Skip to main content

Genome Conformity of In Vitro Cultures of Date Palm

  • Chapter
  • First Online:
The Date Palm Genome, Vol. 1

Abstract

Current knowledge suggests that not all genomic information transmits across subsequent generations. Variability in date palm genomes comes from the infidelity of DNA replication and segregation of unequal chromosomes. DNA lesions in nature are also the source of genomic alteration. Additionally, exposure of explants to external factors such as UV light and chemical mutagens can result in a new useful mutation. Biological cell systems deal naturally with the numerous DNA damages to maintain the date palm genome integrity by evolving several response systems such as checkpoint responses to various DNA damage types. Checkpoints are a well-known control mechanism in the plant cell cycle and respond to DNA replication breaks of dsDNA and diverse other types of DNA damage. Varied evidence indicates that genomic instability is probably the key reason for mutagenesis and the main factor in releasing new desirable mutants against abiotic stress. Thus, understanding how date palm tissues are regulated to maintain their genomic stability is of fundamental importance. The range of variation is a selective characteristic resulting from the biological systems across date palm tissue culture. This chapter highlights the causes and sources of genomic instability, genetic alterations, and genetic behavior across date palm tissue cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abahmane L (2011) Date palm micropropagation via organogenesis. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Dordrecht, pp 69–90

    Chapter  Google Scholar 

  • Abd-Alla MM (2010) Genetic stability on Phoenix dactylifera var karama produced in vitro. N Y Sci J 3:70–75

    Google Scholar 

  • Abdelaziz AM, Soliman SSA, Ahmed TAS et al (2019) Micropropagation of zaghlol and barhy date palm cultivars using immature female inflorescence explants: effect of growth regulators balance. Zagazig J Agric Res 46(6A):2023–2035. https://doi.org/10.21608/zjar.2019.51922

    Article  Google Scholar 

  • Abo El Fadl R (2014) effect of silicon on somatic embryogenesis and shoot of dry date palm (Phoenix dactylifera L.) cv. bartamuda Egypt J Desert Res 64:65–82. https://doi.org/10.21608/ejdr.2014.5810

  • Abul-Soad AA, Emara KS, Abdallah AS, Mahdi SM (2017) Somatic embryogenesis in Phoenix dactylifera L. using floral bud explants. Acta Hort 13–28. https://doi.org/10.17660/ActaHortic.2017.1187.2

  • Abul-Soad AA, Mahdi SM (2010) Commercial production of tissue culture date palm (Phoenix dactylifera L.) by inflorescence technique. J Genet Eng Biotech 8:39–44

    Google Scholar 

  • Adawy S, Hussein E, El-Khishin D et al (2002) Genetic variability studies and molecular fingerprinting of some Egyptian date palm (Phoenix dactylifera L.) cultivars: II- RAPD and ISSR profiling. Arab J Biotech 5(2):225–236

    Google Scholar 

  • Al Kaabi HH, Zaid A, Ainsworth C (2007) Plant-off-types in tissue culture-derived date palm (Phoenix dactylifera L) plants. Acta Hort 736:267–281

    Article  Google Scholar 

  • Alansi S, Al-Qurainy F, Khan S et al (2017) Genetic fidelity testing in regenerated plantlets of cryopreserved and non-cryopreserved cultivars of Phoenix dactylifera L. Pak J Bot 49:2313–2320

    CAS  Google Scholar 

  • Alansi S, Al-Qurainy F, Nadeem M et al (2018) Efficient micropropagation via somatic embryogenesis of potential cultivar sagai of Phoenix dactylifera L. Pak J Bot 50(6):2251–2258

    CAS  Google Scholar 

  • Al-Dous EK, George B, Al-Mahmoud ME et al (2016) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotech 29:521–527

    Article  CAS  Google Scholar 

  • Al-Faifi SA, Migdadi HM, Algamdi SS et al (2016) Development, characterization and use of genomic SSR markers for assessment of genetic diversity in some Saudi date palm (Phoenix dactylifera L.) cultivars. Elect J Biotech 21:18–25. https://doi.org/10.1016/j.ejbt.2016.01.006

    Article  Google Scholar 

  • Al-Faifi SA, Migdadi HM, Algamdi SS et al (2017) Development of genomic simple sequence repeats (SSR) by enrichment libraries in date palm. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Date palm biotechnology protocols Vol II. Humana Press, New York, pp 315–337. https://doi.org/10.1007/978-1-4939-7159-6_24

  • Al-Harrasi I, Al-Yahyai R, Yaish MW (2018) Differential DNA methylation and transcription profiles in date palm roots exposed to salinity. PLoS ONE 13: https://doi.org/10.1371/journal.pone.0191492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali TA, Jubrail JM, Jasim AM (2007) The use of RAPDs for the detection of genetic stability of regenerated plantlets of barhee palm in Iraq. Acta Hort 736:127–134. https://doi.org/10.17660/ActaHortic.2007.736.11

  • Al-Khalifah NS, Askari E (2007) Early detection of genetic variation in date palms propagated from tissue culture and offshoots by DNA fingerprinting. Acta Hort 736:105–112. https://doi.org/10.17660/ActaHortic.2007.736.8

  • Al-Khateeb AA (2006) Role of cytokinin and auxin on the multiplication stage of date palm (Phoenix dactylifera L.) cv. sukary. Biotech 5:349–352. https://doi.org/10.3923/biotech.2006.349.352

    Article  CAS  Google Scholar 

  • Al-Khateeb SA, Al-Khateeb AA, Sattar MN et al (2019) Assessment of somaclonal variation in salt-adapted and non-adapted regenerated date palm (Phoenix dactylifera L). Fresen Environ Bull 28(5):3686–3695

    CAS  Google Scholar 

  • Al-Khayri JM (2010) Somatic embryogenesis of date palm (Phoenix dactylifera L.) improved by coconut water. Biotech (Faisalabad) 9:477–484. https://doi.org/10.3923/biotech.2010.477.484

    Article  Google Scholar 

  • Al-Khayri JM (2011a) Basal salt requirements differ according to culture stage and cultivar in date palm somatic embryogenesis. Amer J Biochem Biotechnol 7:32–42. https://doi.org/10.3844/ajbbsp.2011.32.42

    Article  CAS  Google Scholar 

  • Al-Khayri JM (2011b) Influence of yeast extract and casein hydrolysate on callus multiplication and somatic embryogenesis of date palm (Phoenix dactylifera L.). Sci Hort 130:531–535. https://doi.org/10.1016/j.scienta.2011.07.024

    Article  CAS  Google Scholar 

  • Al-Khayri JM, Al-Bahrany AM (2012) Effect of abscisic acid and polyethylene glycol on the synchronization of somatic embryo development in date palm (Phoenix dactylifera L.). Biotech 11:318–325. https://doi.org/10.3923/biotech.2012.318.325

    Article  CAS  Google Scholar 

  • Al-Mssallem IS, Hu S, Zhang X et al (2013) Genome sequence of the date palm Phoenix dactylifera L. Nat Comm 4:2274. https://doi.org/10.1038/ncomms3274

    Article  CAS  Google Scholar 

  • Al-Wasel ASA (2001) Phenotypic comparison of tissue culture-derived and conventionally propagated date palm (Phoenix dactylifera L.) cv. barhee trees. I. vegetative characteristics. J King Saud Univ 13:65–73

    Google Scholar 

  • Arabnezhad H, Bahar M, Mohammadi HR, Latifian M (2012) Development, characterization and use of microsatellite markers for germplasm analysis in date palm (Phoenix dactylifera L.). Scient Hort 134:150–156. https://doi.org/10.1016/j.scienta.2011.11.032

    Article  CAS  Google Scholar 

  • Arunachalam V (2011) Date palm. In: Arunachalam V (ed) Genomics of cultivated palms. Elsevier Inc, Amsterdam, pp 49–59

    Google Scholar 

  • Bader SM, Baum M, Khierallah HSM, Choumane W (2007) The use of RAPDs technique for the detection of genetic stability of date palm plantlets derived from in vitro culture of inflorescence. J Edu Sci 20(2):149–159

    Article  Google Scholar 

  • Baharan E, Mohammadi PP (2018) Induction of direct somatic embryogenesis and callogenesis in date palm (Phoenix dactylifera L.) using leaf explants. BioTech 99(3):197–203. https://doi.org/10.5114/bta.2018.77480

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Reg 63:147–173. https://doi.org/10.1007/s10725-010-9554-x

    Article  CAS  Google Scholar 

  • Baránek M, Čechová J, Raddová J et al (2015) Dynamics and reversibility of the DNA methylation landscape of grapevine plants (Vitis vinifera) stressed by in vitro cultivation and thermotherapy. PLoS ONE 10: https://doi.org/10.1371/journal.pone.0126638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baránek M, Křižan B, Ondrušíková E, Pidra M (2010) DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Cell Tiss Organ Cult 101:11–22. https://doi.org/10.1007/s11240-009-9656-1

    Article  CAS  Google Scholar 

  • Bekheet SA (2011) In vitro conservation of date palm germplasm. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Netherlands, Dordrecht, pp 337–360

    Chapter  Google Scholar 

  • Bekheet SA, Taha HS, El-Bahr MK (2005) Preservation of date palm cultures using encapsulated somatic embryos. Arab J Biotech 8:319–328

    Google Scholar 

  • Ben Saleh M, El-Helaly R (2003) Using ISSR to investigate the similarities and dissimilarities between some Tunisian date palm (Phoenix dactylifera L.) cultivars. In: International Conference on Date Palm. King Saud University, Qaseem, Kingdom of Saudi Arabia, pp 16–19

    Google Scholar 

  • Ben-Yehoyada M, Wang LC, Kozekov ID et al (2009) Checkpoint signaling from a single DNA interstrand crosslink. Mol Cell 35(5):704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia R, Singh KP, Sharma TR, Jhang T (2011) Evaluation of the genetic fidelity of in vitro-propagated gerbera (Gerbera jamesonii Bolus) using DNA-based markers. Plant Cell Tiss Organ Cult 104:131–135. https://doi.org/10.1007/s11240-010-9806-5

    Article  Google Scholar 

  • Borchetia S, Das SC, Handique PJ, Das S (2009) High multiplication frequency and genetic stability for commercialization of the three varieties of micropropagated tea plants (Camellia spp.). Sci Hort 120:544–550. https://doi.org/10.1016/j.scienta.2008.12.007

    Article  CAS  Google Scholar 

  • Bouguedora N, Si-Dehbi F, Fergani K et al (2017) Somatic embryogenesis in date palm (Phoenix dactylifera L.) “deglet nur” and “takerbucht” cultivars. Int J Plant Rep Biol 9(1):43–48. https://doi.org/10.14787/ijprb.2017 9.1.43-48

  • Bouwman P, Jonkers J (2012) The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Canc 12(9):587–598

    Article  CAS  Google Scholar 

  • Chaluvadi SR, Khanam S, Aly MA, Bennetzen JL (2014) Genetic diversity and population structure of native and introduced date palm (Phoenix dactylifera) germplasm in the United Arab Emirates. Trop Plant Biol 7(1):30–41. https://doi.org/10.1007/s12042-014-9135-7

    Article  Google Scholar 

  • Chaluvadi SR, Young P, Thompson K et al (2019) Phoenix phylogeny, and analysis of genetic variation in a diverse collection of date palm (Phoenix dactylifera) and related species. Plant Divers 41:330–339. https://doi.org/10.1016/j.pld.2018.11.005

    Article  PubMed  Google Scholar 

  • Chatterjee N, Walker GC (2017) Mechanisms of DNA damage, repair and mutagenesis. Environ Mol Mutagen 58(5):235–263. https://doi.org/10.1002/em.22087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Carvalho SR, Carmo LST, Luis ZG et al (2014) Proteomic identification of differentially expressed proteins during the acquisition of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.). J Proteom 104:112–127

    Article  CAS  Google Scholar 

  • El-Ashry AA, Shaltout AD, El-Bahr MK et al (2013) In vitro preservation of embryogenic cultures of two Egyptian dry date palm cultivars at darkness and low temperature conditions. J Appl Sci Res 9:1985–1992

    CAS  Google Scholar 

  • El-Dawayati MM, Abd El-Bar OH, Zaid ZE, Zein El-Din AFM (2012a) In vitro morpho-histological studies of newly developed embryos from abnormal malformed embryos of date palm cv. gundila under desiccation effect of polyethylene glycol treatments. Ann Agri Sci 57(2):117–128. https://doi.org/10.1016/j.aoas.2012.08.005

  • El-Dawayati MM, Zaid ZE, El-Sharabasy SF (2012b) Effect of conservation on steroids contents of callus explants of date palm cv. sakkoti. Aust J Basic Appl Sci 6(5):305–310

    Google Scholar 

  • El-El-Hadrami A, Daayf F, Elshibli S et al (2011) Somaclonal variation in date palm. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date palm biotechnology. Springer, Netherlands, Dordrecht, pp 183–203

    Chapter  Google Scholar 

  • Ellis D, Skogerboe D, Andre C et al (2006) Implementation of garlic cryopreservation techniques in the national plant germplasm system. Cryo Lett 27:99–106

    Google Scholar 

  • El-Mageid IS (2019) Evaluation of genetic stability by using protein and ISSR markers during callus development stage of some date palm (Phoenix dactylifera L.) cultivars under effect of 2,4-D and picloram. Middle East J Appl Sci 9(2):483–493

    Google Scholar 

  • Elmeer K, Mattat I, Malki AA et al (2019) Assessing genetic diversity of shishi date palm cultivars in Saudi Arabia and Qatar using microsatellite markers. Int J Hort Sci Tech 6:1–9. https://doi.org/10.22059/ijhst.2019.271662.267

  • El-Sharabasy S, Rizk R (2019) Atlas of date palm in Egypt. FAO, Egypt

    Google Scholar 

  • El-Sharabasy SF, Wanas WH, Al-Kerdany AY (2008) Date palm in vitro screening to drought tolerance using isozymes. Arab J Biotech 11:263–272

    Google Scholar 

  • El-Sharabasy SS, Rizk RM (2005) Morphological diversity of date palm (Phoenix dactylifera L.) in Egypt soft date palm cultivars. Mans Hort J 30(11)7001–7027

    Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In vitro Cell Dev Biol Plant 40:427–433. https://doi.org/10.1079/IVP2004541

    Article  Google Scholar 

  • Engelmann F (2009) 3. Plant germplasm cryopreservation: progress and prospects. Cryobiol 59:370–371. https://doi.org/10.1016/j.cryobiol.2009.10.017

    Article  Google Scholar 

  • Enoiu M, Jiricny J, Scharer OD (2012) Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucl Acids Res 40(18):8953–8964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshraghi P, Zarghami R, Ofoghi H (2005) Genetic stability of micropropagated plantlets in date palm. J Sci 16:311–315

    CAS  Google Scholar 

  • Fang J, Chao CT (2006) Methylation sensitive amplification polymorphism in date palms and their offshoots. Hort Sci 41:994A–994. https://doi.org/10.21273/HORTSCI.41.4.994A

  • Fang J-G, Chao CT (2007) Methylation-sensitive amplification polymorphism in date palms (Phoenix dactylifera L.) and their off-shoots. Plant Biol 9:526–533. https://doi.org/10.1055/s-2007-964934

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Wu H, Zhang T et al (2012) A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome. PLoS One 7(5):e37164

    Google Scholar 

  • Fouad HAM (2019) effect of some treatments to improve growth of tissue culture plantlets of date palm at the rooting stage and acclimatization stage. PhD thesis, Faculty of Agriculture, Cairo University, Egypt

    Google Scholar 

  • Fu Y, Yang M, Zeng F, Biligetu B (2017) Searching for accurate marker-based prediction of an individual quantitative trait in molecular plant breeding. Front Plant Sci 8:1182

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg R, Patel RK, Jhanwar S et al (2011) Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development (WOA). Plant Phys 156:1661–1678

    Article  CAS  Google Scholar 

  • Ghazzawy H, El-Sharabasy SF (2019) Effect of natural additives as coconut milk on the shooting and rooting media of in vitro barhi date palm (Phoenix dactylifera L.). In: By-products of palm trees and their applications. Mater Res Proc 11:186–192. http://doi.org/10.21741/9781644900178-13

  • Ghosal G, Chen J (2013) DNA damage tolerance: a double-edged sword guarding the genome. Trans Canc Res 2(3):107–129

    CAS  Google Scholar 

  • Gros-Balthazard M, Hazzouri K, Flowers J (2018) Genomic insights into date palm origins. Genes 9:502. https://doi.org/10.3390/genes9100502

    Article  CAS  PubMed Central  Google Scholar 

  • Gueye B, Morcillo F, Collin M et al (2009) Acquisition of callogenic capacity in date palm leaf tissues in response to 2,4-D treatment. Plant Cell Tiss Organ Cult 99:35–45. https://doi.org/10.1007/s11240-009-9573-3

    Article  CAS  Google Scholar 

  • Gurevich V, Lavi U, Cohen Y (2005) Genetic variation in date palms propagated from offshoots and tissue culture. J Amer Soc Hort Sci 130:46–53. https://doi.org/10.21273/JASHS.130.1.46

  • Hamwieh A, Farah J, Moussally S et al (2010) Development of 1000 microsatellite markers across the date palm (Phoenix dactylifera L.) genome. Acta Hort 269–277. https://doi.org/10.17660/ActaHortic.2010.882.29

  • Hamza H, Benabderrahim MA, Elbekkay M et al (2012) Investigation of genetic variation in Tunisian date palm (Phoenix dactylifera L.) cultivars using ISSR marker systems and their relation with fruit characteristics. Turk J Biol 36:449–458. https://doi.org/10.3906/biy-1107-12

    Article  CAS  Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. Cryo Lett 25:3–22

    Google Scholar 

  • Hassan MM, Ibrahim IA, Ebrahim MKH, Komor E (2013) Improvement of somatic embryogenesis and plant regeneration of seven date palm (Phoenix dactylifera L.) cultivars: effect of cytokinins and activated charcoal. J Appl Hort 15(1):26–31. https://doi.org/10.37855/jah.2013.v15i01.05

  • Hazzouri KM, Flowers JM, Nelson D et al (2020) Prospects for the study and improvement of abiotic stress tolerance in date palms in the post-genomics era. Front Plant Sci 11:293. https://doi.org/10.3389/fpls.2020.00293

    Article  PubMed  PubMed Central  Google Scholar 

  • Hazzouri KM, Flowers JM, Visser HJ et al (2015) Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. Nat Comm 6:8824. https://doi.org/10.1038/ncomms9824

    Article  CAS  Google Scholar 

  • Hegazy A, Nasr MI, Ibrahim IA, El-Bastawissy HH (2009) Micropropagation of date palm cv. malakaby through somatic embryogenesis 3-effect of tryptone, yeast extract, casein hydrolysate and pineapple extract. J Agric Chem Biotech 34:1629–1644. https://doi.org/10.21608/jacb.2009.90293

  • Hegazy AE, Aboshama HM (2010) An efficient novel pathway discovered in date palm micropropagation. Acta Hort 882:167–176. https://doi.org/10.17660/ActaHortic.2010.882.18

  • Ho TV, Guainazzi A, Derkunt SB et al (2011) Structure-dependent bypass of DNA interstrand crosslinks by translesion synthesis polymerases. Nucl Acids Res 39(17):7455–7464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho WK, Ooi SE, Mayes S et al (2013) Methylation levels of a novel genetic element, EgNB3 as a candidate biomarker associated with the embryogenic competency of oil palm. Tree Genet Genom 9(4):1099–1107

    Article  Google Scholar 

  • Hong JP, Byun MY, An K et al (2010) OsKu70 is associated with developmental growth and genome stability in rice. Plant Phys 152:374–387

    Article  CAS  Google Scholar 

  • House NC, Koch MR, Freudenreich CH (2014) Chromatin modifications and DNA repair: beyond double-strand breaks. Front Genet 5:296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howard SM, Yanez DA, Stark JM (2015) DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining. PLoS Genet 11(1):

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang M, Kim JM, Shiotani B et al (2010) The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. Mol Cell 39(2):259–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussam SM, Khierallah NHH (2013) The role of coconut water and casein hydrolysate in somatic embryogenesis of date palm and genetic stability detection using RAPD markers. Res Biotech 4:20–28

    Google Scholar 

  • Jain SM (2007) Recent advances in date palm tissue culture and mutagenesis. Acta Hort 736:205–211

    Article  Google Scholar 

  • Jain SM (2011) Prospects of in vitro conservation of date palm genetic diversity for sustainable production. Emir J Food Agric 23:110–119

    Article  Google Scholar 

  • Jain SM (2012) Date palm biotechnology: current status and prospective-an overview. Emir J Food Agric 24:386–399

    Google Scholar 

  • Jaligot E, Beulé T, Baurens F-C et al (2004) Search for methylation-sensitive amplification polymorphisms associated with the “mantled” variant phenotype in oil palm (Elaeis guineensis Jacq.). Genome 47:224–228. https://doi.org/10.1139/g03-085

    Article  CAS  PubMed  Google Scholar 

  • Jaligot E, Hooi WY, Debladis E et al (2014) DNA methylation and expression of the EgDEF1 gene and neighboring retrotransposons in mantled somaclonal variants of oil palm. PLoS ONE 9:

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jokipii S, Ryynänen L, Kallio PT et al (2004) A cryopreservation method maintaining the genetic fidelity of a model forest tree, Populus tremula L. × Populus tremuloides Michx. Plant Sci 166:799–806. https://doi.org/10.1016/j.plantsci.2003.11.017

    Article  CAS  Google Scholar 

  • Jombart T, Ahmed I (2011) Adegenet 1.3–1: new tools for the analysis of genome-wide SNP data. Bioinform 27:3070–3071. https://doi.org/10.1093/bioinformatics/btr521

    Article  CAS  Google Scholar 

  • Khierallah HSM, Al-Sammarraie SKI, Mohammed HI (2014) Molecular characterization of some Iraqi date palm cultivars using RAPD AND ISSR markers. Asian J Sci Res 4:490–503

    Google Scholar 

  • Kim H, Kim S-T, Kim S-G, Kim J-S (2015) Targeted genome editing for crop improvement. Plant Breed Biotech 3:283–290. https://doi.org/10.9787/PBB.2015.3.4.283

    Article  Google Scholar 

  • Krishna H, Alizadeh M, Singh D et al (2016) Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 6:54. https://doi.org/10.1007/s13205-016-0389-7

  • Kumar N, Modi AR, Singh AS et al (2010a) Assessment of genetic fidelity of micropropagated date palm (Phoenix dactylifera L.) plants by RAPD and ISSR markers assay. Phys Mol Biol Plants 16(2):207–213

    Google Scholar 

  • Kumar N, Singh AS, Modi AR et al (2010b) Genetic stability studies in micropropagated date palm (Phoenix dactylifera L.) plants using microsatellite marker. J For Environ Sci 26(1):31–36

    Google Scholar 

  • Kurup S, Aly M, Lekshmi G, Tawfik N (2014) Rapid in vitro regeneration of date palm (Phoenix dactylifera L.) cv. kheneizi using tender leaf explant. Emir J Food Agric 26:539–543. https://doi.org/10.9755/ejfa.v26i6.18051

    Article  Google Scholar 

  • Leva AR, Petruccelli R (2012) Monitoring of cultivar identity in micropropagated olive plants using RAPD and ISSR markers. Biol Plant 56:373–376. https://doi.org/10.1007/s10535-012-0102-6

    Article  CAS  Google Scholar 

  • Leva AR, Petruccelli R, Rinaldi LMR (2012) Somaclonal variation in tissue culture: a case study with olive. In: Leva A, Rinaldi L (eds) Recent advances in plant in vitro culture. IntechOpen, London, UK pp:123–150. http://dx.doi.org/10.5772/50367

  • Lukas J, Lukas C, Bartek J (2011) More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 13(10):1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Mahdy EMB (2018) Genetical studies on DNA storage and preservation on some accessions of cowpea plant. PhD thesis, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt

    Google Scholar 

  • Mallón R, Rodríguez-Oubiña J, González ML (2010) In vitro propagation of the endangered plant Centaurea ultreiae: assessment of genetic stability by cytological studies, flow cytometry and RAPD analysis. Plant Cell Tiss Organ Cult 101:31–39. https://doi.org/10.1007/s11240-009-9659-y

    Article  Google Scholar 

  • Mazri MA, Belkoura I, Meziani R et al (2017) Somatic embryogenesis from bud and leaf explants of date palm (Phoenix dactylifera L.) cv. najda. 3 Biotech 7:58. https://doi.org/10.1007/s13205-017-0676-y

  • Mazri MA, Meziani R, Belkoura I et al (2018) A combined pathway of organogenesis and somatic embryogenesis for an efficient large-scale propagation in date palm (Phoenix dactylifera L.) cv. mejhoul. 3 Biotech 8:215. https://doi.org/10.1007/s13205-018-1235-x

  • Mirani AA, Teo CH, Abul-Soad AA et al (2019) Phenotypic reversion of somaclonal variants derived from inflorescence of date palm (Phoenix dactylifera L.) in the open field trials. Sarhad J Agri 35:719–726. https://doi.org/10.17582/journal.sja/2019/35.3.719.726

  • Mirani AA, Teo CH, Markhand GS (2020) Detection of somaclonal variations in tissue cultured date palm (Phoenix dactylifera L.) using transposable element-based markers. Plant Cell Tiss Org Cult 141:119–130. https://doi.org/10.1007/s11240-020-01772-y

    Article  CAS  Google Scholar 

  • Modi A, Gajera B, Subhash N, Kumar N (2017) Evaluation of clonal fidelity of micropropagated date palm by random amplified polymorphic DNA (RAPD) In: Al-Khayri JM, Jain SM, Johnson DV (eds) Date palm biotechnology protocols. Vol. 2. Humana Press, NY, pp 81–89. https://doi.org/10.1007/978-1-4939-7159-6_8

  • Murashige T (1974) Plant propagation through tissue cultures. Ann Rev Plant Physiol 25:135–166. https://doi.org/10.1146/annurev.pp.25.060174.001031

    Article  CAS  Google Scholar 

  • Naganeeswaran S, Fayas TP, Rajesh MK (2020) Dataset of transcriptome assembly of date palm embryogenic calli and functional annotation. Data Brief 31: https://doi.org/10.1016/j.dib.2020.105760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy ZT (2010) A hands-on overview of tissue preservation methods for molecular genetic analyses. Org Divers Evol 10:91–105. https://doi.org/10.1007/s13127-010-0012-4

    Article  Google Scholar 

  • Ong-Abdullah M, Ordway JM, Jiang N et al (2015) Loss of karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525:533–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ong-Abdullah M, Ordway JM, Jiang N et al (2016) Tissue culture and epigenetics. Planter 92:741–749

    Google Scholar 

  • Osorio-Guarín JA, Garzón-Martínez GA, Delgadillo-Duran P et al (2019) Genome-wide association study (GWAS) for morphological and yield-related traits in an oil palm hybrid (Elaeis oleifera x Elaeis guineensis) population. BMC Plant Biol 19:533. https://doi.org/10.1186/s12870-019-2153-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Othmani A, Rhouma S, Bayoudh C et al (2010) Regeneration and analysis of genetic stability of plantlets as revealed by RAPD and AFLP markers in date palm (Phoenix dactylifera L.) cv. deglet nour. Int Res J Plant Sci 1:48–55

    Google Scholar 

  • Panis B, Piette B, Andre E et al (2011) Droplet vitrification: the first generic cryopreservation protocol for organized plant tissues? Int Symp Cryopreserv Hortic Species 908:157–163

    Google Scholar 

  • Peredo EL, Arroyo-García R, Revilla MÁ (2009) Epigenetic changes detected in micropropagated hop plants. J Plant Phys 166:1101–1111. https://doi.org/10.1016/j.jplph.2008.12.015

    Article  CAS  Google Scholar 

  • Price BD, D’Andrea AD (2013) Chromatin remodeling at DNA double-strand breaks. Cell 152(6):1344–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puente-Garza CA, Meza-Miranda C, Ochoa-Martínez D, García-Lara S (2017) Effect of in vitro drought stress on phenolic acids, flavonols, saponins, and antioxidant activity in Agave salmiana. Plant Physiol Biochem 115:400–407. https://doi.org/10.1016/j.plaphy.2017.04.012

    Article  CAS  PubMed  Google Scholar 

  • Puizina J, Siroky J, Mokros P et al (2004) Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis. Plant Cell 16:1968–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Racchi M, Bove A, Turchi A et al (2014) Genetic characterization of Libyan date palm resources by microsatellite markers. 3 Biotech 4:21–32

    Google Scholar 

  • Racchi ML, Camussi A (2014) Date palms of Al-Jufrah oasis: genetic fingerprinting of local cultivars and pollinators. In: Dies palmarum, Sanremo, 5–7/12/2013, Centro Palme Sanremo, pp. 1–9

    Google Scholar 

  • Racchi ML, Camussi A (2018) The date palms of Al Jufrah-Libya: a survey on genetic diversity of local varieties. J Agric Envir Intern Dev 122(1):161–184

    Google Scholar 

  • Ramanovsky A (2010) Molecular analysis of somaclonal variants in date palm (Phoenix dactylifera L.). Bar-Ilan University. Ramat Gan, Israel

    Google Scholar 

  • Rathore MS, Patel PR, Siddiqui SA (2020) Callus culture and plantlet regeneration in date palm (Phoenix dactylifera L.): an important horticultural cash crop for arid and semi-arid horticulture. Physiol Mol Biol Plants 26(2):391–398. https://doi.org/10.1007/s12298-019-00733-w

  • Rekik I, Drira N, Grubb CD, Elleuch A (2015) Molecular characterization and evolution studies of a SERK like gene transcriptionally induced during somatic embryogenesis in Phoenix dactylifera L. cv. deglet nour. Genetika 47:323–337

    Article  Google Scholar 

  • Rhouma Chatti S, Baraket G, Dakhlaoui Dkhil S et al (2011) Molecular research on the genetic diversity of Tunisian date palm (Phoenix dactylifera L.) using the random amplified microsatellite polymorphism (RAMPO) and amplified fragment length polymorphism (AFLP) methods. Afr J Biotech 10:10352–10365. https://doi.org/10.5897/AJB10.2242

    Article  Google Scholar 

  • Rikek I, Chaâbene Z, Kriaa W et al (2019) Transcriptome assembly and abiotic related gene expression analysis of date palm reveal candidate genes involved in response to cadmium stress. Compa Biochem Physiol Part C Toxicol Pharmacol 225: https://doi.org/10.1016/j.cbpc.2019.108569

    Article  CAS  Google Scholar 

  • Rizk RM, El-Sharabasy SF (2008) A descriptor for date palm (Phoenix dactylifera l.) characterization and evaluation in gene banks. Plant Genet Res Newsl 150:42–44

    Google Scholar 

  • Roshanfekrrad M, Zarghami R, Hassani H et al (2017) Effect of AgNO3 and BAP on root as a novel explant in date palm (Phoenix dactylifera cv. medjool) somatic embryogenesis. Pak J Biol Sci. 20(1):20–27. https://doi.org/10.3923/pjbs.2017.20.27

  • Rybaczek D, Kowalewicz-Kulbat M (2013) Relation of the types of DNA damage to replication stress and the induction of premature chromosome condensation. In: Chen C (ed) New research directions in DNA repair. Intech Open, pp 231–248. https://doi.org/10.5772/54020

  • Ryynänen L, Aronen T (2005) Genome fidelity during short- and long-term tissue culture and differentially cryostored meristems of silver birch (Betula pendula). Plant Cell Tiss Organ Cult 83:21–32. https://doi.org/10.1007/s11240-005-3396-7

    Article  CAS  Google Scholar 

  • Saha S, Adhikari S, Dey T, Ghosh P (2016) RAPD and ISSR based evaluation of genetic stability of micropropagated plantlets of Morus alba L. variety S-1. Meta Gene 7:7–15. https://doi.org/10.1016/j.mgene.2015.10.004

    Article  PubMed  Google Scholar 

  • Saker MM, Adawy SS, Mohamed AA, El-Itriby HA (2006) Monitoring of cultivar identity in tissue culture-derived date palms using RAPD and AFLP analysis. Biol Plant 50:198é204. https://doi.org/10.1007/s10535-006-0007-3

  • Salomon-Torres R, Ortiz-Uribe N, Villa-Angulo C et al (2017) Assessment SSR markers used in analysis of genetic diversity of date palm (Phoenix dactylifera L.). Plant Cell Biotech Mol Biol 18:269–280

    Google Scholar 

  • Saptari RT, Sumaryono (2018) Somatic embryogenesis from shoot tip of date palm (Phoenix dactylifera L.). E-Journal Menara Perkebunan. 86(2):81–90. https://doi.org/10.22302/iribb.jur.mp.v86i2.313

  • Sayed AIH, El-Shaer HFA, El-Halwagi A, Mahdy EMB (2017) Comparative study of DNA preservation under various conditions on local Egyptian cowpea germplasm. Int J Life Sci Pharma Res 3:64–70. https://doi.org/10.25141/2471-6782-2017-5.0064

  • Senula A, Büchner D, Keller ER, Nagel M (2018) An improved cryopreservation protocol for Mentha spp. Based on Pvs3 as the cryoprotectant. Cryo Lett 39:345–353

    Google Scholar 

  • Sghaier-Hammami B, Jorrín-Novo JV, Gargouri-Bouzid R, Drira N (2010) Abscisic acid and sucrose increase the protein content in date palm somatic embryos, causing changes in 2-DE profile. Phytochem 71:1223–1236. https://doi.org/10.1016/j.phytochem.2010.05.005

    Article  CAS  Google Scholar 

  • Shair OH, Askari E, Khan PR (2016) Genetic and anatomical analysis of normal and abnormal flowers of date palm cultivar ‘barhy’ derived from offshoot and tissue culture. Pak J Bot 48(3):1061–1065

    CAS  Google Scholar 

  • Skirvin RM, Mcpheeters KD, Norton M (1994) Sources and frequency of somaclonal variation. HortSci 29:1232–1237

    Article  Google Scholar 

  • Solangi N, Abul-Soad AA, Markhand GS et al (2020) Comparison among different auxins and cytokinins to induce date palm (Phoenix dactylifera L.) somatic embryogenesis from floral buds. Pakist J Bot 52:1243–1249.‏ https://doi.org/10.30848/PJB2020-4(30)

  • Soliman KA, Rizk RM, El-Sharabasy SS (2009) Genetic analysis of abnormalities in tissue culture-derived date palm (Phoenix dactylifera L.), barhi cultivars. Egypt J Biotech 33:122–134

    Google Scholar 

  • Soumaya RC, Ghada B, Sonia DD et al (2011) Molecular research on the genetic diversity of Tunisian date palm (Phoenix dactylifera L.) using the random amplified microsatellite polymorphism (RAMPO) and amplified fragment length polymorphism (AFLP) methods. Afr J Biotech 10(51):10352–10365‏

    Google Scholar 

  • Tan HS, Liddell S, Ong-Abdullah M et al (2016) Differential proteomic analysis of embryogenic lines in oil palm (Elaeis guineensis Jacq.). J Proteom 143:334–345

    Article  CAS  Google Scholar 

  • Ting NC, Jansen J, Nagappan J et al (2013) Identification of QTLs associated with callogenesis and embryogenesis in oil palm using genetic linkage maps improved with SSR markers. PLoS ONE 8(1):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tranbarger TJ, Kluabmongkol W, Sangsrakrul D et al (2012) SSR markers in transcripts of genes linked to post-transcriptional and transcriptional regulatory functions during vegetative and reproductive development of Elaeis guineensis. BMC Plant Biol 12:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uddin SN, Titov S (2007) Somatic embryogenesis of Musa sp. cv. kanthali using floral bud explants. J Plant Sci 2(1):35–44.‏ https://doi.org/10.3923/jps.2007.35.44

  • Unamba CIN, Nag A, Sharma RK (2015) Next generation sequencing technologies: the doorway to the unexplored genomics of non-model plants. Front Plant Sci 6:1074

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanyushin BF (2006) DNA methylation in plants. In: Doerfler W, Böhm P (eds) DNA methylation: basic mechanisms. Springer-Verlag, Berlin, pp 67–122

    Chapter  Google Scholar 

  • Vanyushin BF (2014) Epigenetics today and tomorrow. Russ J Genet Appl Res 4:168–188. https://doi.org/10.1134/S2079059714030083

    Article  Google Scholar 

  • Vanyushin BF, Ashapkin VV (2006) DNA methylation in plants. Curr Top Microbio Immun 301:67–122. https://doi.org/10.1007/3-540-31390-7_4

    Article  CAS  Google Scholar 

  • Vanyushin BF, Ashapkin VV (2011) DNA methylation in higher plants: past, present and future. Biochim Biophys Acta Gene Regul Mech 1809:360–368. https://doi.org/10.1016/j.bbagrm.2011.04.006

    Article  CAS  Google Scholar 

  • Vignard J, Mirey G, Salles B (2013) Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up. Radiother Oncol 108(3):362–369

    Article  CAS  PubMed  Google Scholar 

  • Vorster B, Kunert K, Cullis C (2002) Use of representational difference analysis for the characterization of sequence differences between date palm varieties. Plant Cell Rep 21:271–275. https://doi.org/10.1007/s00299-002-0501-9

    Article  CAS  Google Scholar 

  • Wolters S, Schumacher B (2013) Genome maintenance and transcription integrity in aging and disease. Front Genet 4:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu L, Multani AS, He H et al (2006) Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126:49–62

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Zhang X, Liu G et al (2010) The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS one 5:e12762. https://doi.org/10.1371/journal.pone.0012762

  • Yusuf AO, Culham A, Aljuhani W et al (2015) Genetic diversity of Nigerian date palm (Phoenix dactylifera) germplasm based on microsatellite mMarkers. Int J Bio-Sci Bio-Tech 7:121–132. https://doi.org/10.14257/ijbsbt.2015.7.1.12

  • Zayed EMM (2017) Direct organogenesis and indirect somatic embryogenesis by in vitro reversion of mature female floral buds to a vegetative state. In: Clifton NJ (ed) Methods in molecular biology, vol. 1637:47–59. doi: https://doi.org/10.1007/978-1-4939-7156-5-5

  • Zayed ZE, El-Dawayati MM, Hussien FA, Saber TY (2020) Enhanced in vitro multiplication and rooting of date palm cv. yellow maktoum by zinc and copper ions. Plant Archiv 20(1):517–528

    Google Scholar 

  • Zehdi S, Cherif E, Rhouma S et al (2012) Molecular polymorphism and genetic relationships in date palm (Phoenix dactylifera L.): the utility of nuclear microsatellite markers. Sci Hort 148:255–263. https://doi.org/10.1016/j.scienta.2012.10.011

    Article  CAS  Google Scholar 

  • Zehdi S, Sakka H, Rhouma A et al (2004) Analysis of Tunisian date palm germplasm using simple sequence repeat primers. Afr J Biotech 3:215–219. https://doi.org/10.5897/AJB2004.000-2040

    Article  CAS  Google Scholar 

  • Zehdi-Azouzi S, Cherif E, Moussouni S et al (2015) Genetic structure of the date palm (Phoenix dactylifera) in the old world reveals a strong differentiation between eastern and western populations. Ann Bot 116(1):101–112. https://doi.org/10.1093/aob/mcv068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zouine J, El Bellaj M, Meddich A et al (2005) Proliferation and germination of somatic embryos from embryogenic suspension cultures in Phoenix dactylifera. Plant Cell Tiss Organ Cult 82:83–92. https://doi.org/10.1007/s11240-004-6914-0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif F. El-Sharabasy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Sharabasy, S.F., Mahdy, E.M.B., Ghazzawy, H.S. (2021). Genome Conformity of In Vitro Cultures of Date Palm. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) The Date Palm Genome, Vol. 1. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-73746-7_4

Download citation

Publish with us

Policies and ethics