Skip to main content

The Ecological and Applied Potential of Baccharis

  • Chapter
  • First Online:
Baccharis

Abstract

The genus Baccharis is composed of ca. 440 species, distributed primarily in South and Central America, many of which are of great ecological, economic, and cultural importance. Baccharis species are mostly dioecious and highly diverse in chemistry, ecology, architecture, and phenology, occupying many different niches and habitats across several gradients of light, temperature, humidity, altitude, and succession. Its species are found in natural, urban, and highly polluted environments. Many species host a large number of associated organisms, including the largest fauna of gall-inducing insects in the Neotropics, and play crucial roles in biodiversity maintenance as foundation species or ecosystem engineers, while others are invasive species with economic implications around the world. Many species are geographically restricted or endemic. Baccharis is also well known for being the source of innumerable chemical compounds widely used in folk medicine and in the cosmetics and pharmaceutical industries. It is one of the most studied genera in the world, owing to these multiple factors that have captured the attention of the scientific community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad MJ, Bermejo P (2007) Baccharis (Compositae): a review update. ARKIVOC 7:76–96

    Google Scholar 

  • Abrahamson WG, Weis AE (1997) Evolutionary ecology across three trophic levels: goldenrods, gallmakers and natural enemies. Princeton University, Princeton

    Google Scholar 

  • Abrahamson WG, Melika G, ScraVord R, Csóka G (1998) Gall-inducing insects provide insights into plant systematic relationships. Am J Bot 85:1159–1165

    Article  CAS  PubMed  Google Scholar 

  • Adenesky-Filho E, Maçaneiro JP, Vitorino MD (2017) How to select potential species for ecological restoration of rain forest–Southern Brazil. Appl Ecol Environ Sci 15:1671–1684

    Article  Google Scholar 

  • Agostini F, Santos ACA, Rossato M, Pansera MR, Zattera F, Wasum R, Serafini LA (2005) Studies on the essential oils from several Baccharis (Asteraceae) from Southern Brazil. Rev Bras Farmacogn 15:215–219

    Article  CAS  Google Scholar 

  • Altesor A, Oesterheld M, Leoni E, Lezama F, Rodríguez C (2005) Effect of grazing on community structure and productivity of a Uruguayan grassland. Plant Ecol 179:83–91

    Article  Google Scholar 

  • Araújo APA, Carneiro MAA, Fernandes GW (2003) Efeitos do sexo, do vigor e do tamanho da planta hospedeira sobre a distribuição de insetos indutores de galhas em Baccharis pseudomyriocephala Teodoro (Asteraceae). Rev Bras Entomol 47:483–490

    Article  Google Scholar 

  • Araújo APA, Paula JD, Carneiro MAA, Schoereder JH (2006) Effects of host plant architecture on colonization by galling insects. Austral Ecol 31:343–348

    Article  Google Scholar 

  • Arcamone R, Cassinelli G, Casazza AM (1980) New antitumor drugs from plants. J Ethnopharmacol 2:41–46

    Article  Google Scholar 

  • Argandoña VH, Faini F (1993) Oleanolic acid content in Baccharis linearis and its effects on Heliothis zea larvae. Phytochemistry 33:1377–1379

    Article  Google Scholar 

  • Ascari J, Oliveira MS, Nunes DS, Granato D, Scharf DR, Simionatto E, Otuki M, Soley B, Heiden G (2019) Chemical composition, antioxidant and anti-inflammatory activities of the essential oils from male and female specimens of Baccharis punctulata (Asteraceae). J Ethnopharmacol 234:1–7. https://doi.org/10.1016/j.jep.2019.01.005

    Article  CAS  PubMed  Google Scholar 

  • Bailey L (1900) The Queensland flora, vol 3. A. Diddams, Brisbane

    Google Scholar 

  • Bandoni A, Medina J, Rondina R, Coussio J (1978) Genus Baccharis L. 1. Phytochemical analysis of a non polar fraction from B. crispa Sprengel. Planta Med 34:328–331

    Article  CAS  Google Scholar 

  • Banskota AH, Tezuka Y, Kadota S (2001) Recent progress in pharmacological research of propolis. Phytother Res 15:561–571

    Article  CAS  PubMed  Google Scholar 

  • Barbosa M, Fernandes GW, Lewis OT, Morris RJ (2017) Experimentally reducing species abundance indirectly affects food web structure and robustness. J Anim Ecol 86:327–336

    Article  PubMed  Google Scholar 

  • Barbosa M, Fernandes GW, Morris RJ (2019) Interaction engineering: non-trophic effects modify interactions in an insect galler community. J Anim Ecol 88:1168–1177

    Article  PubMed  Google Scholar 

  • Barroso GM (1976) Compositae-subtribo Baccharidinae-Hoffman: estudo das espécies ocorrentes no Brasil. Rodriguesia 40:3–273

    Google Scholar 

  • Basso BS, Mesquita FC, Dias HB, Krause GC, Scherer M, Santarém ER, Oliveira JR (2019) Therapeutic effect of Baccharis anomala DC. extracts on activated hepatic stellate cells. EXCLI J 18:91–105

    PubMed  PubMed Central  Google Scholar 

  • Bastos EM, Oliveira VC (1999) Aspectos morfo-anatômicos da folha de Baccharis dracunculifolia DC. (Asteraceae) visando à identificação da origem botânica da própolis. Acta Bot Bras 12:431–439

    Google Scholar 

  • Benson L, Darrow R (1981) Trees and shrubs of the southwestern desert. University of Arizona Press, Tucson

    Google Scholar 

  • Besten MA, Jasinski VC, Costa ÂDG, Nunes DS, Sens SL, Wisniewski A Jr, Simionatto EL, Riva D, Dalmarco JB, Granato D (2012) Chemical composition similarity between the essential oils isolated from male and female specimens of each five Baccharis species. J Braz Chem Soc 23:1041–1047

    Article  CAS  Google Scholar 

  • Blackwelder R (1946) Checklist of the coleopterous insects of Mexico, Central America, the West Indies and South America. Bull Am Mus Nat Hist 185:733–757

    Google Scholar 

  • Bohlmann F, Kramp W, Jakupovic J, Robinson H, King RM (1982) Diterpenes from Baccharis species. Phytochemistry 21:399–403

    Article  CAS  Google Scholar 

  • Boldt PE (1989) Baccharis (Asteraceae), a review of its taxonomy, phytochemistry, ecology, economic status, natural enemies and the potential for its biological control in the United States. USDA, Agricultural Research Service. Grassland, soil and water research laboratory. Temple, Texas

    Google Scholar 

  • Boldt PE, Robbins TO (1987) Phytophagous and pollinating insect fauna of Baccharis neglecta (Compositae) in Texas. Environ Entomol 16:887–895

    Article  Google Scholar 

  • Boldt PE, Robbins TO (1990) Phytophagous and flower-visiting insect fauna of Baccharis salicifolia (Asteraceae) in the southwestern United States and northern Mexico. Environ Entomol 19:515–523

    Article  Google Scholar 

  • Bonin E, Carvalho VM, Avila VD, Santos NCA, Benassi-Zanqueta É, Lancheros CAC, Previdelli ITS, Ueda-Nakamura T, Abreu Filho BA, Prado IN (2020) Baccharis dracunculifolia: chemical constituents, cytotoxicity and antimicrobial activity. LWT 120:1–10. https://doi.org/10.1016/j.lwt.2019.108920

    Article  CAS  Google Scholar 

  • Brailovsky H (1982) Revision del complejo Ochrimnus con descripcion de nuevas especies y nuevos generos (Hemiptera-Heteroptera-Lygaeidae-Lygaeinae). Folia Entomol Mex 51:1–163

    Google Scholar 

  • Brown GD (1994) Phenylpropanoids and other secondary metabolites from Baccharis linearis. Phytochemistry 35:1037–1042

    Article  CAS  Google Scholar 

  • Budel JM, Duarte MR, Santos CAM, Farago PV, Matzenbacher N (2005) O progresso da pesquisa sobre o gênero Baccharis, Asteraceae: I-Estudos botânicos. Rev Bras Farmacogn 15:268–271

    Article  Google Scholar 

  • Burckhardt D, Espírito-Santo MM, Fernandes GW, Malenovský I (2004) Gall-inducing jumping plant-lice of the Neotropical genus Baccharopelma (Hemiptera, Psylloidea) associated with Baccharis (Asteraceae). J Nat Hist 38:2051–2071

    Article  Google Scholar 

  • Buzzi Z (1977) Uma nova espécie de Lioplacis (Coleoptera: Chrysomelidae) do sul do Brasil. Dusenia 10:229–232

    Google Scholar 

  • Calleja F, Ondiviela B, Juanes JA (2019) Invasive potential of Baccharis halimifolia: experimental characterization of its establishment capacity. Environ Exp Bot 162:444–454

    Article  Google Scholar 

  • Campos FR, Bressan J, Jasinski VCG, Zuccolotto T, Silva LE, Cerqueira, LB (2016) Baccharis (Asteraceae): chemical constituents and biological activities. Chem Biodivers 13:1–17

    Google Scholar 

  • Caño L, Campos JA, García-Magro D, Herrera M (2013) Replacement of estuarine communities by an exotic shrub: distribution and invasion history of Baccharis halimifolia in Europe. Biol Invasions 15:1183–1188. https://doi.org/10.1007/s10530-012-0360-4

  • Caño L, Fuertes-Mendizabal T, García-Baquero HM, González-Moro MB (2016) Plasticity to salinity and transgenerational effects in the nonnative shrub Baccharis halimifolia: insights into an estuarine invasion. Am J Bot 103:808–820

    Article  PubMed  Google Scholar 

  • Carneiro MAA, Fernandes GW, De Souza OFF (2005) Convergence in the variation of local and regional galling species richness. Neotrop Entomol 34:547–553

    Article  Google Scholar 

  • Carneiro MAA, Fernandes GW, De Souza OFF, Souza WVM (2006) Sex-mediated herbivory by galling insects on Baccharis concinna (Asteraceae). Rev Bras Entomol 50:394–398

    Article  Google Scholar 

  • Carneiro MAA, Branco CSA, Braga CED, Almada ED, Costa MBM, Maia VC, Fernandes GW (2009a) Are gall midge species (Diptera, Cecidomyiidae) host-plant specialists? Rev Bras Entomol 53:365–378

    Article  Google Scholar 

  • Carneiro MAA, Borges RAX, Araújo APA, Fernandes GW (2009b) Insetos indutores de galhas da porção sul da Cadeia do Espinhaço, MG. Rev Bras Entomol 53:570–592

    Article  Google Scholar 

  • Carvalho MP, Weich H, Abraham WR (2016) Macrocyclic trichothecenes as antifungal and anticancer compounds. Curr Med Chem 23:23–35

    Article  PubMed  Google Scholar 

  • Chan GC, Cheung K, Sze DM (2012) The immuno modulatory and anticancer properties of propolis. Clin Rev Allergy Immunol. https://doi.org/10.1007/s12016-012-8322-2

  • Chialva F, Doglia G (1990) Essential oil from Carqueja (Baccharis genistelloides Pers.). J Essent Oil Res 2:173–177

    Article  CAS  Google Scholar 

  • Cock MC, Hierro JL (2020) Native weed protects species that sustain cattle raising in semi-arid natural grasslands. J Arid Environ 175:1–8. https://doi.org/10.1016/j.jaridenv.2019.104088

    Article  Google Scholar 

  • Coelho MS, Carneiro MAA, Branco CA, Borges RAX, Fernandes GW (2018) Species turnover drives β-diversity patterns across multiple spatial scales of plant-galling interactions in mountaintop grasslands. PLoS One 13:e0195565

    Article  PubMed  PubMed Central  Google Scholar 

  • Collevatti RG, Sperber CF (1997) The gall maker Neopelma baccharidis Burck. (Homoptera: Psyllidae) on Baccharis dracunculifolia DC. (Asteraceae): individual, local, and regional patterns. Ann Soc Entomol Brasil 26:45–53

    Article  Google Scholar 

  • Cordo HA, DeLoach CJ, Habeck DH (1999) Biology of Heilipodus ventralis (Coleoptera: Curculionidae), an Argentine weevil for biological control of snakeweeds (Gutierrezia spp.) in the United States. Biol Control 15:210–227

    Google Scholar 

  • Costa FV, Fagundes MF, Neves FS (2010) Arquitetura da planta e diversidade de galhas associadas à Copaifera langsdorffii (Fabaceae). Ecol Aust 20:9–17

    Google Scholar 

  • Costa FV, Neves FS, Silva JO, Fagundes M (2011) Relationship between plant development, tannin concentration and insects associated with Copaifera langsdorffii (Fabaceae). Arthropod Plant Interact 5:9–18

    Article  Google Scholar 

  • Costa P, Boeing T, Somensi LB, Cury BJ, Espíndola VL, França TCS, Almeida MO, Arruda C, Bastos JK, Silva LM, Andrade SF (2019) Hydroalcoholic extract from Baccharis dracunculifolia recovers the gastric ulcerated tissue, and p-coumaric acid is a pivotal bioactive compound to this action. Biofactors 45:479–489

    Article  CAS  PubMed  Google Scholar 

  • Coutinho ES, Beiroz W, Barbosa M, Xavier JHA, Fernandes GW (2019) Arbuscular mycorrhizal fungi in the rhizosphere of saplings used in the restoration of the rupestrian grassland. Ecol Restor 37:152–162

    Article  Google Scholar 

  • Cummings G (1978) Rust fungi on legumes and composites in North America. Arizona University Press, Tucson

    Google Scholar 

  • Cuzzi C, Link S, Vilani A, Sartori C, Onofre SB (2012) Endophytic fungi of the “vassourinha” (Baccharis dracunculifolia D. C. – Asteraceae). Rev Bras Bioci 10:135–139

    Google Scholar 

  • Day A, Ludeke K (1980) Reclamation of copper mine wastes with shrubs in the southwestern U.S.A. J Arid Environ 3:107–112

    Article  Google Scholar 

  • Donders TH, Wagner F, Visscher H (2005) Quantification strategies for human-induced and natural hydrological changes in wetland vegetation, southern Florida, USA. Quat Res 64:333–342

    Article  Google Scholar 

  • Driemeier D, Cruz C, Loretti AP (2000) Baccharis megapotamica var Weirii poisoning in Brazilian cattle. Vet Hum Toxicol 42:220–221

    Google Scholar 

  • Dupont P (1966) L’ extension de Baccharis halimifolia entre Loire et Gironde. Bull Soc Sci Bretagne 41:141–144

    Google Scholar 

  • Ellis LM (2001) Short-term response of woody plants to fire in a Rio Grande riparian forest, Central New Mexico, USA. Biol Conserv 97:159–170

    Article  Google Scholar 

  • Endo S, Hoshi M, Matsunaga T, Inoue T, Ichihara K, Ikari A (2018) Autophagy inhibition enhances anticancer efficacy of artepillin C, a cinnamic acid derivative in Brazilian green propolis. Biochem Biophys Res Commun 497:437–443

    Article  CAS  PubMed  Google Scholar 

  • Espírito-Santo MM, Fernandes GW (1998) Abundance of Neopelma baccharidis (Homoptera: Psyllidae) galls on the dioecious shrub Baccharis dracunculifolia (Asteraceae). Environ Entomol 27:870–876

    Article  Google Scholar 

  • Espírito-Santo MM, Faria ML, Fernandes GW (2004) Parasitoid attack and its consequences to the development of the galling psyllid Baccharopelma dracunculifoliae. Basic Appl Ecol 5:475–484

    Article  Google Scholar 

  • Espírito-Santo MM, Neves FS, Andrade-Neto FR, Fernandes GW (2007) Plant architecture and meristem dynamics as the mechanism determining the diversity of gall-inducing insects. Oecologia 153:353–364

    Article  PubMed  Google Scholar 

  • Espírito-Santo MM, Neves FS, Fernandes GW, Silva JO, Andrade-Neto FR (2012) Plant phenology and absence of sex-biased gall attack on three species of Baccharis. PLoS One 7:e46896

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabiane KC, Ferronatto R, Santos ACD, Onofre SB (2008) Physicochemical characteristics of the essential oils of Baccharis dracunculifolia and Baccharis uncinella DC (Asteraceae). Rev Bras Farmacogn 18:197–203

    Article  CAS  Google Scholar 

  • Fagundes M, Fernandes GW (2011) Insect herbivores associated with Baccharis dracunculifolia (Asteraceae): responses of gall-forming and free-feeding insects to latitudinal variation. Rev Biol Trop 59:1419–1432

    PubMed  Google Scholar 

  • Fagundes M, Neves FS, Fernandes GW (2005) Direct and indirect interactions involving ants, insect herbivores, parasitoids, and the host plant Baccharis dracunculifolia (Asteraceae). Ecol Entomol 30:28–35

    Article  Google Scholar 

  • Faini F, Hellwig F, Labbe C, Castillo M (1991) Hybridization in the genus Baccharis: Baccharis linearis X B. macraei. Biochem Syst Ecol 1:53–57

    Article  Google Scholar 

  • Felt EP (1940) Plant galls and gall makers. Comstock, Ithaca

    Google Scholar 

  • Fernandes GW, Barbosa M (2014) Bottom-up effects on gall distribution. In: Fernandes G, Santos J (eds) Neotropical insect galls. Springer, Dordrecht, pp 99–113

    Chapter  Google Scholar 

  • Fernandes GW, Carneiro MAA, Lara ACF, Allain LA, Andrade GI, Julião G, Reis TC, Silva IM (1996) Galling insects on neotropical species of Baccharis (Asteraceae). Trop Zool 9:315–332

    Article  Google Scholar 

  • Fernandes GW, Santos JC (eds) (2014) Neotropical insect galls. Springer, Dordrecht

    Google Scholar 

  • Fernandes GW, Saraiva C, Cornelissen TG, Price PW (2000) Diversity and morphology of insect galls on Chrysothamnus nauseous (Asteraceae) in North Arizona. Bios 8:39–48

    Google Scholar 

  • Fernandes GW, Rodarte LH, Negreiros D, Franco AC (2007) Aspectos nutricionais em Baccharis concinna (Asteraceae), espécie endêmica e ameaçada da Serra do Espinhaço, Brasil. Lundiana 8:83–88

    Article  Google Scholar 

  • Fernandes GW, Silva JO, Espírito-Santo MM, Fagundes M, Oki Y, Carneiro MAA (2014) Baccharis: a neotropical model system to study insect plant interactions. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer, Dordrecht, pp 193–219

    Chapter  Google Scholar 

  • Fernandes GW, Toma TSP, Angrisano P, Overbeck G (2016) Challenges in the restoration of quartzitic and ironstone rupestrian grasslands. In: Fernandes GW (ed) Ecology and conservation of mountaintop grasslands in Brazil. Springer, Switzerland, pp 449–477

    Google Scholar 

  • Fernandes GW, Oki Y, Belmiro MS, Resende FM, Correa Junior AC, Azevedo JL (2018) Multitrophic interactions among fungal endophytes, bees, and Baccharis dracunculifolia: resin tapering for propolis production leads to endophyte infection. Arthropod Plant Interact 12:329–337

    Article  Google Scholar 

  • Ferracini VL, Paraiba LC, Leitão-Filho HF, Silva AGD, Nascimento LR, Marsaioli AJ (1995) Essential oils of seven Brazilian Baccharis species. J Essent Oil Res 7:355–367

    Article  CAS  Google Scholar 

  • Floate KD, Whitham TG (1995) Insects as traits in plant systematics: their use in discriminating between hybrid cottonwoods. Can J Bot 73:1–13

    Article  Google Scholar 

  • Formiga AT, Silveira FAO, Fernandes GW, Isaias RMS (2015) Phenotypic plasticity and similarity among gall morphotypes on a superhost, Baccharis reticularia (Asteraceae). Plant Biol J 17:512–521. https://doi.org/10.1111/plb.12232

    Article  CAS  Google Scholar 

  • Fournet A, Barrios A, Muñoz V (1994) Leishmanicidal and trypanocidal activities of Bolivian medicinal plants. J Ethnopharmacol 41:19–37

    Article  CAS  PubMed  Google Scholar 

  • Fried G, Caño L, Brunel S, Beteta E, Charpentier A, Herrera M, Starfinger U, Panetta FD (2016) Monographs on Invasive Plants in Europe: Baccharis halimifolia L. Bot Letters 163:127–153. https://doi.org/10.1080/23818107.2016.1168315

    Article  Google Scholar 

  • Frizzo CD, Serafini LA, Dellacassa E, Lorenzo D, Moyna P (2001) Essential oil of Baccharis uncinella DC. from Southern Brazil. Flavour Fragr J 16:286–288

    Article  CAS  Google Scholar 

  • Frizzo CD, Atti-Serafini L, Laguna SE, Cassel E, Lorenzo D, Dellacassa E (2008) Essential oil variability in Baccharis uncinella DC and Baccharis dracunculifolia DC growing wild in southern Brazil, Bolivia and Uruguay. Flavour Fragr J 23:99–106

    Article  CAS  Google Scholar 

  • Galvão LCC, Furletti VF, Bersan SMF, Cunha MG, Ruiz ALTC, Carvalho JE, Santoratto A, Rehder VLG, Figueira GM, Duarte MCT, Ikegaki M, Alencar SM, Rosalen PL (2012) Antimicrobial activity of essential oils against Streptococcus mutans and their antiproliferative effects. Evid Based Complement Alternat Med 2012:1–15

    Article  Google Scholar 

  • Gene RM, Cartañá C, Adzet T, Marin E, Parella T, Canigueral S (1996) Anti-inflammatory and analgesic activity of Baccharis trimera: identification of its active constituents. Planta Med 62:232–235

    Article  CAS  PubMed  Google Scholar 

  • Gershenzon J (1984) Changes in the levels of plant secondary metabolites under water and nutrient stress. Recent Adv Phytochem 18:273–320

    CAS  Google Scholar 

  • Gomes V, Fernandes GW (2002) Germinação de aquênios de Baccharis dracunculifolia D. C. (Asteraceae). Acta Bot Bras 16:421–427

    Article  Google Scholar 

  • Gomes VM, Negreiros D, Carvalho V, Fernandes GW (2015) Growth and performance of rupestrian grasslands native species in quartzitic degraded areas. Neotropical Biol Conserv 10:159–168

    Google Scholar 

  • Gonzáles P, Caño A, Müller J (2019) An unusual new record of Baccharis (Asteraceae) from the Peruvian Andes and its relation with the northern limit of the dry puna. Acta Bot Mex 126:e1393

    Google Scholar 

  • González ML, Joray MB, Laiolo J, Crespo MI, Palacios SM, Ruiz GM, Carpinella MC (2018) Cytotoxic activity of extracts from plants of central Argentina on sensitive and multidrug-resistant leukemia cells: isolation of an active principle from Gaillardia megapotamica. Evid Based Complement Alternat Med 2018:1–13. https://doi.org/10.1155/2018/9185935

    Article  Google Scholar 

  • Grecco SS, Reimão JQ, Tempone AG, Sartorelli P, Romoff P, Ferreira MJ, Fávero OA, Lago JH (2010) Isolation of an antileishmanial and antitrypanosomal flavanone from the leaves of Baccharis retusa DC.(Asteraceae). Parasitol Res 106:1245–1248

    Article  PubMed  Google Scholar 

  • Green BJ, Simpson RW, Dettmann ME (2012) Assessment of airborne Asteraceae pollen in Brisbane, Australia. Aerobiologia 28:295–301. https://doi.org/10.1007/s10453-011-9224-0

    Article  Google Scholar 

  • Griffin GP (1997) Pollination in the genus Baccharis (Asteraceae): the role of wind and insects. Doctoral dissertation, Texas A&M University

    Google Scholar 

  • Habermehl GG, Busam L, Heydel P, Mebs D, Tokarnia CH, Döbereiner J, Spraul M (1985) Macrocyclic trichothecenes: cause of livestock poisoning by the Brazilian plant Baccharis coridifolia. Toxicon 23:731–745

    Article  CAS  PubMed  Google Scholar 

  • Haque N, Peralta-Videa JR, Jones GL, Gill TE, Gardea-Torresdey JL (2008) Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA. Environ Pollut 153:362–368

    Article  CAS  PubMed  Google Scholar 

  • Haque N, Peralta-Videa JR, Jones GL, Gill TE, Gardea-Torresdey JL (2009) Differential effect of metals/metalloids on the growth and element uptake of mesquite plants obtained from plants grown at a copper mine tailing and commercial seeds. Bioresour Technol 100:6177–6182

    Article  CAS  PubMed  Google Scholar 

  • Heiden G, Antonelli A, Pirani JR (2019) A novel phylogenetic infrageneric classification of Baccharis (Asteraceae: Astereae), a highly diversified American genus. Taxon 68:1048–1081

    Article  Google Scholar 

  • Herz W, Pilotti A, Soderholm A, Shuhama I, Vichnewsy W (1977) New ent-clerodane-type diterpenoids from Baccharis trimera. J Organomet Chem 42:3913–3917

    Article  CAS  Google Scholar 

  • Hocayen PDA, Grassiolli S, Leite NC, Pochapski MT, Pereira RA, Silva LA, Snack A, Michel RG, Kagimura FY, Cunha MAA, Malfatti CR (2016) Baccharis dracunculifolia methanol extract enhances glucose-stimulated insulin secretion in pancreatic islets of monosodium glutamate induced-obesity model rats. Pharm Biol 54: 1263–1271

    Google Scholar 

  • Hudson EE, Stiling P (1997) Exploitative competition strongly affects the herbivorous insect community on Baccharis halimifolia. Oikos 79:521–528

    Google Scholar 

  • Jaramillo-García V, Trindade C, Lima E, Guecheva TN, Villela I, Martinez-Lopez W, Corrêa DS, Ferraz ABF, Moura S, Sosa MQ, da Silva J, Henriques JAP (2018) Chemical characterization and cytotoxic, genotoxic, and mutagenic properties of Baccharis trinervis (Lam, Persoon) from Colombia and Brazil. J Ethnopharmacol 213:210–220

    Article  PubMed  Google Scholar 

  • Jarvis BB, Wells KM, Lee YW, Bean GA, Kommedahl T, Barros CS, Barros SS (1987) Macrocyclic trichothecene mycotoxins in Brazil species of Baccharis. Phytopathology 77:980–984

    Article  CAS  Google Scholar 

  • Jarvis BB, Midiwo JO, Bean GA, Abdoul-Nasr MB, Barras CS (1988) The mystery of trichothecene antibiotics in Baccharis species. J Nat Prod 51:736–744

    Article  CAS  PubMed  Google Scholar 

  • Jarvis BB, Wang S, Cox C, Rao MM, Philip V, Varaschin MS, Barros CS (1996) Brazilian Baccharis toxins: livestock poisoning and the isolation of macrocyclic trichothecene glucosides. Nat Toxins 4:58–71

    Article  CAS  PubMed  Google Scholar 

  • Julião GR, Fernandes GW, Negreiros D, Bedê L, Araújo RC (2005) Insetos galhadores associados a duas espécies de plantas invasoras de áreas urbanas e peri-urbanas. Rev Bras Entomol 49:97–106

    Article  Google Scholar 

  • Julião GR, Almada ED, Fernandes GW (2014) Galling insects in the pantanal wetland and Amazonian rainforest. In: Fernandes G, Santos J (eds) Neotropical insect galls. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8783-3_19

    Chapter  Google Scholar 

  • Junxing D, Huijuan Z, Aiping T (2003) Use of dicaffeoylquinic acid derivative and analogs in treating disease related to coronavirus infection. Applicant: Institute of Radiation Medicine, Chinese Academy of Military Medical Sciences. CN1449751A. https://patents.google.com/patent/CN1449751A/en#citedBy

  • Kissmann KG, Groth D (1992) Plantas infestantes e nocivas. Tomo I, II e III. BASF, São Paulo

    Google Scholar 

  • Kumazawa S, Yoneda M, Shibata I, Kanaeda J, Hamasaka T, Nakayama T (2003) Direct evidence for the plant origin of Brazilian propolis by the observation of honeybee behavior and phytochemical analysis. Chem Pharm Bull 51:740–742

    Article  CAS  Google Scholar 

  • Kupchan S, Jarvis B, Dailey R Jr, Bright W, Bryan R, Shizuri Y (1976) Baccharin, a novel potent antileukemic tricothecene triepoxide from Baccharis megapotamica. J Am Chem Soc 98:7092–7093

    Article  CAS  PubMed  Google Scholar 

  • Kupchan SM, Streelman DR, Jarvis BB, Dailey RG Jr, Sneden AT (1977) Isolation of potent new antileukemic trichothecenes from Baccharis megapotamica. J Organomet Chem 22:4221–4225

    Article  Google Scholar 

  • Lara ACF, Fernandes GW (1996) The highest diversity of galling insects: Serra do Cipó, Brazil. Biodivers Lett 3:111–114

    Article  Google Scholar 

  • Laris P, Brennan S, Engelberg K (2017) The coyote brush invasion of southern California grasslands and the legacy of mechanical disturbance. Geogr Rev 107:640–659

    Article  Google Scholar 

  • Lorenzi H (1992) Plantas daninhas do Brasil, 2nd edn. Plantarum, São Paulo

    Google Scholar 

  • Madeira JA, Fernandes GW (1999) Reproductive phenology of sympatric taxa of Chamaecrista (Leguminosae) in Serra do Cipó. Br J Trop Ecol 15:463–479

    Article  Google Scholar 

  • Maia VC (2011) Characterization of insect galls, gall makers, and associated fauna of Platô Bacaba (Porto de Trombetas, Pará, Brazil). Biota Neotrop 11:1–18. https://doi.org/10.1590/S1676-06032011000400003

    Article  Google Scholar 

  • Maldonado-López Y, Cuevas-Reyes P, Oyama K (2016) Diversity of gall wasps (Hymenoptera: Cynipidae) associated with oak trees (Fagaceae: Quercus) in a fragmented landscape in Mexico. Arthropod Plant Interact 10:29–39

    Article  Google Scholar 

  • Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phylogenet Evol 12:333–349

    Article  CAS  PubMed  Google Scholar 

  • Marques ES, Fernandes GW (2016) The gall inducing insect community on Baccharis concinna (Asteraceae): the role of shoot growth rates and seasonal variations. Lundiana 12:17–26

    Article  Google Scholar 

  • Marques AR, Fernandes GW, Reis IA, Assunção RM (2002) Distribution of adult male and female Baccharis concinna (Asteraceae) in the rupestrian fields of Serra do Cipó, Brazil. Plant Biol 4:94–103

    Article  Google Scholar 

  • Matilde-Silva M, Boeger MRT, Melo Júnior JCFD (2019) O vigor da planta altera a densidade de galhas em populações de Baccharis longiattenuata (Asteraceae) sob distintas condições de solo? Rodriguésia 70:e02752017. https://doi.org/10.1590/2175-7860201970018

    Article  Google Scholar 

  • McFadyen P (1978) A review of the biocontrol of groundsel-bush (Baccharis halimifolia L.). In: Proceedings of the first conference of the council Australia Weed Science Society of Melbourne, Australia, pp 123–125

    Google Scholar 

  • Monteiro GF, Macedo-Reis LE, Dáttilo W, Fernandes GW, Siqueira de Castro F, Neves FS (2020) Ecological interactions among insect herbivores, ants and the host plant Baccharis dracunculifolia in a Brazilian mountain ecosystem. Austral Ecol 45:158–167

    Article  Google Scholar 

  • Moraes Neto RN, Setúbal RFB, Higino TMM, Brelaz-de-Castro MCA, Silva LCN, Aliança ASDS (2019) Asteraceae plants as sources of compounds against Leishmaniasis and Chagas disease. Front Pharmacol 10:1–20. https://doi.org/10.3389/fphar.2019.00477

    Article  CAS  Google Scholar 

  • Morales G, Paredes A, Sierra P, Loyola LA (2008) Antimicrobial activity of three Baccharis species used in the traditional medicine of Northern Chile. Molecules 13:790–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira X, Nell CS, Katsanis A, Rasmann S, Mooney KA (2018) Herbivore specificity and the chemical basis of plant–plant communication in Baccharis salicifolia (Asteraceae). New Phytol 220:703–713

    Article  CAS  PubMed  Google Scholar 

  • Negreiros D, Esteves D, Fernandes GW, Berbara RLL, Oki Y, Vichiato M, Chalub C (2014) Growth-survival tradeoff in the widespread tropical shrub Baccharis dracunculifolia (Asteraceae) in response to a nutrient gradient. Trop Ecol 55:167–176

    Google Scholar 

  • Neves FS, Fagundes M, Sperber CF, Fernandes GW (2011) Tri-trophic level interactions affect host plant development and abundance of insect herbivores. Arthropod Plant Interact 5:351–357

    Article  Google Scholar 

  • Norem MA, Day AD, Ludeke KL (1982) An evaluation of shrub and tree species used for revegetating copper mine wastes in the South-Western United States. J Arid Environ 5:299–304

    Article  Google Scholar 

  • Occhioni P (1944) Contribuição ao estudo do “mio-mio” Baccharis coridifolia DC. Rev Bras Med Vet 13:193–209

    Google Scholar 

  • Oki Y, Soares NR, Belmiro MS, Correa-Junior A, Fernandes GW (2009) The influence of the endophytic fungi on the herbivores from Baccharis dracunculifolia (Asteraceae). Neotrop Biol Conserv 4:83–88. https://doi.org/10.4013/5119

    Article  Google Scholar 

  • Oki Y, Goto BT, Jobim K, Rosa LH, Ferreira MC, Coutinho ES, Xavier JH de A, Carvalho F, de Souza MFM, Berbara RLL, Fernandes GW (2016) Arbuscular mycorrhiza and endophytic fungi in ruspestrian grasslands. In: Fernandes GW (ed) Ecology and conservation of mountaintop grasslands in Brazil. Springer, Switzerland, pp. 157–179

    Google Scholar 

  • Oki Y, Arantes-Garcia L, Costa MB, Nunes BC, Silveira BR, Gélvez-Zúñiga I, Franco A, Fernandes GW (2020) CO2 fertilizer effect on growth, polyphenols, and endophytes in two Baccharis species. Braz Arch Biol Technol 63:e20190302. https://doi.org/10.1590/1678-4324-2020190302

    Article  CAS  Google Scholar 

  • Oki Y, Nascimento IM, Costa NB, Maia RA, Takahashi JA, Ferraz V, Fernandes GW (2021) Effectiveness of endophytic fungi from Baccharis dracunculifolia against sucking insects and fungal pathogens. In: Rosa LH (ed) Neotropical endophytic fungi. Springer, Cham, pp 337–349

    Chapter  Google Scholar 

  • Oliveira ACP, Endringer DC, Amorim LAS, Graças LBM, Coelho MM (2005) Effect of the extracts and fractions of Baccharis trimera and Syzygium cumini on glycaemia of diabetic and non-diabetic mice. J Ethnopharmacol 102:465–469

    Article  PubMed  Google Scholar 

  • Oliveira-Filho JC, Carmo PM, Lucena RB, Pierezan F, Barros CS (2011) Baccharis megapotamica var. weirii poisoning in water buffalo (Bubalus bubalis). Vet Diagn Invest 23:610–614

    Google Scholar 

  • Palmer WA (1986) The host range of Trirhabda flavolimbata (Mannnerheim) (Coleoptera: Chrysomelidae) and its suitability as a biological control agent for Baccharis spp. (Asteraceae: Asterae). Coleopt Bull 40:149–153

    Google Scholar 

  • Palmer WA, Haseler WH (1992a) The host specificity and biology of Trirhabda bacharidis (Weber) (Coleoptera: Chrysomelidae), a species introduced into Australia for the biological control of Baccharis halimifolia L. Coleopt Bull 46:61–66

    Google Scholar 

  • Palmer WA, Haseler WH (1992b) Food plant specificity and biology of Oidaematophorus balanotes (Pterophoridae): a North American moth introduced into Australia for the biological control of Baccharis halimifolia. J Lepid Soc 46:195–202

    Google Scholar 

  • Palmer WA, Tomley AJ (1993) The host range and biology of Amniscus perplexus Haldeman (Coleoptera: Cerambycidae), a candidate evaluated for the biological control of Baccharis halimifolia in Australia. Coleopt Bull 47:27–34

    Google Scholar 

  • Palmer WA, Diatloff G, Melkshan J (1993) The host specificity of Rhopalomyia californica Felt (Diptera: Cecidomyiidae) and its importation into Australia as a biological control agent for Baccharis halimifolia L. Proc Entomol Soc Wash 95:1–6

    Google Scholar 

  • Palomino SS, Abad MJ, Bedoya LM, García J, Gonzales E, Chiriboga X, Bermejo P, Alcami J (2002) Screening of South American plants against human immunodeficiency virus: preliminary fractionation of aqueous extract from Baccharis trinervis. Biol Pharm Bull 25:1147–1150

    Article  Google Scholar 

  • Paniagua-Zambrana NY, Bussmann RW, Romero C, Echeverría J (2020) Baccharis genistelloides (Lam.) Pers. Asteraceae. In: Paniagua-Zambrana N, Bussmann R (eds) Ethnobotany of the Andes. Ethnobotany of mountain regions. Springer, Cham, pp 291–296. https://doi.org/10.1007/978-3-030-28933-1_304

    Chapter  Google Scholar 

  • Panziera W, Gonçalves MA, Lorenzett MP, Damboriarena P, Argenta FF, Laisse CJ, Pavarini SP, Driemeier D (2015) Intoxicação natural por Baccharis megapotamica var. weirii em caprinos. Pesqui Vet Bras 35:360–364

    Article  Google Scholar 

  • Park YK, Paredes-Guzman JF, Aguiar CL, Alencar SM, Fujiwara FY (2004) Chemical constituents in Baccharis dracunculifolia as the main botanical origin of southeastern Brazilian propolis. J Agric Food Chem 52:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Parker K (1972) An illustrated guide to Arizona weeds. University of Arizona Press, Tucson

    Google Scholar 

  • Peláez M, Dirzo R, Fernandes GW, Perea R (2019) Nurse plant size and biotic stress determine quantity and quality of plant facilitation in oak savannas. Forest Ecol Manag 437:435–442

    Article  Google Scholar 

  • Perea R, Cunha JS, Spadeto C, Gomes VM, Moura AL, Silveira BS, Fernandes GW (2019) Nurse shrubs to mitigate plant invasion along roads of montane Neotropics. Ecol Eng 136:193–196

    Article  Google Scholar 

  • Pereira CB, Kanunfre CC, Farago PV, Borsato DM, Budel JM, Maia BHLNS, Campesatto EA, Sartoratto A, Miguel MD, Miguel OG (2017) Cytotoxic mechanism of Baccharis milleflora (Less.) DC. essential oil. Toxicol in Vitro 42:214–221

    Article  CAS  PubMed  Google Scholar 

  • Pérez-López G, González-Rodríguez A, Oyama K, Cuevas-Reyes P (2016) Effects of plant hybridization on the structure and composition of a highly rich community of cynipid gall wasps: the case of the oak hybrid complex Quercus magnoliifolia x Quercus resinosa in Mexico. Biodivers Conserv 25:633–651

    Article  Google Scholar 

  • Price PW, Craig TP, Roininen H (1995) Working toward theory on galling sawfly population dynamics. In: Cappuccino N, Price PW (eds) Population dynamics: new approaches and synthesis. Academic Press, San Diego, pp 321–338

    Chapter  Google Scholar 

  • Queiroga CL, Fukai A, Marsaioli A (1990) Composition of the essential oil of vassoura. J Braz Chem Soc 1:105–109

    Article  CAS  Google Scholar 

  • Queiroga CL, Cavalcante MQ, Ferraz PC, Coser RN, Sartoratto A, Magalhães PM (2014) High-speed countercurrent chromatography as a tool to isolate nerolidol from the Baccharis dracunculifolia volatile oil. J Essent Oil Res 26:334–337

    Article  CAS  Google Scholar 

  • Quintero C, Garibaldi LA, Grez A, Polidori C, Nieves-Aldrey JL (2014) Galls of the Temperate Forest of Southern South America: Argentina and Chile. In: Fernandes G, Santos J (eds) Neotropical insect galls. Springer, Dordrecht, pp 429–463

    Chapter  Google Scholar 

  • Rabelo ACS, Costa DC (2018) A review of biological and pharmacological activities of Baccharis trimera. Chem Biol Interact 296:65–75

    Article  Google Scholar 

  • Resende FA, Munari CC, Monteiro Neto MAB, Tavares DC, Bastos JK, Silva Filho AA, Varanda EA (2012) Comparative studies of the (anti) mutagenicity of Baccharis dracunculifolia and artepillin C by the bacterial reverse mutation test. Molecules 17:2335–2350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rissi DR, Rech RR, Fighera RA, Cagnini DQ, Kommers GD, Barros CS (2005) Intoxicação espontânea por Baccharis coridifolia em bovinos. PesqVet Bras 25:111–114

    Article  Google Scholar 

  • Rizzo I, Varsavky E, Haidukowski M, Frade H (1997) Macrocyclic trichothecenes in Baccharis coridifolia plants and endophytes and Baccharis artemisioides plants. Toxicon 35:753–757

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues DM, De Souza MC, Arruda C, Pereira RAS, Bastos JK (2020) The role of Baccharis dracunculifolia and its chemical profile on green propolis production by Apis mellifera. J Chem Ecol 46:150–162

    Article  CAS  PubMed  Google Scholar 

  • Romero-Benavides JC, Ortega-Torres GC, Villacis J, Vivanco-Jaramillo SL, Galarza-Urgilés KI, Bailon-Moscoso N (2018) Phytochemical study and evaluation of the cytotoxic properties of methanolic extract from Baccharis obtusifolia. Int J Med Chem 2018:1–5. https://doi.org/10.1155/2018/8908435

    Article  Google Scholar 

  • Sá CEM, Negreiros D, Fernandes GW, Dias MC, Franco AC (2014) Carbon dioxide-enriched atmosphere enhances biomass accumulation and meristem production in the pioneer shrub Baccharis dracunculifolia (Asteraceae). Acta Bot Bras 28:646–650. https://doi.org/10.1590/0102-33062014abb3329

  • Santos JC, Almeida-Cortez JS, Fernandes GW (2011) Richness of gall-inducing insects in the tropical dry forest (Caatinga) of Pernambuco. Rev Bras Entomol 55:45–54

    Article  Google Scholar 

  • Schang R (1929) Acción tóxica del romerillo o mio-mio (Baccharis coridifolia) algunos conceptos nuevos. Rev Bras Med Vet 11:151–181

    Google Scholar 

  • Schild CO, Oliveira LGS, Miraballes C, Giannitti F, Casaux ML, Aráoz V, Silveira CS, Boabaid FM, Riet-Correa F (2020) Baccharis coridifolia poisoning in livestock in Uruguay. Toxicon 188:5–10

    Google Scholar 

  • Shorthouse JD, Rohfritsch O (1992) Biology of insect-induced galls. Oxford University, New York

    Google Scholar 

  • Silva RMD, Fernandes GW, Lovato MB (2007) Genetic variation in two Chamaecrista species (Leguminosae), one endangered and narrowly distributed and another widespread in the Serra do Espinhaço, Brazil. Can J Bot 85:629–636

    Article  Google Scholar 

  • Sims-Chilton NM, Zalucki MP, Buckley YM (2010) Long term climate effects are confounded with the biological control programme against the invasive weed Baccharis halimifolia in Australia. Biol Invasions 12:3145–3155

    Article  Google Scholar 

  • Souza MMQ, Silva GRD, Cola IM, Silva AO, Schaedler MI, Guarnier LP, Palozi RAC, Barboza LN, Menetrier JV, Froelich DL, Auth PA, Veiga AA, Souza LM, Lovato ECW, Ribeiro-Paes JT, Gasparotto Junior A, Lívero FADR (2020) Baccharis trimera (Less.) DC: an innovative cardioprotective herbal medicine against multiple risk factors for cardiovascular disease. J Med Food 23:676–684

    Google Scholar 

  • Stone GN, Schönrogge K, Atkinson RJ, Bellido D, Pujade-Villar J (2002) The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annu Rev Entomol 47:633–668

    Article  CAS  PubMed  Google Scholar 

  • Suttisri R, Kinghorn AD, Wright AD, Stichert O (1994) Neo-clerodane diterpenoids and other constituents from Baccharis genistelloides. Phytochemistry 35:443–446

    Article  CAS  Google Scholar 

  • Takashima M, Ichihara K, Hirata Y (2019) Neuroprotective effects of Brazilian green propolis on oxytosis/ferroptosis in mouse hippocampal HT22 cells. Food Chem Toxicol 132:1–10. https://doi.org/10.1016/j.fct.2019.110669

    Article  CAS  Google Scholar 

  • Teixeira EW, Negri G, Meira RM, Message D, Salatino A (2005) Plant origin of green propolis: bee behavior, plant anatomy and chemistry. Evid Based Complement Alternat Med 2:85–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson AE, Lee CW, Gass RE (1995) Development of hybrid Baccharis plants for desert landscaping. HortScience 30:1357–1362

    Article  Google Scholar 

  • Tilden J (1953) Biological notes on Trirhabda flavolimbata. Coleopt Bull 7:43–53

    Google Scholar 

  • Timmons F (1959) Phreatophytes – water wasters – a menace in the arid west. Reclam Era 45:85–88

    Google Scholar 

  • Tokarnia C, Dobereiner J (1976) Intoxicação experimental em ovinos por “mio-mio”, Baccharis coridifolia. Pesqui Agropecu Bras 11:19–26

    Google Scholar 

  • Torres LMB, Gamberini MT, Roque NF, Lima-Landman MT, Souccar C, Lapa AJ (2000) Diterpene from Baccharis trimera with a relaxant effect on rat vascular smooth muscle. Phytochemistry 55:617–619

    Article  CAS  PubMed  Google Scholar 

  • Ueno AK, Barcellos AF, Costa-Silva TA, Mesquita JT, Ferreira DD, Tempone AG, Romoff P, Antar GM, Lago JHG (2018) Antitrypanosomal activity and evaluation of the mechanism of action of diterpenes from aerial parts of Baccharis retusa (Asteraceae). Fitoterapia 125:55–58

    Article  CAS  PubMed  Google Scholar 

  • Vannini AB, Santos TG, Fleming AC, Purnhagen LRP, Lourenço LA, Butzke ETB, Kempt M, Begnini IM, Rebelo RA, Dalmarco EM, Cruz AB, Schmit AP, Cruz RCB, Yamanaka CN, Steindel M (2012) Chemical characterization and antimicrobial evaluation of the essential oils from Baccharis uncinella DC and Baccharis semiserrata DC (Asteraceae). J Essent Oil Res 24:547–554

    Article  CAS  Google Scholar 

  • Varaschin MS, Alessi AC (2003) Poisoning of mice by Baccharis coridifolia: an experimental model. Vet Hum Toxicol 45:42–44

    Google Scholar 

  • Veiga RS, Mendonça S, Mendes PB, Paulino N, Mimica MJ, Lagareiro Netto AA, Lira IS, López BGC, Negrão V, Marcucci MC (2017) Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis and Baccharis dracunculifolia DC. J Appl Microbiol 122:911–920

    Article  CAS  PubMed  Google Scholar 

  • Verdi LG, Brighente MC, Pizzolatti MG (2005) Gênero Baccharis (Asteraceae): Aspectos químicos, econômicos biológicos. Quim Nova 28:85–94

    Article  CAS  Google Scholar 

  • Verloove F, Dana ED, Alves P (2018) Baccharis spicata (Asteraceae), a new potentially invasive species to Europe. Plant Biosyst 152:416–426. https://doi.org/10.1080/11263504.2017.1303001

  • Vidari G, Finzi PV, Zarzuelo A, Gálvez, Zafra C, Chiriboga X, Berenguer B, La Casa C, Lastra CA, Motilva V, Martin MJ (2003) Antiulcer and antidiarrhoeic effect of Baccharis teindalensis. Pharm Biol 41:405–411

    Article  CAS  Google Scholar 

  • Vieira ML, Johann S, Hughes FM, Rosa CA, Rosa LH (2014) The diversity and antimicrobial activity of endophytic fungi associated with medicinal plant Baccharis trimera (Asteraceae) from the Brazilian savannah. Can J Microbiol 60:847–856. https://doi.org/10.1139/cjm-2014-0449

    Article  CAS  PubMed  Google Scholar 

  • Waring GL, Price PW (1990) Plant water stress and gall formation (Cecidomyiidae: Asphondylia spp.) on creosote bush. Ecol Entomol 15:87–95

    Article  Google Scholar 

  • Watts S, Dormann CF, González AMM, Ollerton J (2016) The influence of floral traits on specialization and modularity of plant–pollinator networks in a biodiversity hotspot in the Peruvian Andes. Ann Bot 118:415–429

    Article  PubMed  PubMed Central  Google Scholar 

  • Westman WE, Panetta FD, Stanely TD (1975) Ecological studies on reproduction and establishment of the woody weed, groundsel bush (Baccharis halimifolia L.: Asteraceae). Aust J Agric Res 26:855–870

    Article  Google Scholar 

  • Wollenweber E, Valantvetschera KM, Fernandes GW (2006) Chemodiversity of exudate flavonoids in Baccharis concinna and three further South-American Baccharis species. Nat Prod Commun 1:627–632

    CAS  Google Scholar 

  • Zavaleta ES (2006) Shrub establishment under experimental global changes in a California grassland. Plant Ecol 184:53–63

    Article  Google Scholar 

  • Zavaleta ES, Kettley LS (2006) Ecosystem change along a woody invasion chronosequence in a California grassland. J Arid Environ 66:290–306. https://doi.org/10.1016/j.jaridenv.2005.11.008

    Article  Google Scholar 

Download references

Acknowledgments

We thank the funding agencies CAPES, CNPq, Planta Ltda, and FAPEMIG for the field and laboratory supports granted to the authors involved.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernandes, G.W., Oki, Y., Barbosa, M. (2021). The Ecological and Applied Potential of Baccharis. In: Fernandes, G.W., Oki, Y., Barbosa, M. (eds) Baccharis. Springer, Cham. https://doi.org/10.1007/978-3-030-83511-8_1

Download citation

Publish with us

Policies and ethics