monoamine oxidase inhibitory activities. J Nat Prod 71:895

    Google Scholar 

  545. Hu TY, Ju JM, Mo LH, Ma L, Hu WH, You RR, Chen XQ, Chen YY, Liu ZQ, Qiu SQ, Fan JT, Cheng BH (2019) Anti-inflammation action of xanthones from Swertia chirayita by regulating COX-2/NF-κB/MAPKs/Akt signaling pathways in RAW264.7 macrophage cells. Phytomedicine 55:214

    Google Scholar 

  546. Verma H, Patil PR, Kolhapure RM, Gopalkrishna V (2008) Antiviral activity of the Indian medicinal plant extract, Swertia chirata against Herpes simplex viruses: a study by in vitro and molecular approach. Indian J Med Microbiol 26:322

    Article  CAS  PubMed  Google Scholar 

  547. Pasfield LA, Cruz L, Ho J, Coote ML, Otting G, McLeod MD (2013) Synthesis of (±)-panduratin A and related natural products using the high pressure Diels-Alder reaction. Asian J Org Chem 2:60

    Article  CAS  Google Scholar 

  548. Bala KR, Seshadri (1971) Isolation and synthesis of some coumarin components of Mesua ferrea seed oil. Phytochemistry 10:1131

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professors Douglas Kinghorn and Heinz Falk for their enormous assistance and encouragement with the preparation of the manuscript and whose contributions to this volume went far beyond their editorial duties. The authors would like to express their gratitude to Professor Yoshinori Asakawa (Tokushima Bunri University), Professor Ikuro Abe (University of Tokyo), and Professor Dr Daw Hla Ngwe (Yangon University) for valuable suggestions. The authors also acknowledge the researchers from Myanmar, Germany, Japan, and Korea for their great contributions to the scientific research publications regarding the medicinal plants from Myanmar. Special thanks are owed to Professor Dr Ni Ni Than (Yangon University), Dr Myint Myint Than (Department of Traditional Medicine), Dr Yi Yi Win (Dawei University), Dr Khine Zar Wynn Lae (Yangon University), and Dr Ei Ei Thwin (Taunggoke Degree College), who helped to take the photographs of the Myanmar medicinal plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Morita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Win, N.N., Morita, H. (2021). Bioactive Compounds from Medicinal Plants in Myanmar. In: Kinghorn, A.D., Falk, H., Gibbons, S., Kobayashi, J., Asakawa, Y., Liu, JK. (eds) Progress in the Chemistry of Organic Natural Products 114. Progress in the Chemistry of Organic Natural Products, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-030-59444-2_2

Download citation

Publish with us

Policies and ethics