Skip to main content

Plant reproduction

  • Chapter
  • First Online:
Alpine Plant Life

Abstract

The alpine flora of a given mountain region commonly contains 200–300 different species of higher plants (Chap. 2). How do they manage to maintain their presence and expand their range into new open land? How do they ensure the maintenance of intra-population diversity required for sustained ground cover in a harsh and ever-changing environment? There are three ways

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aegisdottir HH, Kuss P, Stöcklin J (2009) Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann Bot 104:1313–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agakhanyantz OE, Lopatin IK (1978) Main characteristics of the ecosystems of the Pamirs, USSR. Arct Alp Res 10:397–407

    Article  Google Scholar 

  • Akhalkatsi M, Wagner J (1996) Reproductive phenology and seed development of Gentianella caucasea in different habitats in the central Caucasus. Flora 191:161–168

    Article  Google Scholar 

  • Aksenova AA, Onipchenko VG, Blinnikov MS (1998) Plant interactions in alpine tundra: 13 years of experimental removal of dominant species. Ecoscience 5:258–270

    Article  Google Scholar 

  • Alatalo JM, Totland O (1997) Response to simulated climatic change in an alpine and subarctic pollen-risk strategist, Silene acaulis. Glob Change Biol 3:74–79

    Article  Google Scholar 

  • Amen RD (1966) The extent and role of seed dormancy in alpine plants. Quart Rev Biol 41:271–281

    Article  Google Scholar 

  • Anthelme F, Meneses RI, Valero NNH, Pozo P, Dangles O (2017) Fine nurse variations explain discrepancies in the stress-interaction relationship in alpine regions. Oikos 126:1173–1183

    Article  Google Scholar 

  • Arroyo MTK, Armesto JJ, Villagran C (1981) Plant phenoloical patterns in the high Andean cordillera in central Chile. J Ecol 69:205–223

    Article  Google Scholar 

  • Arroyo MTK, Dudley LS, Jespersen G, Pacheco DA, Cavieres LA (2013) Temperature-driven flower longevity in a high-alpine species of Oxalis influences reproductive assurance. New Phytol 200:1260–1268

    Article  PubMed  Google Scholar 

  • Arroyo MTK, Pacheco DA, Dudley LS (2017) Functional role of long-lived flowers in preventing pollen limitation in a high-elevation outcrossing species. AOB Plants 9:1–12

    Article  Google Scholar 

  • Bachmann MA (1980) Oekologie und breeding system bei Poa alpina L. (PhD Thesis, University of Zürich). Mitt Bot Mus Univ Zürich 318

    Google Scholar 

  • Bahn M, Körner Ch (1987) Vegetation und Phänologie der hochalpinen Gipfelflur des Glungezer in Tirol. Ber Natwiss Med Ver Innsbr 74:61–80

    Google Scholar 

  • Baker HG (1972) Seed weight in relation to environmental conditions in California. Ecology 53:997–1010

    Article  Google Scholar 

  • Barmettler E (2009)Quantitative analyse der morphologischen vielfalt von Alpenpflanzen. MSc Thesis in Botany, University of Basel

    Google Scholar 

  • Bauert MR (1993) Vivipary in Polygonum viviparum: an adaptation to cold climate? Nord J Bot 13:473–480

    Article  Google Scholar 

  • Beck E, Schlutter I, Scheibe R, Schulze ED (1984) Growth rates and population rejuvenation of East African giant groundsels (Dendrosenecio keniodendron). Flora 175:243–248

    Article  Google Scholar 

  • Benedict JB (1989) Use of Silene acaulis for dating: the relationship of cushion diameter to age. Arct Alp Res 21:91–96

    Article  Google Scholar 

  • Bergmann P, Molau U, Holmgren B (1996) Micrometeorological impacts on insect activity and plant reproductive success in an alpine environment, Swedish Lapland. Arct Alp Res 28:196–202

    Article  Google Scholar 

  • Berry PE, Calvo R (1994) An overview of the reproductive biology of Espeletia (Asteraceae) in the Venezuelan Andes. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Cambridge University Press, Cambridge, pp 229–249

    Chapter  Google Scholar 

  • Billings WD (1974) Arctic and alpine vegetation: plant adaptations to cold summer climates. In: Ives JD, Barry RG (eds) Arctic and alpine environments. Methuen, London, pp 403–443

    Google Scholar 

  • Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529

    Article  Google Scholar 

  • Bingham RA, Orthner AR (1998) Efficient pollination of alpine plants. Nature 391:238–239

    Article  Google Scholar 

  • Bliss LC (1971) Arctic and alpine plant life cycles. Ann Rev Ecol Syst 2:405–438

    Article  Google Scholar 

  • Braun J (1913) Die Vegetationsverhältnisse der Schneestufe in den Rätisch Lepontischen Alpen. Ein Bild des Pflanzenlebens an seinen äussersten Grenzen. Neue Denkschr Schweiz Naturforsch Ges 48:1–347

    Google Scholar 

  • Callaghan TV (1976) Growth and population dynamics of Carex bigelowii in an alpine environment. Oikos 27:402–413

    Article  Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Zaal K, Lortie CJ, Michelet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848

    Article  CAS  PubMed  Google Scholar 

  • CaraDonna PJ, Bain JA (2016) Frost sensitivity of leaves and flowers of subalpine plants is related to tissue type and phenology. J Ecol 104:55–64

    Article  Google Scholar 

  • Carbognani M, Bernareggi G, Perucco F, Tomaselli M, Petraglia A (2016) Micro-climatic controls and warming effects on flowering time in alpine snowbeds. Oecologia 182:573–585

    Article  PubMed  Google Scholar 

  • Carbutt C, Edwards TJ (2015) Reconciling ecological and phytogeographical spatial boundaries to clarify the limits of the montane and alpine regions of sub-Sahelian Africa. South African Journal of Botany 98:64–75

    Article  Google Scholar 

  • Carlsson BA, Callaghan TV (1990) Effects of flowering on the shoot dynamics of Carex bigelowii along an altitudinal gradient in Swedish Lapland. J Ecol 78:152–165

    Article  Google Scholar 

  • Carr GD, Powell EA, Kyhos DW (1986) Self incompatibility in the Hawaiian Madiinae (Compositae): an exception to Bakers’ rule. Evolution 40:430–434

    PubMed  Google Scholar 

  • Cavieres LA, Badano EI (2009) Do facilitative interactions increase species richness at the entire community level? J Ecol 97:1181–1191

    Article  Google Scholar 

  • Cavieres LA, Kalyn-Arroyo MT (2001) Persistent soil seed bank in Phacelia secunda J.F. Gmel. (Hydrophyllaceae): experimental detection of variation along an altitudinal gradient in the Andes of central Chile. J Ecol 88:31–39

    Article  Google Scholar 

  • Cavieres LA, Penaloza A, Papic C, Tambutti M (1998) Efecto nodriza del cojin Laretia acaulis (Umbelliferae) en la zona alto-andina de Chile central. Rev Chil Hist Nat 71:337–347

    Google Scholar 

  • Cavieres LA, Sierra-Almeida A (2012) Facilitative interactions do not wane with warming at high elevations in the Andes. Oecologia 170:575–584

    Article  PubMed  Google Scholar 

  • Cavieres LA, Hernández-Fuentes C, Sierra-Almeida A, Kikvidze Z (2016) Facilitation among plants as an insurance policy for diversity in Alpine communities. Funct Ecol 30: 52–59

    Google Scholar 

  • Chambers JC (1993) Seed and vegetation dynamics in an alpine herb field: effects of disturbance type. Can J Bot 71:471–485

    Article  Google Scholar 

  • Chambers JC (1995a) Disturbance, life history strategies, and seed fates in alpine herbfield communities. Am J Bot 82:421–433

    Article  Google Scholar 

  • Chambers JC (1995b) Relationships between seed fates and seedling establishment in an alpine ecosystem. Ecology 76:2124–2133

    Article  Google Scholar 

  • Chambers JC, McMahon JA, Brown RW (1987) Response of an early seral dominant alpine grass and a late seral dominant alpine forb to N and P availability. Reclam Reveg Res 6:219–234

    Google Scholar 

  • Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–3308

    Article  Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1948) Experimental studies on the nature of species. III. Environmental responses of climatic races of Achillea. Carnegie Inst Wash Publ 581:1–125

    Google Scholar 

  • Coe J (1967) The ecology of the alpine zone of Mount Kenya. Junk, The Hague

    Book  Google Scholar 

  • Cronberg N, Molau U, Sonesson M (1997) Genetic variation in the clonal bryophyte Hylocomium splendens at hierarchical geographical scales in Scandinavia. Heredity 78:293–301

    Article  Google Scholar 

  • Dahl E (1986) Zonation in arctic and alpine tundra and fellfield ecobiomes. In: Polunin N (ed) Ecosystem theory application. Wiley, London, pp 35–62

    Google Scholar 

  • de Witte LC, Armbruster GFJ, Gielly L, Taberlet P, Stocklin J (2012) AFLP markers reveal high clonal diversity and extreme longevity in four key arctic-alpine species. Mol Ecol 21:1081–1097

    Article  PubMed  Google Scholar 

  • Diemer M, Prock S (1993) Estimates of alpine seed bank size in two central European and one Scandinavian subarctic plant communities. Arct Alp Res 25:194–200

    Article  Google Scholar 

  • Diemer MW (1992) Population dynamics and spatial arrangement of Ranunculus glacialis L., an alpine perennial herb, in permanent plots. Vegetatio 103:159–166

    Article  Google Scholar 

  • Dietrich L, Körner C (2014) Thermal imaging reveals massive heat accumulation in flowers across a broad spectrum of alpine taxa. Alp Bot 124:27–35

    Article  Google Scholar 

  • Diggle PK (1997) Extreme preformation in alpine Polygonum viviparum: an architectural and developmental analysis. Am J Bot 84:154–169

    Article  CAS  PubMed  Google Scholar 

  • Diggle PK, Lower SS, Ranker TA (1994) Clonal diversity and phenotypic plasticity in three alpine populations of Polygonum viviparum (Polygonaceae). Am J Bot Suppl 81:22

    Google Scholar 

  • Dudley LS, Arroyo MTK, Fernandez-Murillo MP (2018) Physiological and fitness responses of flowers to temperature and water augmentation in a high Andean geophyte. Env Exp Bot 150:1–8

    Article  Google Scholar 

  • Erhardt A (1993) Pollination of the edelweiss, Leontopodium alpinum. Bot J Linn Soc 111:229–240

    Article  Google Scholar 

  • Erschbamer B, Kneringer E, Niederfriniger-Schlag R (2001) Seed rain, soil seed bank, seedling recruitment, and survival of seedlings on a glacier foreland in the central Alps. Flora 196:304–312

    Article  Google Scholar 

  • Erschbamer B, Winkler J, Wagner J (1994) Vegetative und generative Entwicklung von drei Carex curvula-Sippen in den Zentralalpen. Flora 189:277–286

    Article  Google Scholar 

  • Fabbro T, Körner C (2004) Altitudinal differences in flower traits and reproductive allocation. Flora 199:70–81

    Article  Google Scholar 

  • Favarger C (1954) Sur le pourcentage des polyploides dans la flore de l’étage nival des Alpes Suisses. 8th Int Bot Congr (Paris) Sect 9–10:51–56

    Google Scholar 

  • Favarger C (1961) Sur l’emploi des nombres des chromosomes en géographie botanique historique. Ber Geobot Inst ETH (Stiftung Rübel, Zürich) 32:119–146

    Google Scholar 

  • Felber F, Zhao G-F, Küpfer P (1996) Étude de la variabilité génétique de la flouve alpine (Anthoxanthum odoratum A. & D. Löve) et du mélèze (Larix decidua Miller) dans le’é-cocline subalpin-alpin. Bull Murithienne 114:179–185

    Google Scholar 

  • Fernandez-Pascual E, 17 co-authors (2020) The seed germination spectrum of alpine plants: a global meta-analysis. New Phytol. https://doi.org/10.1111/nph.17086

  • Fossati A (1980) Keimverhalten und frühe Entwicklungs-phasen einiger Alpenpflanzen. Veröff Geobot Inst ETH (Stiftung Rübel, Zürich) 73:1–193

    Google Scholar 

  • Franz H (1979) Ökologie der Hochgebirge. Ulmer, Stuttgart

    Google Scholar 

  • Frei ES, Scheepens JF, Stöcklin J (2012) Dispersal and microsite limitation of a rare alpine plant. Plant Ecol 213:395–406

    Article  Google Scholar 

  • Gaudeul M, Till-Bottraud I (2008) Genetic structure of the endangered perennial plant Eryngium alpinum (Apiaceae) in an alpine valley. Biol J Linn Soc 93:667–677

    Article  Google Scholar 

  • Grabherr G (1995) Renaturierung von natürlichen und künstlichen Erosionsflächen in den Hochalpen. Ber Reinh Tüxen Ges 7:37–46

    Google Scholar 

  • Grabherr G, Mähr E, Reisigl H (1978) Nettoprimarproduktion und Reproduktion in einem Krummseggenrasen (Caricetum curvulae) der Ötztaler Alpen, Tirol. Oecol Plant 13:227–251

    Google Scholar 

  • Gray M, Stansberry MJ, Lynn JS, Williams CF, White TE, Whitney KD (2018) Consistent shifts in pollinator-relevant floral coloration along Rocky Mountain elevation gradients. J Ecol 106:1910–1924

    Article  Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology. Unwin Hyman, London

    Book  Google Scholar 

  • Grabherr G, Mahr E, Reisigl H (1978) Nettoprimarproduktion und reproduktion in einem krummseggenrasen (Caricetum curvulae) der Ötztaler Alpen, Tirol. Oecol Plant 13:227–251

    Google Scholar 

  • Grulke NE, Bliss LC (1985) Growth forms, carbon allocation, and reproductive patterns of high arctic saxifrages. Arct Alp Res 17:241–250

    Article  Google Scholar 

  • Gugerli F (1998) Effect of elevation on sexual reproduction in alpine populations of Saxifraga oppositifolia (Saxifragaceae). Oecologia 114:60–66

    Article  PubMed  Google Scholar 

  • Gugerli F, Eichenberger K, Schneller JJ (1999) Promiscuity in populations of the cushion plant Saxifraga oppositifolia in the Swiss Alps as inferred from random amplified polymorphic DNA (RAPD). Mol Ecol 8:453–461

    Article  CAS  Google Scholar 

  • Hacker J, Ladinig U, Wagner J, Neuner G (2011) Inflorescences of alpine cushion plants freeze autonomously and may survive subzero temperatures by supercooling. Plant Sci 180:149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halloy SRP (1990) A morphological classification of plants, with special reference to the New Zealand alpine flora. J Veg Sci 1:291–304

    Article  Google Scholar 

  • Hartmann H (1957) Studien über die vegetative Fortpflanzung in den Hochalpen. Jahresber Naturf Ges Graubündens (Switzerland) 86:3–168

    Google Scholar 

  • Hatt M (1991) Samenvorrat von zwei alpinen Böden. Ber Geobot Inst ETH (Stiftung Rübel, Zürich) 57:41–71

    Google Scholar 

  • Hautier Y, Randin CF, Stöcklin J, Guisan A (2009) Changes in reproductive investment with altitude in an alpine plant. J Plant Ecol 2:125–134

    Article  Google Scholar 

  • Havstroem M, Callaghan TV, Jonasson S (1993) Differential growth responses of Cassiope tetragona, an arctic dwafr-shrub, to environmental perturbations among three contrasting high- and subarctic sites. Oikos 66:389–402

    Article  Google Scholar 

  • Hedberg O (1957) Afro-alpine vascular plants. Symb Bot Ups 15:1–411

    Google Scholar 

  • Hefel Ch, Stöcklin J (2010) Flora der Furka. Bauhinia 22:33–59

    Google Scholar 

  • Heide OM (1990) Dual floral induction requirements in Phleum alpinum. Ann Bot 66:687–694

    Article  Google Scholar 

  • Heide OM (1994) Control of flowering and reproduction in temperate grassland. New Phytol 128:347–362

    Article  CAS  Google Scholar 

  • Henry GHR, Molau U (1997) Tundra plants and climate change: the International Tundra Experiment (ITEX). Glob Change Biol 3:1–9

    Article  Google Scholar 

  • Hermesh R, Acharya SN (1987) Reproductive response to three temperature regimes of four Poa alpina populations from the Rocky Mountains of Alberta, Canada. Arct Alp Res 19:321–326

    Article  Google Scholar 

  • Hörandl E, Dobes C, Suda J, Vit P, Urfus T, Temsch EM, Cosendai AC, Wagner J, Ladinig U (2011) Apomixis is not prevalent in subnival to nival plants of the European Alps. Ann Bot 108:381–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Hülber K, Winkler M, Grabherr G (2010) Intraseasonal climate and habitat-specific variability controls the flowering phenology of high alpine plant species. Funct Ecol 24:245–252

    Google Scholar 

  • Jackson LE, Bliss LC (1982) Distribution of ephemeral herbaceous plants near treeline in the Sierra Nevada, California, USA. Arct Alp Res 14:33–42

    Article  Google Scholar 

  • Jacot KA, Lüscher A, Nösberger J, Hartwig UA (2000) The relative contribution of symbiotic N2 fixation and other nitrogen sources to grassland ecosystems along an altitudinal gradient in the Alps. Plant Soil 225:201–211

    Article  CAS  Google Scholar 

  • Järvinen A (1984) Patterns and performance in a Ranunculus glacialis population in a mountain area in Finnish Lapland. Ann Bot Fenn 21:179–187

    Google Scholar 

  • Jolls CL, Bock AH (1983) Seedling density and mortality patterns among elevations in Sedum lanceolatum. Arct Alp Res 15:119–126

    Article  Google Scholar 

  • Jonasson S (1992) Plant responses to fertilization and species removal in tundra related to community structure and clonality. Oikos 63:420–429

    Article  Google Scholar 

  • Jónsdóttir IS, Callaghan TV (1990) Intraclonal translocation of ammonium and nitrate nitrogen in Carex bigelowii Torr. ex Schwein. using 15N and nitrate reductase assays. New Phytol 114:419–428

    Article  Google Scholar 

  • Jónsdóttir IS, Callaghan TV, Headley AD (1996) Resource dynamics within arctic clonal plants. Ecol Bull 45:53–64

    Google Scholar 

  • Kalin-Arroyo MT, Primack R, Armesto J (1982) Community studies in pollination ecology in the high temperate Andes of central Chile. I. pollination mechanisms and altitudinal variation. Amer J Bot 69:82–97

    Article  Google Scholar 

  • Kawano S, Masuda J (1980) The productive and reproductive biology of flowering plants. VII. Resource allocation and reproductive capacity in wild populations of Heloniopsis orientalis (Thunb.) C. Tanaka (Liliaceae). Oecologia 45:307–317

    Article  PubMed  Google Scholar 

  • Keller F, Körner C (2003) The role of photoperiodism in alpine plant development. Arct Antarct Alp Res, in press

    Google Scholar 

  • Kerner A (1871) Der Einfluss der Winde auf die Verbreitung der Samen im Hochgebirge. Z Dtsch Alpenverein 1871:144–172

    Google Scholar 

  • Kevan PG (1975) Sun-tracking solar furnaces in high arctic flowers—significance for pollination and insects. Science 189:723–726

    Article  CAS  PubMed  Google Scholar 

  • Kikvidze Z, Nakhutsrishvili G (1998) Facilitation in subnival vegetation patches. J Veg Sci 9:261–264

    Article  Google Scholar 

  • Körner C (2004) Mountain biodiversity, its causes and function. Ambio Special Report 13:11–17

    Google Scholar 

  • Körner C, Riedl S, Keplinger T, Richter A, Wiesenbauer J, Schweingruber F, Hiltbrunner E (2019) Life at 0 °C: the biology of the alpine snowbed plant Soldanella pusilla. Alp Botany 129:63–80

    Article  Google Scholar 

  • Körner C, Renhardt U (1987) Dry matter partitioning and root length/leaf area ratios in herbaceous perennial plants with diverse altitudinal distribution. Oecologia 74:411–418

    Article  PubMed  Google Scholar 

  • Körner C, Neumayer M, Pelaez Menendez-Riedl S, Smeets-Scheel A (1989) Functional morphology of mountain plants. Flora 182:353–383

    Article  Google Scholar 

  • Körner C, Hiltbrunner E (2018) The 90 ways to describe plant temperature. Perspect Plant Ecol Evol Syst 30:16–21

    Article  Google Scholar 

  • Kudo G (1992) Performance and phenology of alpine herbs along a snow-melting gradient. Ecol Res 7:297–304

    Article  Google Scholar 

  • Kudo G (1993) Relationship between flowering time and fruit set of the entomophilous alpine shrub, Rhododendron aureum (Ericaceae), inhabiting snow patches. Am J Bot 80:1300–1304

    Article  Google Scholar 

  • Kudo G (1996) Effects of snowmelt timing on reproductive phenology and pollination process of alpine plants. Mem Natl Inst Polar Res (Tokyo) 51:71–82

    Google Scholar 

  • Kuss P, Armbruster GFJ, Aegisdottir HH, Scheepens JF, Stöcklin J (2011) Spatial genetic structure of Campanula thyrsoides across theEuropean Alps: indication for glaciation-driven allopatric subspeciation. Perspect Plant Ecol Evol Syst 13:101–110

    Article  Google Scholar 

  • Kuss P, Pluess AR, Aegisdóttir HH, Stöcklin J (2008) Special isolation and genetic differentation in naturally fragmented plant populations of the Swiss Alps. J Plant Ecol 3:149–159

    Article  Google Scholar 

  • Ladinig U, Hacker J, Neuner G, Wagner J (2013) How endangered is sexual reproduction of high-mountain plants by summer frosts? frost resistance, frequency of frost events and risk assessment. Oecologia 171:743–760

    Article  PubMed  PubMed Central  Google Scholar 

  • Ladinig U, Pramsohler M, Bauer I, Zimmermann S, Neuner G, Wagner J (2015) Is sexual reproduction of high-mountain plants endangered by heat? Oecologia 177:1195–1210

    Article  PubMed  PubMed Central  Google Scholar 

  • Ladinig U, Wagner J (2005) Sexual reproduction of the high mountain plant Saxifraga moschata Wulfen at varying lengths of the growing season. Flora 200:502–515

    Article  Google Scholar 

  • Ladinig U, Wagner J (2007) Timing of sexual reproduction and reproductive success in the high-mountain plant Saxifraga bryoides L. Plant Biol 9:683–693

    Article  CAS  PubMed  Google Scholar 

  • Laine K, Malila E, Siuruainen M (1995) How is annual climaic-variation reflected in the production of germinable seeds of arctic and alpine plants in the northern Scandes? Ecosyst Res Rep (European Commission, Brussels) 10:89–95

    Google Scholar 

  • Landolt E (1967) Gebirgs- und Tieflandsippen von Blütenpflanzen im Bereich der Schweizer Alpen. Bot Jb 86:463–480

    Google Scholar 

  • Larcher W (1980) Klimastress im Gebirge—adaptationstraining und selektionsfilter für pflanzen. Rheinisch Westfäl Akad Wiss (Düsseldorf) Naturwiss Vortr 291:49–88

    Google Scholar 

  • Larcher W (1996) Das verpflanzungsexperiment als forschungsansatz für phänologische analysen: reproduktive entwicklung von rotschwingelgras in 600 m und 1920 m meereshöhe. Wetter Leben 48:125–140

    Google Scholar 

  • Larcher W, Kainmüller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18

    Article  Google Scholar 

  • Larl I, Wagner J (2006) Timing of reproductive and vegetative development in Saxifraga oppositifolia in an alpine and a subnival climate. Plant Biol 8:155–166

    Article  CAS  PubMed  Google Scholar 

  • Loope LL, Medeiros AC (1994) Biotic interactions in Hawaiian high elevation ecosystems. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Cambridge University Press, Cambridge, pp 337–354

    Chapter  Google Scholar 

  • Lüdi W (1933) Keimungsversuche mit Samen von Alpenpflanzen. Mitt Naturforsch Ges Bern (for 1932), 46–50

    Google Scholar 

  • Luzar N, Gottsberger G (2001) Flower heliotropism and floral heating of five alpine plant species and the effect on flower visiting in Ranunculus montanus in the Austrian Alps. Arct Antarct Alp Res 33:93–99

    Article  Google Scholar 

  • Marcante S, Erschbamer B, Buchner O, Neuner G (2014) Heat tolerance of early developmental stages of glacier foreland species in the growth chamber and in the field. Plant Ecol 215:747–758

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcante S, Schwienbacher E, Erschbamer B (2009) Genesis of a soil seed bank on a primary succession in the Central Alps (Ötztal, Austria) Flora 204:434–444

    Google Scholar 

  • Mark AF (1970) Floral initiation and development in New Zealand alpine plants. NZ J Bot 8:67–75

    Article  Google Scholar 

  • Mark AF, Adams NM (1979) New Zealand alpine plants, 2nd edn. Reed, Wellington

    Google Scholar 

  • Mauracher S, Wagner J (2021) Flower preformation in Ranunculus glacialis L.: shoot architecture and impact of growing season length on floral morphogenesis and developmental dynamics. Alpine Botany. https://doi.org/10.1007/s00035-021-00249-8

  • Moen J (1993) Positive versus negative interactions in a high alpine block field: germination of Oxyria digyna seeds in a Ranunculus nivalis community. Arctic Alp Res 25:201–206

    Article  Google Scholar 

  • Molau U (1993) Relationships between flowering phenology and life history strategies in tundra plants. Arctic Alp Res 25:391–402

    Article  Google Scholar 

  • Molau U, Larsson EL (2000) Seed rain and seed bank along an alpine altitudinal gradient in Swedish Lapland. Can J Bot 78:728–747

    Google Scholar 

  • Mooney HA, Billings WD (1961) Comparative physiological ecology of arctic and alpine populations of Oxyria digyna. Ecol Monographs 31:1–29

    Article  Google Scholar 

  • Moore AJ, Merges D, Kadereit JW (2013) The origin of the serpentine endemic Minuartia laricifolia subsp ophiolitica by vicariance and competitive exclusion. Mol Ecol 22:2218–2231

    Article  CAS  PubMed  Google Scholar 

  • Moser W, Brzoska W, Zachhuber K, Larcher W (1977) Ergebnisse des IBP-Projekts “Hoher Nebelkogel 3184 m”. Sitzungsber Oesterr Akad Wiss (Wien) Math Naturwiss Kl Abt I 186:387–419

    Google Scholar 

  • Muellner-Riehl AN, Schnitzler J, Kissling WD, Mosbrugger V, Rijsdijk KF, Seijmonsbergen AC, Versteegh H, Favre A (2019) Origins of global mountain plant biodiversity: testing the ‘mountain-geobiodiversity hypothesis.’ J Biogeogr 00:1–13. https://doi.org/10.1111/jbi.13715

    Article  Google Scholar 

  • Müller H (1881) Alpenblumen, ihre befruchtung durch Insekten und ihre anpassung an dieselben. Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Neuffer B, Bartelheim S (1989) Gen-ecology of Capsella bursa-pastoris from an altitudinal transsect in the Alps. Oecologia 81:521–527

    Article  CAS  PubMed  Google Scholar 

  • Nunez CI, Aizen MA, Ezurra C (1999) Species associations and nurse plant effects in patches of high-Andean vegetation. J Veg Sci 10:357–364

    Article  Google Scholar 

  • Onipchenko VG (2004) Alpine ecosystems in the northwest Caucasus. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Onipchenko VG, Blinnikov MS (1994) Experimental investigation of alpine plant communities in the northwestern Caucasus. Veröff Geobot Inst ETH (Stiftung Rübel, Zürich) 115:3–118

    Google Scholar 

  • Packer JG (1974) Differentiation and dispersal in alpine floras. Arctic Alp Res 6:117–128

    Article  Google Scholar 

  • Pahl M, Darroch B (1997) The effect of temperature and photoperiod on primary floral induction in three lines of alpine bluegrass. Can J Plant Sci 77:615–622

    Article  Google Scholar 

  • Pannier F (1969) Untersuchungen zur Keimung und Kultur von Espeletia, eines endemischen Megaphyten der alpinen Zone (“Páramos”) der venezolanischen-kolumbianischen Anden. Ber Dtsch Bot Ges 82:359–371

    Google Scholar 

  • Pavlov VN, Onipchenko VG, Aksenova AA, Volkova EV, Zueva OI, Makarov MI (1998) The role of competition in Alpine plant communities (the Northwestern Causacus): an experimental approach. Zh Obshch Biol 59:453–476

    Google Scholar 

  • Petraglia A, Tomaselli M, Bon MP, Delnevo N, Chiari G, Carbognani M (2014) Responses of flowering phenology of snowbed plants to an experimentally imposed extreme advanced snowmelt. Plant Ecol 215:759–768

    Article  Google Scholar 

  • Philipp M, Böcher J, Mattson O, Woodell SRJ (1990) A quantitative approach to the sexual reproductive biology and population structure in some arctic flowering plants: Dryas integrifolia, Silene acaulis and Ranunculus nivalis. Meddelelser Gronland, Biosci (Copenhagen) 34, 60 p

    Google Scholar 

  • Pickering CM (1995) Variation in flowering parameters within and among five species of Australian alpine Ranunculus. Aust J Bot 43:103–112

    Article  Google Scholar 

  • Pluess AR, Stöcklin J (2004) Population genetic diversity of the clonal plant Geum reptans (Rosaceae) in the Swiss Alps. Am J Bot 91:2013-2021

    Google Scholar 

  • Press MC (1998) Dracula or Robin Hood? A functional role for root hemiparasites in nutrient-poor ecosystems. Oikos 82:609–611

    Article  Google Scholar 

  • Primack R (1985) Longevity of individual flowers. Ann Rev Ecol Syst 16:15–37

    Article  Google Scholar 

  • Prock S, Körner C (1996) A cross-continental comparison of phenology, leaf dynamics and dry matter allocation in arctic and temperate zone herbaceous plants from contrasting altitudes. Ecol Bull 45:93–103

    CAS  Google Scholar 

  • Ram J, Singh SP, Singh JS (1988) Community level phenology of grassland above treeline in Central Himalaya, India. Arct Alp Res 20:325–332

    Article  Google Scholar 

  • Reisch C, Anke A, Rohl M (2005) Molecular variation within and between ten populations of Primula farinosa (Primulaceae) along an altitudinal gradient in the northern Alps. Basic Appl Ecol 6:35-45

    Google Scholar 

  • Resvoll TR (1917) Om planter som passer til kort or kold sommer. Johansen, Kristiania (Oslo) ((in Norwegian))

    Google Scholar 

  • Reynolds DN (1984a) Populational dynamics of three annual species of alpine plants in the Rocky Mountains. Oecologia 62:250–255

    Article  PubMed  Google Scholar 

  • Reynolds DN (1984b) Alpine annual plants: phenology, germination, photosynthesis, and growth of three Rocky Mountain species. Ecology 65:759–766

    Article  Google Scholar 

  • Richards AJ (1997) Plant breeding systems, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  • Rübel E (1925) Alpine und arktische Flora und Vegetation. I, Alpenmatten-Überwinterungsstadien. Veröffentlichungen Geobot Inst (Stifung Rübel, Zürich) 3:37–53

    Google Scholar 

  • Rundel PW, Witter MS (1994) Population dynamics and flowering in a Hawaiian alpine rosette plant, Argyroxiphium sandwicense. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Cambridge University Press, Cambridge, pp 295–306

    Chapter  Google Scholar 

  • Rusterholz H-P, Stöcklin J, Schmid B (1993) Populationsbiologische Studien an Geum reptans L. Verh Ges Ökol 22:337–346

    Google Scholar 

  • Salisbury E (1974) Seed size and mass in relation to environment. Proc R Soc Lond Biol 186:83–88

    Article  Google Scholar 

  • Sandvik SM, Totland O, Nylehn J (1999) Breeding system and effects of plant size and flowering time on reproductive success in the alpine herb Saxifraga stellaris L. Arct Antarct Alp Res 31:196–201

    Article  Google Scholar 

  • Sarapultsev IE (2001) The phenomenon of pseudoviviparity in alpine and arctomontane grasses (Deschampsia Beauv., Festuca L., and Poa L.). Russ J Ecol 32:170

    Google Scholar 

  • Sawada S, Nakajima Y, Tsukuda M, Sasaki K, Hazama Y, Futatsuya M, Watanabe A (1994) Ecotypic differentiation of dry matter production processes in relation to survivor-ship and reproductive potential on Plantago asiatica populations along climatic gradients. Funct Ecol 8:400–409

    Article  Google Scholar 

  • Scheepens JF, Kuss P, Stöcklin J (2011) Differentiation in morphology and flowering phenology between two Campanula thyrsoides L. subspecies. Alp Botany 131:37–47

    Article  Google Scholar 

  • Scherff EJ, Galen C, Stanton ML (1994) Seed dispersal, seedling survival and habitat affinity in a snowbed plant: limits to the distribution of the snow buttercup, Ranunculus adoneus. Oikos 69:405–413

    Article  Google Scholar 

  • Schmid SF, Stöcklin J, Hamann E, Kesselring H (2017) High-elevation plants have reduced plasticity in flowering time in response to warming compared to low-elevation congeners. Basic Appl Ecol 21(1):12

    Google Scholar 

  • Schönswetter P, Tribsch A, Stehlik I, Niklfeld H (2004) Glacial history of high alpine Ranunculus glacialis (Ranunculaceae) in the European Alps in a comparative phylogeographical context. Biol J Lin Soc 81:183–195

    Article  Google Scholar 

  • Schütz W, Stöcklin J (2001) Seed weight differences between alpine and lowland plants? Verh Ges Oekol (Göttingen) 31:55

    Google Scholar 

  • Schütz W (2002) Dormancy characteristics and germination timing in two alpine Carex species. Basic Appl Ecol 3:125–134

    Article  Google Scholar 

  • Schwarzenbach FH (1956) Die Beeinflussung der Viviparie bei einer Grönländischen Rasse von Poa alpina L. durch den jahreszeitlichen Licht- und Temperaturwechsel. Ber Schweizer Bot Ges 66:204–223

    Google Scholar 

  • Schweingruber F, Dietz H (2001) Annual rings in the xylem of dwarf shrubs and perennial dicotyledonous herbs. Dendrochronologia 19:115–126

    Google Scholar 

  • Schwienbacher E, Marcante S, Erschbamer B (2010) Alpine species seed longevity in the soil in relation to seed size and shape—a 5-year burial experiment in the Central Alps. Flora 205:19–25

    Article  Google Scholar 

  • Schwienbacher E, Navarro-Cano JA, Neuner G, Erschbamer B (2011) Seed dormancy in alpine species. Flora 206:845–856

    Article  PubMed  PubMed Central  Google Scholar 

  • Semenova GV, Onipchenko VG (1994) Soil seed banks. In: Onipchenko VG, Blinnikov MS (eds) Experimental investigation of alpine plant communities in the northwestern Caucasus. Veröff Geobot Inst (Stiftung Rübel, Zürich) 115, pp 69–82

    Google Scholar 

  • Smith AP, Young TP (1994) Population biology of Senecio keniodendron (Asteraceae)—an afroalpine giant rosette plant. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Cambridge University Press, Cambridge, pp 273–293

    Chapter  Google Scholar 

  • Smyckaa J, Roquet C, Renaud J, Thuiller W, Zimmermann NE, Lavergne S (2018) Reprint of: Disentangling drivers of plant endemism and diversification in the European Alps—a phylogenetic and spatially explicit approach. Perspect Plant Ecol Evol Syst 30:31–40

    Article  Google Scholar 

  • Sobrevila C (1989) Effects of pollen donors on seed formation in Espeletia schultzii (Compositae) populations at different altitudes. Plant Syst Evol 166:45–67

    Article  Google Scholar 

  • Song B, Chen G, Stöcklin J, Peng DL, Niu Y, Li ZM, Sun H (2014) A new pollinating seed-consuming mutualism between Rheum nobile and a fly fungus gnat, Bradysia sp., involving pollinator attraction by a specific floral compound. New Phytol 203:1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Sörensen T (1941) Temperature relations and phenology of the northeast Greenland flowering plants. Medd Grönl 125/9, Reitzels, Kopenhagen

    Google Scholar 

  • Söyrinki N (1938) Studien über die generative und vegetative Vermehrung der Samenpflanzen in der alpinen vegetation Petsamo-Lapplands. Ann Bot Soc Zool Bot Fenn Vanamo (Helsinki) 11:1–311

    Google Scholar 

  • Spence JR (1990) Seed rain in grassland, herbfield, snowbank and fellfield in the alpine zone, Craigieburn Range, South Island, New Zealand. N Z J Bot 28:439–450

    Article  Google Scholar 

  • Stanton ML, Galen C (1993) Blue light controls solar tracking by flowers of an alpine plant. Plant Cell Environ 16:983–989

    Article  Google Scholar 

  • Steinacher G, Wagner J (2010) Flower longevity and duration of pistil receptivity in high mountain plants. Flora 205:376–387

    Article  Google Scholar 

  • Steinacher G, Wagner J (2012) Effect of temperature on the progamic phase in high-mountain plants. Plant Biol 14:295–305

    Article  CAS  PubMed  Google Scholar 

  • Steinacher G, Wagner J (2013) The progamic phase in high-mountain plants: from pollination to fertilization in the cold. Plants 2:354–370

    Article  PubMed  PubMed Central  Google Scholar 

  • Steiner BL, Armbruster GFJ, Scheepens JF, Stöcklin J (2012) Distribution of bulbil- and seed-producing plants of Poa alpina (Poaceae) and their growth and reproduction in common gardens suggest adaptation to different elevations. Am J Bot 99:2035–2044

    Article  CAS  PubMed  Google Scholar 

  • Steinger T, Körner Ch, Schmid B (1996) Long-term persistence in a changing climate: DNA analysis suggests very old ages of clones of alpine Carex curvula. Oecologia 105:94–99

    Article  PubMed  Google Scholar 

  • Steltzer H, Bowman WD (1998) Differential influence of plant species on soil nitrogen transformations within moist meadow Alpine tundra. Ecosystems 1:464–474

    Article  CAS  Google Scholar 

  • Stenström M, Gugerli F, Henry GHR (1997) Response of Saxifraga oppositifolia L. to simulated climate change at three contrasting latitudes. Glob Change Biol 3:44–54

    Article  Google Scholar 

  • Stenström M, Molau U (1992) Reproductive biology in Saxifraga oppositifolia: phenology, mating system and reproductive success. Arct Alp Res 24:337–343

    Article  Google Scholar 

  • Stöcklin J (1992) Umwelt, Morphologie und Wachstumsmuster klonaler Pflanzen—eine Übersicht. Bot Helv 102:3–21

    Google Scholar 

  • Stöcklin J, Armbruster GFJ (2016) Environmental filtering, not local adaptation of established plants, determines the occurrence of seed- and bulbil-producing Poa alpina in a local flora. Basic Appl Ecol 17:586–595

    Article  Google Scholar 

  • Stöcklin J, Bäumler E (1996) Seed rain, seedling establishment and clonal growth strategies on a glacier foreland. J Veg Sci 7:45–56

    Article  Google Scholar 

  • Stöcklin J, Favre P (1994) Effects of plant size and morphological constraints on variation in reproductive components in two related species of Epilobium. J Ecol 82:735–746

    Article  Google Scholar 

  • Stöcklin J, Kuss P, Pluess AR (2009) Genetic diversity, phenotypic variation and local adaption in the alpine landscape: case studies with alpine plant species. Bot Helv 119:125–133

    Article  Google Scholar 

  • Suzuki S, Kudo G (1997) Short-term effects of simulated environmental change on phenology, leaf traits, and shoot growth of alpine plants on a temperate mountain, northern Japan. Glob Change Biol 3:108–115

    Article  Google Scholar 

  • Theodose TA, Jaeger CH, Bowman WD, Schardt JC (1996) Uptake and allocation of N-15 in alpine plants: Implications for the importance of competitive ability in predicting community structure in a stressful environment. Oikos 75:59–66

    Article  Google Scholar 

  • Thomas BD, Bowman WD (1998) Influence of N2-fixing Trifolium on plant species composition and biomass production in alpine tundra. Oecologia 115:26–31

    Article  PubMed  Google Scholar 

  • Thompson K (1978) The occurrence of buried viable seed in relation to environmental gradients. J Biogeogr 5:425–430

    Article  Google Scholar 

  • Thompson K, Rabinowitz D (1989) Do big plants have big seeds? Am Nat 133:722–728

    Article  Google Scholar 

  • Tiusanen M, Huotari T, Hebert PDN, Andersson T, Asmus A, Bêty J, Davis E, Gale J, Hardwick B, Hik D, Körner C, Lanctot RB, Loonen MJJ, Partanen R, Reischke K, Saalfeld ST, Senez-Gagnon F, Smith PA, Šulavík J, Syvänperä I, Urbanowicz C, Williams S, Woodard P, Zaika Y, Roslin T (2019) Flower-visitor communities of an arcto-alpine plant—global patterns in species richness, phylogenetic diversity and ecological functioning. Mol Ecol 28:318–335

    Article  PubMed  Google Scholar 

  • Totland O (1993) Pollination in alpine Norway: flowering phenology, insect visitors, and visitation rates in two plant communities. Can J Bot 71:1072–1079

    Article  Google Scholar 

  • Totland O (1996) Flower heliotropism in an alpine population of Ranunculus acris (Ranunculaceae): effects on flower temperature, insect visitation, and seed production. Am J Bot 83:452–458

    Article  Google Scholar 

  • Totland O (2001) Enviroment-dependent pollen limitation and selection on floral traits in an alpine species. Ecology 82:2233–2244

    Article  Google Scholar 

  • Trunschke J, Stöcklin J (2017) Plasticity of flower longevity in alpine plants is increased in populations from high elevation compared to low elevation populations. Alp Bot 127:41–51

    Article  Google Scholar 

  • Tschurr FR (1992) Experimentelle untersuchungen über das regenerationsverhalten bei alpinen pflanzen. Veröff Geobot Inst ETH (Stiftung Rübel, Zürich) 108(1–41):84–121

    Google Scholar 

  • Tudela-Isanta M, Fernandez-Pascual E, Wijayasinghe M, Orsenigo S, Rossi G, Pritchard HW, Mondoni A (2018) Habitat-related seed germination traits in alpine habitats. Ecol Evol 8:150–161

    Article  PubMed  Google Scholar 

  • Urbanska CM, Schütz M (1986) Reproduction by seed in alpine plants and revegetation research above timberline. Bot Helv 96(1):43–61

    Google Scholar 

  • von Arx G, Edwards PJ, Dietz H (2006) Evidence for life history changes in high-altitude populations of three perennial forbs. Ecology 87:665–674

    Article  Google Scholar 

  • Wagner J, Lechleitner M, Hosp D (2016) Pollen limitation is not the rule in nival plants: a study from the European Central Alps. Am J Bot 103:375–387

    Article  CAS  PubMed  Google Scholar 

  • Wagner J, Mitterhofer E (1998) Phenology, seed development, and reproductive success of an alpine population of Gentianella germanica in climatically varying years. Bot Acta 111:159–166

    Article  Google Scholar 

  • Wagner J, Reichegger B (1997) Phenology and seed development of the alpine sedges Carex curvula and Carex firma in response to contrasting topoclimates. Arct Alp Res 29:291–299

    Article  Google Scholar 

  • Wagner J, Steinacher G, Ladinig U (2010) Ranunculus glacialis L.: successful reproduction at the altitudinal limits of higher plant life. Protoplasma 243:117–128

    Article  PubMed  Google Scholar 

  • Walker MD, Ingersoll RC, Webber PJ (1995) Effects of interannual climate variation on phenology and growth of two alpine forbs. Ecology 76:1067–1083

    Article  Google Scholar 

  • Wehrmeister RR, Bonde EK (1977) Comparative aspects of growth and reproductive biology in arctic and alpine populations of Saxifraga cernua L. Arct Alp Res 9:401–406

    Article  Google Scholar 

  • Weilenmann K (1981) Bedeutung der Keim- und Jungpflanzenphase für alpine Taxa verschiedener Standorte. Ber Geobot Inst ETH (Stiftung Rübel, Zürich) 48:68–119

    Google Scholar 

  • Welling P, Laine K (2002) Regeneration by seeds in alpine meadow and heath vegetation in sub-arctic Finland. J Veg Sci 13:217–226

    Article  Google Scholar 

  • Weppler T, Stoll P, Stöcklin J (2006) The relative importance of sexual and clonal reproduction for population growth in the long-lived alpine plant Geum reptans. J Ecol 94:869–879

    Article  Google Scholar 

  • Wildner-Eccher MT (1988) Keimungsverhalten von gebirgspflanzen und temperaturesistenz der Samen und Keimpflanzen. PhD Thesis, University of Innsbruck

    Google Scholar 

  • www.youtube (2019) https://www.youtube.com/watch?v=deEbgFkMVoE&feature=youtu.be

  • Young TP (1994) Population biology of Mount Kenya lobelias. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Cambridge University Press, Cambridge, pp 251–272

    Chapter  Google Scholar 

  • Zhu Y, Siegwolf RTW, Durka W, Körner C (2010) Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia 162:853–863

    Article  PubMed  Google Scholar 

  • Zoller H, Lenzin H (2006) Composed cushions and coexistence with neighbouring species promoting the persistence of Eritrichium nanum in high alpine vegetation. Bot Helv 116:31–40

    Article  Google Scholar 

  • Zoller H, Lenzin H, Erhardt A (2002) Pollination and breeding system of Eritrichium nanum (Boraginaceae). Plant Syst Evol 233:1–14

    Article  Google Scholar 

  • Zoller H, Lenzin H, Rusterholz HP, Stöcklin J (2005) Increasing population density and seed production with altitude in Eritrichium nanum (Boraginaceae)—an arctic alpine obligatory seeder. Arct Antarct Alp Res 37:41–48

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Körner .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Körner, C. (2021). Plant reproduction. In: Alpine Plant Life. Springer, Cham. https://doi.org/10.1007/978-3-030-59538-8_16

Download citation

Publish with us

Policies and ethics