Skip to main content

Photocatalysis: Fundamentals

  • Chapter
  • First Online:
Nanostructured Photocatalyst via Defect Engineering

Abstract

As environmental pollution, shortage of energy sources, and their limited accessibility to only certain part of worldwide population were identified to be a crucial problem for further successive development of modern society, photocatalyst-based technologies become considered as highly attractive approach to effectively solve these problems. This chapter is dedicated to a brief introduction on the basic and most fundamental aspects of photocatalysis including its characteristics and particularities. Furthermore, several examples of perspective and highly applied light-induced reactions such as dye degradation, water splitting, CO2 reduction, nitrogen fixation, etc. are discussed in precise details with specific emphasis on the requirements toward their successful realization and further advancements. In addition, it is described how certain properties of semiconductor materials can be correlated with smooth occurrence and efficient outcome of these processes. In the end, several words are dedicated to reaching clear understanding why photocatalysis is regarded as an alternative to utilizing depleted fossil fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z. Long, Q. Li, T. Wei, G. Zhang, Z. Ren, Historical development and prospects of photocatalysts for pollutant removal in water. J. Hazard. Mater. 395, 122599 (2020). https://doi.org/10.1016/j.jhazmat.2020.122599

    Article  CAS  Google Scholar 

  2. D. Sudha, P. Sivakumar, Review on the photocatalytic activity of various composite catalysts. Chem. Eng. Process. 97, 112–133 (2015). https://doi.org/10.1016/j.cep.2015.08.006

    Article  CAS  Google Scholar 

  3. J. He, C. Janáky, Recent advances in solar-driven carbon dioxide conversion: Expectations versus reality. ACS Energy Lett. 5, 1996–2014 (2020). https://doi.org/10.1021/acsenergylett.0c00645

    Article  CAS  Google Scholar 

  4. R. Shi, Y. Zhao, G.I.N. Waterhouse, S. Zhang, T. Zhang, Defect engineering in photocatalytic nitrogen fixation. ACS Catal. 9, 9739–9750 (2019). https://doi.org/10.1021/acscatal.9b03246

    Article  CAS  Google Scholar 

  5. A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: A comparative overview. RSC Adv. 4, 37003–37026 (2014). https://doi.org/10.1039/C4RA06658H

    Article  CAS  Google Scholar 

  6. H. Park, H. Kim, G. Moon, W. Choi, Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ. Sci. 9, 411–433 (2016). https://doi.org/10.1039/C5EE02575C

    Article  CAS  Google Scholar 

  7. W. Kim, T. Tachikawa, G. Moon, T. Majima, W. Choi, Molecular-level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles. Angew. Chem. Int. Ed. 53, 14036–14041 (2014). https://doi.org/10.1002/anie.201406625

    Article  CAS  Google Scholar 

  8. A. Touati, L. Jlaiel, W. Najjar, S. Sayadi, Photocatalytic degradation of sulfur black dye over Ce-TiO2 under UV irradiation: Removal efficiency and identification of degraded species. Euro-Mediterr. J. Environ. Integr. 4, 4 (2019). https://doi.org/10.1007/s41207-018-0086-5

    Article  Google Scholar 

  9. X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016). https://doi.org/10.1039/C5CS00838G

    Article  CAS  Google Scholar 

  10. C.M. Wang, A. Heller, H. Gerischer, Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds. J. Am. Chem. Soc. 114, 5230–5234 (1992). https://doi.org/10.1021/ja00039a039

    Article  CAS  Google Scholar 

  11. M.A. Basith, R. Ahsan, I. Zarin, et al., Enhanced photocatalytic dye degradation and hydrogen production ability of Bi25FeO40-rGO nanocomposite and mechanism insight. Sci. Rep. 8 (2018). https://doi.org/10.1038/s41598-018-29402-w

  12. V. Gurylev, C.-Y. Su, T.-P. Perng, Hydrogenated ZnO nanorods with defect-induced visible light-responsive photoelectrochemical performance. Appl. Surf. Sci. 411, 279–284 (2017). https://doi.org/10.1016/j.apsusc.2017.03.146

    Article  CAS  Google Scholar 

  13. S.G. Ullattil, S.B. Narendranath, S.C. Pillai, P. Periyat, Black TiO2 nanomaterials: A review of recent advances. Chem. Eng. J. 343, 708–736 (2018). https://doi.org/10.1016/j.cej.2018.01.069

    Article  CAS  Google Scholar 

  14. J.C. Murillo-Sierra, A. Hernández-Ramírez, L. Hinojosa-Reyes, J.L. Guzmán-Mar, A review on the development of visible light-responsive WO3-based photocatalysts for environmental applications. Chem. Eng. J. Adv. 5, 100070 (2021). https://doi.org/10.1016/j.ceja.2020.100070

    Article  Google Scholar 

  15. R. Abe, H. Takami, N. Murakami, B. Ohtani, Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J. Am. Chem. Soc. 130, 7780–7781 (2008). https://doi.org/10.1021/ja800835q

    Article  CAS  Google Scholar 

  16. M.A. Morales, I. Fernández-Cervantes, R. Agustín-Serrano, S. Ruíz-Salgado, M.P. Sampedro, J.L. Varela-Caselis, R. Portillo, E. Rubio, Ag3PO4 microcrystals with complex polyhedral morphologies diversity obtained by microwave-hydrothermal synthesis for MB degradation under sunlight. Results Phys. 12, 1344–1356 (2019). https://doi.org/10.1016/j.rinp.2018.12.082

    Article  Google Scholar 

  17. L. Zhang, H.H. Mohamed, R. Dillert, D. Bahnemann, Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review. J. Photochem. Photobiol. C 13, 263–276 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.07.002

    Article  CAS  Google Scholar 

  18. N. Serpone, D. Lawless, R. Khairutdinov, E. Pelizzetti, Subnanosecond relaxation dynamics in TiO2 colloidal sols (particle sizes Rp = 1.0-13.4 nm). Relevance to heterogeneous photocatalysis. J. Phys. Chem. 99, 16655–16661 (1995). https://doi.org/10.1021/j100045a027.W

    Article  CAS  Google Scholar 

  19. H. Yu, X. Huang, P. Wang, J. Yu, Enhanced photoinduced-stability and photocatalytic activity of CdS by dual amorphous cocatalysts: Synergistic effect of Ti(IV)-hole cocatalyst and Ni(II)-electron cocatalyst. J. Phys. Chem. C 120, 3722–3730 (2016). https://doi.org/10.1021/acs.jpcc.6b00126

    Article  CAS  Google Scholar 

  20. C.-L. Huang, W.-L. Weng, Y.-S. Huang, C.-N. Liao, Enhanced photolysis stability of Cu2O grown on Cu nanowires with nanoscale twin boundaries. Nanoscale 11, 13709–13713 (2019). https://doi.org/10.1039/C9NR01406C

    Article  CAS  Google Scholar 

  21. S. Chen, T. Takata, K. Domen, Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 17, 17050 (2017). https://doi.org/10.1038/natrevmats.2017.50

    Article  CAS  Google Scholar 

  22. N. Fajrina, M. Tahir, A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int. J. Hydrog. Energy 44, 540–577 (2019). https://doi.org/10.1016/j.ijhydene.2018.10.200

    Article  CAS  Google Scholar 

  23. Y. Surendranath, D.G. Nocera, Oxygen evolution reaction chemistry of oxide-based electrodes, in Progress in Inorganic Chemistry, (Wiley, 2011), pp. 505–560. https://doi.org/10.1002/9781118148235.ch9

    Chapter  Google Scholar 

  24. X. Hu, X. Tian, Y.-W. Lin, Z. Wang, Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media. RSC Adv. 9, 31563–31571 (2019). https://doi.org/10.1039/C9RA07258F

    Article  CAS  Google Scholar 

  25. Q. Wang, K. Domen, Particulate photocatalysts for light-driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 120, 919–985 (2020)

    Article  CAS  Google Scholar 

  26. Y. He, J.E. Thorne, C.H. Wu, P. Ma, C. Du, Q. Dong, J. Guo, D. Wang, What limits the performance of Ta3N5 for solar water splitting? Chem 1, 640–655 (2016). https://doi.org/10.1016/j.chempr.2016.09.006

    Article  CAS  Google Scholar 

  27. H. Wu, H.L. Tan, C.Y. Toe, J. Scott, L. Wang, R. Amal, Y.H. Ng, Photocatalytic and photoelectrochemical systems: Similarities and differences. Adv. Mater. 32, 1904717 (2020). https://doi.org/10.1002/adma.201904717

    Article  CAS  Google Scholar 

  28. X. Wu, G.Q. (Max) Lu, L. Wang, Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application. Energy Environ. Sci. 4, 3565–3572 (2011). https://doi.org/10.1039/C0EE00727G

    Article  CAS  Google Scholar 

  29. G. Ma, T. Hisatomi, K. Domen, Semiconductors for photocatalytic and photoelectrochemical solar water splitting, in From Molecules to Materials: Pathways to Artificial Photosynthesis, ed. by E. A. Rozhkova, K. Ariga, (Springer International Publishing, Cham, 2015), pp. 1–56. https://doi.org/10.1007/978-3-319-13800-8_1

    Chapter  Google Scholar 

  30. W.-P. Hsu, M. Mishra, W.-S. Liu, C.-Y. Su, T.-P. Perng, Fabrication of direct Z-scheme Ta3N5-WO2.72 film heterojunction photocatalyst for enhanced hydrogen evolution. Appl. Catal. B Environ. 201, 511–517 (2017). https://doi.org/10.1016/j.apcatb.2016.08.060

    Article  CAS  Google Scholar 

  31. J. Liu, B. Cheng, J. Yu, A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure. Phys. Chem. Chem. Phys. 18, 31175–31183 (2016). https://doi.org/10.1039/C6CP06147H

    Article  CAS  Google Scholar 

  32. L. Liao, Q. Zhang, Z. Su, Z. Zhao, Y. Wang, Y. Li, X. Lu, D. Wei, G. Feng, Q. Yu, X. Cai, J. Zhao, Z. Ren, H. Fang, F. Robles-Hernandez, S. Baldelli, J. Bao, Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 9, 69–73 (2014). https://doi.org/10.1038/nnano.2013.272

    Article  CAS  Google Scholar 

  33. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, X. Chen, Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485–2534 (2015). https://doi.org/10.1039/C4TA04461D

    Article  CAS  Google Scholar 

  34. H. Shen, T. Peppel, J. Strunk, Z. Sun, Photocatalytic reduction of CO2 by metal-free-based materials: Recent advances and future perspective. Solar RRL 4, 1900546 (2020). https://doi.org/10.1002/solr.201900546

  35. S.R. Lingampalli, M.M. Ayyub, C.N.R. Rao, Recent progress in the photocatalytic reduction of carbon dioxide. ACS Omega 2, 2740–2748 (2017). https://doi.org/10.1021/acsomega.7b00721

    Article  CAS  Google Scholar 

  36. X. Chang, T. Wang, J. Gong, CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 9, 2177–2196 (2016). https://doi.org/10.1039/C6EE00383D

    Article  CAS  Google Scholar 

  37. N. Shehzad, M. Tahir, K. Johari, T. Murugesan, M. Hussain, A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. J. CO2 Util. 26, 98–122 (2018). https://doi.org/10.1016/j.jcou.2018.04.026

    Article  CAS  Google Scholar 

  38. J. Hong, W. Zhang, J. Ren, R. Xu, Photocatalytic reduction of CO2: A brief review on product analysis and systematic methods. Anal. Methods 5, 1086–1097 (2013). https://doi.org/10.1039/C2AY26270C

  39. K. Teramura, T. Tanaka, H. Ishikawa, Y. Kohno, T. Funabiki, Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO. J. Phys. Chem. B 108, 346–354 (2004). https://doi.org/10.1021/jp0362943

    Article  CAS  Google Scholar 

  40. S. Sorcar, Y. Hwang, J. Lee, H. Kim, K.M. Grimes, C.A. Grimes, J.-W. Jung, C.-H. Cho, T. Majima, M.R. Hoffmann, S.-I. In, CO2, water, and sunlight to hydrocarbon fuels: a sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%. Energy Environ. Sci. 12, 2685–2696 (2019). https://doi.org/10.1039/C9EE00734B

    Article  CAS  Google Scholar 

  41. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010). https://doi.org/10.1021/cr1002326

    Article  CAS  Google Scholar 

  42. S. Xie, Y. Wang, Q. Zhang, W. Deng, Y. Wang, MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the reduction of carbon dioxide in the presence of water. ACS Catal. 4, 3644–3653 (2014). https://doi.org/10.1021/cs500648p

    Article  CAS  Google Scholar 

  43. A. Olivo, E. Ghedini, M. Signoretto, M. Compagnoni, I. Rossetti, Liquid vs. gas phase CO2 photoreduction process: which is the effect of the reaction medium? Energies 10, 1394 (2017). https://doi.org/10.3390/en10091394

    Article  CAS  Google Scholar 

  44. Y. Gao, K. Qian, B. Xu, Z. Li, J. Zheng, S. Zhao, F. Ding, Y. Sun, Z. Xu, Recent advances in visible-light-driven conversion of CO2 by photocatalysts into fuels or value-added chemicals. Carbon Resour. Convers. 3, 46–59 (2020). https://doi.org/10.1016/j.crcon.2020.02.003

    Article  CAS  Google Scholar 

  45. J.-Y. Li, L. Yuan, S.-H. Li, Z.-R. Tang, Y.-J. Xu, One-dimensional copper-based heterostructures toward photo-driven reduction of CO2 to sustainable fuels and feedstocks. J. Mater. Chem. A 7, 8676–8689 (2019). https://doi.org/10.1039/C8TA12427B

    Article  CAS  Google Scholar 

  46. A.E. Nogueira, J.A. Oliveira, G.T.S.T. da Silva, C. Ribeiro, Insights into the role of CuO in the CO2 photoreduction process. Sci. Rep. 9, 1316 (2019). https://doi.org/10.1038/s41598-018-36683-8

    Article  CAS  Google Scholar 

  47. X. Li, Z. Zhuang, W. Li, H. Pan, Photocatalytic reduction of CO over noble metal-loaded and nitrogen-doped mesoporous TiO2 . Appl. Catal. A Gen 429–430, 31–38 (2012). https://doi.org/10.1016/j.apcata.2012.04.001

  48. K. Xie, N. Umezawa, N. Zhang, P. Reunchan, Y. Zhang, J. Ye, Self-doped SrTiO3−δ photocatalyst with enhanced activity for artificial photosynthesis under visible light. Energy Environ. Sci. 4, 4211–4219 (2011). https://doi.org/10.1039/C1EE01594J

    Article  CAS  Google Scholar 

  49. L. Liu, C. Zhao, Y. Li, Spontaneous dissociation of CO2 to CO on defective surface of Cu(I)/TiO2–x nanoparticles at room temperature. J. Phys. Chem. C 116, 7904–7912 (2012). https://doi.org/10.1021/jp300932b

    Article  CAS  Google Scholar 

  50. X. Chen, N. Li, Z. Kong, W.-J. Ong, X. Zhao, Photocatalytic fixation of nitrogen to ammonia: State-of-the-art advancements and future prospects. Mater. Horiz. 5, 9–27 (2018). https://doi.org/10.1039/C7MH00557A

    Article  CAS  Google Scholar 

  51. X. Xue, R. Chen, C. Yan, P. Zhao, Y. Hu, W. Zhang, S. Yang, Z. Jin, Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 12, 1229–1249 (2019). https://doi.org/10.1007/s12274-018-2268-5

    Article  CAS  Google Scholar 

  52. H.-P. Jia, E.A. Quadrelli, Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 43, 547–564 (2013). https://doi.org/10.1039/C3CS60206K

    Article  Google Scholar 

  53. L. Wang, M. Xia, H. Wang, K. Huang, C. Qian, C.T. Maravelias, G.A. Ozin, Greening ammonia toward the solar ammonia refinery. Joule 2, 1055–1074 (2018). https://doi.org/10.1016/j.joule.2018.04.017

    Article  CAS  Google Scholar 

  54. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0

    Article  CAS  Google Scholar 

  55. M. Cheng, C. Xiao, Y. Xie, Photocatalytic nitrogen fixation: The role of defects in photocatalysts. J. Mater. Chem. A 7, 19616–19633 (2019). https://doi.org/10.1039/C9TA06435D

    Article  CAS  Google Scholar 

  56. W. Guo, K. Zhang, Z. Liang, R. Zou, Q. Xu, Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 48, 5658–5716 (2019). https://doi.org/10.1039/C9CS00159J

    Article  CAS  Google Scholar 

  57. C.-F. Huo, T. Zeng, Y.-W. Li, M. Beller, H. Jiao, Switching end-on into side-on C⋮N coordination: A computational approach. Organometallics 24, 6037–6042 (2005). https://doi.org/10.1021/om0505054

    Article  CAS  Google Scholar 

  58. J.S. Anderson, J. Rittle, J.C. Peters, Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501, 84–87 (2013). https://doi.org/10.1038/nature12435

    Article  CAS  Google Scholar 

  59. H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J. Am. Chem. Soc. 139, 10929–10936 (2017). https://doi.org/10.1021/jacs.7b06634

    Article  CAS  Google Scholar 

  60. J. Soria, J.C. Conesa, V. Augugliaro, L. Palmisano, M. Schiavello, A. Sclafani, Dinitrogen photoreduction to ammonia over titanium dioxide powders doped with ferric ions. J. Phys. Chem. 95, 274–282 (1991). https://doi.org/10.1021/j100154a052

    Article  CAS  Google Scholar 

  61. L. Palmisano, V. Augugliaro, A. Sclafani, M. Schiavello, Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation. J. Phys. Chem. 92, 6710–6713 (1988). https://doi.org/10.1021/j100334a044

    Article  CAS  Google Scholar 

  62. G.N. Schrauzer, T.D. Guth, Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 99, 7189–7193 (1977). https://doi.org/10.1021/ja00464a015

    Article  CAS  Google Scholar 

  63. O.A. Ileperuma, C.T.K. Thaminimulla, W.C.B. Kiridena, Photoreduction of N2 to NH3 and H2O to H2 on metal doped TiO2 catalysts (M = Ce, V). Sol. Energy Mater. Sol. Cells 28, 335–343 (1993). https://doi.org/10.1016/0927-0248(93)90121-I

    Article  CAS  Google Scholar 

  64. K.T. Ranjit, T.K. Varadarajan, B. Viswanathan, Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2. J. Photochem. Photobiol. A Chem 96, 181–185 (1996). https://doi.org/10.1016/1010-6030(95)04290-3

    Article  CAS  Google Scholar 

  65. S. Liu, S. Wang, Y. Jiang, Z. Zhao, G. Jiang, Z. Sun, Synthesis of Fe2O3 loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia. Chem. Eng. J. 373, 572–579 (2019). https://doi.org/10.1016/j.cej.2019.05.021

    Article  CAS  Google Scholar 

  66. K. Tennakone, S. Wickramanayake, C.a.N. Fernando, O.A. Ileperuma, S. Punchihewa, Photocatalytic nitrogen reduction using visible light. J. Chem. Soc., Chem. Commun., 1078–1080 (1987). https://doi.org/10.1039/C39870001078

  67. M.M. Khader, N.N. Lichtin, G.H. Vurens, M. Salmeron, G.A. Somorjai, Photoassisted catalytic dissociation of water and reduction of nitrogen to ammonia on partially reduced ferric oxide. Langmuir 3, 303–304 (1987). https://doi.org/10.1021/la00074a028

    Article  CAS  Google Scholar 

  68. X. Li, W. Wang, D. Jiang, S. Sun, L. Zhang, X. Sun, Efficient solar-driven nitrogen fixation over carbon-tungstic-acid hybrids. Chem-Eur J. 22, 13819–13822 (2016). https://doi.org/10.1002/chem.201603277

    Article  CAS  Google Scholar 

  69. N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju, C. Wang, X. Wu, L. Song, J. Zhu, Y. Xiong, Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 140, 9434–9443 (2018). https://doi.org/10.1021/jacs.8b02076

    Article  CAS  Google Scholar 

  70. L.B. Khalil, W.E. Mourad, M.W. Rophael, Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Appl Catal B 17, 267–273 (1998). https://doi.org/10.1016/S0926-3373(98)00020-4

    Article  CAS  Google Scholar 

  71. F.E. Bortot Coelho, V.M. Candelario, E.M.R. Araújo, T.L.S. Miranda, G. Magnacca, Photocatalytic reduction of Cr(VI) in the presence of humic acid using Immobilized Ce–ZrO2 under visible light. Nanomaterials (Basel) 10 (2020). https://doi.org/10.3390/nano10040779

  72. Y. Liu, S. Xin, B. Jiang, The enhanced effect of oxalic acid on the electroreduction of Cr(VI) via formation of intermediate Cr(VI)-oxalate complex. Environ. Technol. 41, 430–439 (2020). https://doi.org/10.1080/09593330.2018.1499815

    Article  CAS  Google Scholar 

  73. Z. Zhao, H. An, J. Lin, M. Feng, V. Murugadoss, T. Ding, H. Liu, Q. Shao, X. Mai, N. Wang, H. Gu, S. Angaiah, Z. Guo, Progress on the photocatalytic reduction removal of chromium contamination. Chem. Rec. 19, 873–882 (2019). https://doi.org/10.1002/tcr.201800153

    Article  CAS  Google Scholar 

  74. W. Liu, J. Ni, X. Yin, Synergy of photocatalysis and adsorption for simultaneous removal of Cr(VI) and Cr(III) with TiO2 and titanate nanotubes. Water Res. 53, 12–25 (2014). https://doi.org/10.1016/j.watres.2013.12.043

    Article  CAS  Google Scholar 

  75. Y. Choi, M.S. Koo, A.D. Bokare, D. Kim, D.W. Bahnemann, W. Choi, Sequential process combination of photocatalytic oxidation and dark reduction for the removal of organic pollutants and Cr(VI) using Ag/TiO2. Environ. Sci. Technol. 51, 3973–3981 (2017). https://doi.org/10.1021/acs.est.6b06303

    Article  CAS  Google Scholar 

  76. Y. Zhang, Q. Zhang, Q. Shi, Z. Cai, Z. Yang, Acid-treated g-C3N4 with improved photocatalytic performance in the reduction of aqueous Cr(VI) under visible-light. Sep. Purif. Technol. 142, 251–257 (2015). https://doi.org/10.1016/j.seppur.2014.12.041

    Article  CAS  Google Scholar 

  77. G. Dong, K. Zhao, L. Zhang, Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem. Commun. 48, 6178–6180 (2012). https://doi.org/10.1039/C2CC32181E

    Article  CAS  Google Scholar 

  78. E.T. Wahyuni, N.H. Aprilita, Photoreduction Processes over TiO2 Photocatalyst, Photocatalysts - Applications and Attributes (2018). https://doi.org/10.5772/intechopen.80914

    Book  Google Scholar 

  79. S. Cao, C.-J. Wang, G.-Q. Wang, Y. Chen, X.-J. Lv, W.-F. Fu, Visible light driven photo-reduction of Cu2+ to Cu2O to Cu in water for photocatalytic hydrogen production. RSC Adv. 10, 5930–5937 (2020). https://doi.org/10.1039/C9RA09590J

    Article  CAS  Google Scholar 

  80. Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji, Y. Kitagawa, S. Tanaka, S. Ichikawa, T. Hirai, Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 18, 985–993 (2019). https://doi.org/10.1038/s41563-019-0398-0

    Article  CAS  Google Scholar 

  81. Y. Sun, L. Han, P. Strasser, A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 49, 6605–6631 (2020). https://doi.org/10.1039/D0CS00458H

    Article  CAS  Google Scholar 

  82. H. Hou, X. Zeng, X. Zhang, Production of hydrogen peroxide by photocatalytic processes. Angew. Chem. Int. Ed. 59, 17356–17376 (2020). https://doi.org/10.1002/anie.201911609

    Article  CAS  Google Scholar 

  83. G. Iervolino, V. Vaiano, J.J. Murcia, L. Rizzo, G. Ventre, G. Pepe, P. Campiglia, M.C. Hidalgo, J.A. Navío, D. Sannino, Photocatalytic hydrogen production from degradation of glucose over fluorinated and platinized TiO2 catalysts. J. Catal. 339, 47–56 (2016). https://doi.org/10.1016/j.jcat.2016.03.032

    Article  CAS  Google Scholar 

  84. M. Cheng, Q. Zhang, C. Yang, B. Zhang, K. Deng, Photocatalytic oxidation of glucose in water to value-added chemicals by zinc oxide-supported cobalt thioporphyrazine. Cat. Sci. Technol. 9, 6909–6919 (2019). https://doi.org/10.1039/C9CY01756A

    Article  CAS  Google Scholar 

  85. X. Yu, V. De Waele, A. Löfberg, V. Ordomsky, A.Y. Khodakov, Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites. Nat. Commun. 10, 700 (2019). https://doi.org/10.1038/s41467-019-08525-2

    Article  CAS  Google Scholar 

  86. S.C. Jensen, S. Bettis Homan, E.A. Weiss, Photocatalytic conversion of nitrobenzene to aniline through sequential proton-coupled one-electron transfers from a cadmium sulfide quantum dot. J. Am. Chem. Soc. 138, 1591–1600 (2016). https://doi.org/10.1021/jacs.5b11353

    Article  CAS  Google Scholar 

  87. W.-S. Ju, M. Matsuoka, M. Anpo, The photocatalytic reduction of nitrous oxide with propane on lead (II) ion-exchanged ZSM-5 catalysts. Catal. Lett. 71, 91–93 (2001). https://doi.org/10.1023/A:1016612626475

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gurylev, V. (2021). Photocatalysis: Fundamentals. In: Nanostructured Photocatalyst via Defect Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-81911-8_1

Download citation

Publish with us

Policies and ethics