Skip to main content

Treatment of Buruli Ulcer

  • Chapter
  • First Online:
Leprosy and Buruli Ulcer

Abstract

BU has long been treated by surgical resection. During the last two decades, it has become increasingly clear that antimicrobial treatment, first, using a combination of streptomycin 15 mg/kg i.m. and rifampin 10 mg/kg p.o. for 8 weeks, results in relapse-free cure in lesions <10 cm cross-sectional diameter. Recently, a large clinical trial from Ghana and Benin showed that fully oral treatment—rifampin 10 mg/kg combined with clarithromycin—extended release, 15 mg/kg, also for 8 weeks, was equally effective but less toxic; none of the close to 300 study participants needed surgical resection, and only four had split skin grafts; sequelae were negligible. The use of other antimicrobials including fluoroquinolones has been shown to be effective in cohort studies from Australia. The role of resection surgery was studied in Benin in patients with larger lesions. Compared to patients that were operated on at week 8, a delayed decision on surgery at week 14 appeared beneficial; delay resulted in significantly less patients being operated, with reduced in-hospital treatment, and no difference in healing rate or sequelae. Sequelae such as contractures due to scar formation around joints may need specialized care in dedicated centers.

General medical care with adequate nutrition and proper wound care are critical; wound saline rinsing and cleaning, dressings with non-adhesive cover, and absorptive material with short-stretch compression are all important for speedy healing. Other topical treatments (nitric oxide crème; traditional herbal remedies; clay; phenytoin) have been little studied; heat treatment might be an option for those that cannot tolerate antimicrobial treatment, such as during pregnancy. Active, early case finding has been shown to be highly efficacious.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buckle G, Tolhurst JC. A new mycobacterial infection in man; cultivation of the new Mycobacterial infection in man; cultivation of the new Mycobacterium. J Pathol Bacteriol. 1948;60(1):116–22.

    CAS  PubMed  Google Scholar 

  2. Portaels F, Traore H, De Ridder K, Meyers WM. In vitro susceptibility of Mycobacterium ulcerans to clarithromycin. Antimicrob Agents Chemother. 1998;42(8):2070–20703. https://doi.org/10.1128/AAC.42.8.2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thangaraj HS, Adjei O, Allen BW, Portaels F, Evans MR, Banerjee DK, et al. In vitro activity of ciprofloxacin, sparfloxacin, ofloxacin, amikacin and rifampicin against Ghanaian isolates of Mycobacterium ulcerans. J Antimicrob Chemother. 2000;45(2):231–3. https://doi.org/10.1093/jac/45.2.231.

    Article  CAS  PubMed  Google Scholar 

  4. Feldman WH, Karlson AG. Mycobacterium ulcerans infections; response to chemotherapy in mice. Am Rev Tuberc. 1957;75(2):266–79. https://doi.org/10.1164/artpd.1957.75.2.266.

    Article  CAS  PubMed  Google Scholar 

  5. Dega H, Robert J, Bonnafous P, Jarlier V, Grosset J. Activities of several antimicrobials against Mycobacterium ulcerans infection in mice. Antimicrob Agents Chemother. 2000;44(9):2367–72. https://doi.org/10.1128/aac.9.2367-2372.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fenner F. The pathogenic behavior of Mycobacterium ulcerans and Mycobacterium balnei in the mouse and the developing chick embryo. Am Rev Tuberc. 1956;73(5):650–73. https://doi.org/10.1164/artpd.1956.73.5.650.

    Article  CAS  PubMed  Google Scholar 

  7. Etuaful S, Carbonnelle B, Grosset J, Lucas S, Horsfield C, Phillips R, et al. Efficacy of the combination rifampin-streptomycin in preventing growth of Mycobacterium ulcerans in early lesions of Buruli ulcer in humans. Antimicrob Agents Chemother. 2005;49(8):3182–6. https://doi.org/10.1128/AAC.49.8.3182-3186.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nienhuis WA, Stienstra Y, Thompson WA, Awuah PC, Abass KM, Tuah W, et al. Antimicrobial treatment for early, limited Mycobacterium ulcerans infection: a randomised controlled trial. Lancet. 2010;375(9715):664–72. https://doi.org/10.1016/S0140-6736(09)61962-0.

    Article  CAS  PubMed  Google Scholar 

  9. Phillips RO, Robert J, Abass KM, Thompson W, Sarfo FS, Wilson T, et al. Rifampicin and clarithromycin (extended release) versus rifampicin and streptomycin for limited Buruli ulcer lesions: a randomised, open-label, non-inferiority phase 3 trial. Lancet. 2020;395(10232):1259–67. https://doi.org/10.1016/S0140-6736(20)30047-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lockwood DN. Leprosy. BMJ Clin Evid. 2007;2007:0915.

    PubMed  PubMed Central  Google Scholar 

  11. Amofah G, Asamoah S, Afram-Gyening C. Effectiveness of excision of pre-ulcerative Buruli lesions in field situations in a rural district in Ghana. Trop Doct. 1998;28(2):81–3. https://doi.org/10.1177/004947559802800208.

    Article  CAS  PubMed  Google Scholar 

  12. Teelken MA, Stienstra Y, Ellen DE, Quarshie E, Klutse E, van der Graaf WTA, et al. Buruli ulcer: differences in treatment outcome between two centres in Ghana. Acta Trop. 2003;88(1):51–6. https://doi.org/10.1016/s0001-706x(03)00170-0.

    Article  CAS  PubMed  Google Scholar 

  13. Sarfo FS, Phillips R, Asiedu K, Ampadu E, Bobi N, Adentwe E, et al. Clinical efficacy of combination of rifampin and streptomycin for treatment of Mycobacterium ulcerans disease. Antimicrob Agents Chemother. 2010;54(9):3678–85. https://doi.org/10.1128/AAC.00299-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Radford AJ. The surgical management of lesions of ulcerans infections due to Mycobacterium ulcerans, revisited. Trans R Soc Trop Med Hyg. 2009;103(10):981–4. https://doi.org/10.1016/j.trstmh.2009.04.009.

    Article  PubMed  Google Scholar 

  15. Meyers WM, Shelly WM, Connor DH. Heat treatment of Mycobacterium ulcerans infections without surgical excision. Am J Trop Med Hyg. 1974;23(5):924–9. https://doi.org/10.4269/ajtmh.1974.23.924.

    Article  CAS  PubMed  Google Scholar 

  16. Adjei O, Evans MR, Asiedu A. Phenytoin in the treatment of Buruli ulcer. Trans R Soc Trop Med Hyg. 1998;92(1):108–9. https://doi.org/10.1016/s0035-9203(98)90977-4.

    Article  CAS  PubMed  Google Scholar 

  17. Phillips R, Adjei O, Lucas S, Benjamin N, Wansbrough-Jones M. Pilot randomized double-blind trial of treatment of Mycobacterium ulcerans disease (Buruli ulcer) with topical nitrogen oxides. Antimicrob Agents Chemother. 2004;48(8):2866–70. https://doi.org/10.1128/AAC.48.8.2866-2870.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adusumilli S, Haydel SE. In vitro antibacterial activity and in vivo efficacy of hydrated clays on Mycobacterium ulcerans growth. BMC Complement Altern Med. 2016;16(1):40–8. https://doi.org/10.1186/s12906-016-1020-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stienstra Y, van der Graaf WTA, Asamoa K, van der Werf TS. Beliefs and attitudes toward Buruli ulcer in Ghana. Am J Trop Med Hyg. 2002;67(2):207–13. https://doi.org/10.4269/ajtmh.2002.67.207.

    Article  PubMed  Google Scholar 

  20. Yotsu RR, Richardson M, Ishii N. Drugs for treating Buruli ulcer (Mycobacterium ulcerans disease). Cochrane Database Syst Rev. 2018;8(8):CD012118. https://doi.org/10.1002/14651858.CD012118.

    Article  PubMed  Google Scholar 

  21. van der Werf TS, Barogui YT, Converse PJ, Phillips RO, Stienstra Y. Pharmacologic management of Mycobacterium ulcerans infection. Expert Rev Clin Pharmacol. 2020;13(4):391–401. https://doi.org/10.1080/17512433.2020.1752663.

    Article  CAS  PubMed Central  Google Scholar 

  22. Omansen TF, van der Werf TS, Phillips RO. Antimicrobial treatment of Mycobacterium ulcerans infection. In: Pluschke G, Röltgen K, editors. Buruli Ulcer. Cham: Springer; 2019. p. 203–20. https://doi.org/10.1007/978-3-030-11114-4_11.

    Chapter  Google Scholar 

  23. George KM, Chatterjee D, Gunawardana G, Welty D, Hayman J, Lee R, et al. Mycolactone: a polyketide toxin from Mycobacterium ulcerans required for virulence. Science. 1999;283(5403):854–7. https://doi.org/10.1126/science.283.5403.854.

    Article  CAS  PubMed  Google Scholar 

  24. Sarfo FS, Phillips RO, Ampadu E, Sarpong F, Adentwe E, Wansbrough-Jones M. Dynamics of the cytokine response to Mycobacterium ulcerans during antibiotic treatment for M. ulcerans disease (Buruli ulcer) in humans. Clin Vaccine Immunol. 2009;16(1):61–5. https://doi.org/10.1128/CVI.00235-08.

    Article  CAS  PubMed  Google Scholar 

  25. Dangy JP, Scherr N, Gersbach P, Hug MN, Bieri R, Bomio C, et al. Antibody-mediated neutralization of the exotoxin mycolactone, the main virulence factor produced by Mycobacterium ulcerans. PLoS Negl Trop Dis. 2016;10(6):e0004808. https://doi.org/10.1371/journal.pntd.0004808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Demangel C, High S. Sec61 blockade by mycolactone: A central mechanism in Buruli ulcer disease. Biol Cell. 2018;110(11):237–48. https://doi.org/10.1111/boc.201800030.

    Article  CAS  PubMed  Google Scholar 

  27. Nienhuis WA, Stienstra Y, Abass KM, Tuah W, Thompson WA, Awuah PC, et al. Paradoxical responses after start of antimicrobial treatment in Mycobacterium ulcerans infection. Clin Infect Dis. 2012;54(4):519–26. https://doi.org/10.1093/cid/cir856.

    Article  PubMed  Google Scholar 

  28. Barogui YT, Klis S-A, Johnson RC, Phillips RO, van der Veer E, van Diemen C, et al. Genetic susceptibility and predictors of paradoxical reactions in buruli ulcer. PLoS Negl Trop Dis. 2016;10(4):e0004594. https://doi.org/10.1371/journal.pntd.0004594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hockmeyer WT, Krieg RE, Reich M, Johnson RD. Further characterization of Mycobacterium ulcerans toxin. Infect Immun. 1978;21(1):124–8. https://doi.org/10.1128/IAI.21.1.124-128.1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marion E, Chauty A, Kempf M, Le Corre Y, Delneste Y, Croue A, et al. Clinical features of spontaneous partial healing during Mycobacterium ulcerans infection. Open Forum Infect Dis. 2016;3(1):ofw013. https://doi.org/10.1093/ofid/ofw013.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S, et al. Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol. 2007;63(4):1096–106. https://doi.org/10.1111/j.1365-2958.2006.05585.x.

    Article  CAS  PubMed  Google Scholar 

  32. Clancey JK. Mycobacterial skin ulcers in Uganda: description of a new mycobacterium (Mycobacterium buruli). J Pathol Bacteriol. 1964;88(1):175–87. https://doi.org/10.1002/path.1700880123.

    Article  CAS  PubMed  Google Scholar 

  33. Ji B, Lefrançois S, Robert J, Chauffour A, Truffot C, Jarlier V. In vitro and in vivo activities of rifampin, streptomycin, amikacin, moxifloxacin, R207910, linezolid, and PA-824 against Mycobacterium ulcerans. Antimicrob Agents Chemother. 2006;50(6):1921–6. https://doi.org/10.1128/AAC.00052-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Owusu E, Newman MJ, Addo KK, Addo P. In vitro susceptibility of Mycobacterium ulcerans isolates to selected antimicrobials. Can J Infect Dis Med Microbiol. 2017;2017(4):5180984–6. https://doi.org/10.1155/2017/5180984.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kibadi K, Boelaert M, Fraga AG, Kayinua M, Longatto-Filho A, Minuku J-B, et al. Response to treatment in a prospective cohort of patients with large ulcerated lesions suspected to be Buruli Ulcer (Mycobacterium ulcerans disease). PLoS Negl Trop Dis. 2010;4(7):e736. https://doi.org/10.1371/journal.pntd.0000736.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chauty A, Ardant M-F, Marsollier L, Pluschke G, Landier J, Adeye A, et al. Oral treatment for Mycobacterium ulcerans infection: results from a pilot study in Benin. Clin Infect Dis. 2011;52(1):94–6. https://doi.org/10.1093/cid/ciq072.

    Article  PubMed  Google Scholar 

  37. Phillips RO, Sarfo FS, Abass MK, Abotsi J, Wilson T, Forson M, et al. Clinical and bacteriological efficacy of rifampin-streptomycin combination for two weeks followed by rifampin and clarithromycin for six weeks for treatment of Mycobacterium ulcerans disease. Antimicrob Agents Chemother. 2014;58(2):1161–6. https://doi.org/10.1128/AAC.02165-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klis S, Stienstra Y, Phillips RO, Abass KM, Tuah W, van der Werf TS. Long term streptomycin toxicity in the treatment of Buruli Ulcer: follow-up of participants in the BURULICO drug trial. PLoS Negl Trop Dis. 2014;8(3):e2739. https://doi.org/10.1016/S0140-6736(20)30047-7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ji B, Chauffour A, Robert J, Jarlier V. Bactericidal and sterilizing activities of several orally administered combined regimens against Mycobacterium ulcerans in mice. Antimicrob Agents Chemother. 2008;52(6):1912–6. https://doi.org/10.1128/AAC.00193-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alffenaar JWC, Nienhuis WA, de Velde F, Zuur AT, Wessels AMA, Almeida D, et al. Pharmacokinetics of rifampin and clarithromycin in patients treated for Mycobacterium ulcerans infection. Antimicrob Agents Chemother. 2010;54(9):3878–83. https://doi.org/10.1128/AAC.00099-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stanford JL, Phillips I. Rifampicin in experimental Mycobacterium ulcerans infection. J Med Microbiol. 1972;5(1):39–45. https://doi.org/10.1099/00222615-5-1-39.

    Article  CAS  PubMed  Google Scholar 

  42. Svensson RJ, Aarnoutse RE, Diacon AH, Dawson R, Gillespie SH, Boeree MJ, et al. A population pharmacokinetic model incorporating saturable pharmacokinetics and autoinduction for high rifampicin doses. Clin Pharmacol Ther. 2018;103(4):674–83. https://doi.org/10.1002/cpt.778.

    Article  CAS  PubMed  Google Scholar 

  43. Beissner M, Awua-Boateng N-Y, Thompson W, Nienhuis WA, Klutse E, Agbenorku P, et al. A genotypic approach for detection, identification, and characterization of drug resistance in Mycobacterium ulcerans in clinical samples and isolates from Ghana. Am J Trop Med Hyg. 2010;83(5):1059–65. https://doi.org/10.4269/ajtmh.2010.10-0263.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Friedman ND, Athan E, Walton AL, O’Brien DP. Increasing experience with primary oral medical therapy for Mycobacterium ulcerans disease in an Australian cohort. Antimicrob Agents Chemother. 2016;60(5):2692–5. https://doi.org/10.1128/AAC.02853-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boeree MJ, Diacon AH, Dawson R, Narunsky K, Bois Du J, Venter A, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015;191(9):1058–65. https://doi.org/10.1164/rccm.201407-1264OC.

    Article  CAS  PubMed  Google Scholar 

  46. Omansen TF, Almeida D, Converse PJ, Li S-Y, Lee J, Stienstra Y, et al. High-dose rifamycins enable shorter oral treatment in a murine model of Mycobacterium ulcerans disease. Antimicrob Agents Chemother 2019;63(2):e01478–18. https://doi.org/10.1128/AAC.01478-18.

  47. Almeida D, Converse PJ, Ahmad Z, Dooley KE, Nuermberger EL, Grosset JH. Activities of rifampin, Rifapentine and clarithromycin alone and in combination against Mycobacterium ulcerans disease in mice. PLoS Negl Trop Dis. 2011;5(1):e933. https://doi.org/10.1371/journal.pntd.0000933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Blaschke TF, Skinner MH. The clinical pharmacokinetics of rifabutin. Clin Infect Dis. 1996;22(Suppl 1):S15–22.

    Article  CAS  Google Scholar 

  49. Fan H, Li L, Wijlaars L, Gilbert RE. Associations between use of macrolide antibiotics during pregnancy and adverse child outcomes: a systematic review and meta-analysis. PLoS One. 2019;14(2):e0212212. https://doi.org/10.1371/journal.pone.0212212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rodvold KA. Clinical pharmacokinetics of clarithromycin. Clin Pharmacokinet. 1999;37(5):385–98. https://doi.org/10.2165/00003088-199937050-00003.

    Article  CAS  PubMed  Google Scholar 

  51. Maruri F, Guo Y, Blackman A, van der Heijden YF, Rebeiro PF, Sterling TR. Resistance-conferring mutations on whole-genome sequencing of fluoroquinolone-resistant and -susceptible M. tuberculosis isolates: a proposed threshold for identifying resistance. Clin Infect Dis. 2020;5:e12245. https://doi.org/10.1093/cid/ciaa496.

    Article  CAS  Google Scholar 

  52. Pranger AD, van Altena R, Aarnoutse RE, van Soolingen D, Uges DRA, Kosterink JGW, et al. Evaluation of moxifloxacin for the treatment of tuberculosis: 3 years of experience. Eur Respir J. 2011;38(4):888–94. https://doi.org/10.1183/09031936.00176610.

    Article  CAS  PubMed  Google Scholar 

  53. Pasternak B, Inghammar M, Svanström H. Fluoroquinolone use and risk of aortic aneurysm and dissection: nationwide cohort study. BMJ. 2018;360:k678. https://doi.org/10.1136/bmj.k678.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Alves C, Mendes D, Marques FB. Fluoroquinolones and the risk of tendon injury: a systematic review and meta-analysis. Eur J Clin Pharmacol. 2019;75(10):1431–43. https://doi.org/10.1007/s00228-019-02713-1.

    Article  CAS  PubMed  Google Scholar 

  55. Principi N, Esposito S. Appropriate use of fluoroquinolones in children. Int J Antimicrob Agents. 2015;45(4):341–6. https://doi.org/10.1016/j.ijantimicag.2015.01.004.

    Article  CAS  PubMed  Google Scholar 

  56. Johnson PDR, Hayman JA, Quek TY, Fyfe JAM, Jenkin GA, Buntine JA, et al. Consensus recommendations for the diagnosis, treatment and control of Mycobacterium ulcerans infection (Bairnsdale or Buruli ulcer) in Victoria. Australia Med J Aust. 2007;186(2):64–8. https://doi.org/10.5694/j.1326-5377.2007.tb00802.x.

    Article  PubMed  Google Scholar 

  57. Alsaad N, van der Laan T, van Altena R, Wilting KR, van der Werf TS, Stienstra Y, et al. Trimethoprim/sulfamethoxazole susceptibility of Mycobacterium tuberculosis. Int J Antimicrob Agents. 2013;42(5):472–4. https://doi.org/10.1016/j.ijantimicag.2013.07.011.

    Article  CAS  PubMed  Google Scholar 

  58. Fehr H, Egger M, Senn I. Cotrimoxazol in the treatment of Mycobacterium ulcerans infection (Buruli ulcer) in West Africa. Trop Doct. 1994;24(2):61–3. https://doi.org/10.1177/004947559402400206.

    Article  CAS  PubMed  Google Scholar 

  59. Collaborative Group for the Meta-Analysis of Individual Patient Data in MDR-TB treatment–2017, Ahmad N, Ahuja SD, Akkerman OW, JWC A, Anderson LF, et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet. 2018;392(10150):821–34. https://doi.org/10.1016/S0140-6736(18)316-1.

    Article  Google Scholar 

  60. Converse PJ, Tyagi S, Xing Y, Li S-Y, Kishi Y, Adamson J, et al. Efficacy of rifampin plus clofazimine in a murine model of Mycobacterium ulcerans disease. PLoS Negl Trop Dis. 2015;9(6):e0003823. https://doi.org/10.1371/journal.pntd.0003823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Revill WD, Morrow RH, Pike MC, Ateng J. A controlled trial of the treatment of Mycobacterium ulcerans infection with clofazimine. Lancet. 1973;2(7834):873–7. https://doi.org/10.1016/s0140-6736(73)92005-9.

    Article  CAS  PubMed  Google Scholar 

  62. Lunn HF, Ree RJ. Treatment of mycobacterial skin ulcers in Uganda with a riminophenazine derivative (B.663). Lancet. 1964;1(7327):247–9. https://doi.org/10.1016/s0140-6736(64)92351-7.

    Article  CAS  PubMed  Google Scholar 

  63. Bolhuis MS, van der Werf TS, Kerstjens HAM, de Lange WCM, Alffenaar J-WC, Akkerman OW. Treatment of MDR-TB using therapeutic drug monitoring: first experiences with sub-300 mg linezolid dosages using in-house made capsules. Eur Respir J. 2019;54(6):1900580. https://doi.org/10.1183/13993003.00580-2019.

    Article  CAS  PubMed  Google Scholar 

  64. Scherr N, Bieri R, Thomas SS, Chauffour A, Kalia NP, Schneide P, et al. Targeting the Mycobacterium ulcerans cytochrome bc1:aa3 for the treatment of Buruli ulcer. Nat Commun. 2018;9(1):5370–9. https://doi.org/10.1038/s41467-018-07804-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Thomas SS, Kalia NP, Ruf MT, Pluschke G, Pethe K. Toward a single-dose cure for buruli ulcer. Antimicrob Agents Chemother 2020;64(9):e00727–20. https://doi.org/10.1128/AAC.00727-20.

  66. Arenaz-Callao MP, González Del Río R, Lucía Quintana A, Thompson CJ, Mendoza-Losana A, Ramón-García S. Triple oral beta-lactam containing therapy for Buruli ulcer treatment shortening. PLoS Negl Trop Dis. 2019;13(1):e0007126. https://doi.org/10.1371/journal.pntd.0007126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Klis S, Kingma RA, Tuah W, van der Werf TS, Stienstra Y. Clinical outcomes of Ghanaian Buruli ulcer patients who defaulted from antimicrobial therapy. Trop Med Int Health. 2016;21(9):1191–6. https://doi.org/10.1111/tmi.12745.

    Article  CAS  PubMed  Google Scholar 

  68. O’Brien DP, Friedman D, Hughes A, Walton A, Athan E. Antibiotic complications during the treatment of Mycobacterium ulcerans disease in Australian patients. Intern Med J. 2017;47(9):1011–9. https://doi.org/10.1111/imj.13511.

    Article  CAS  PubMed  Google Scholar 

  69. O’Brien DP, Jenkin G, Buntine J, Steffen CM, McDonald A, Horne S, et al. Treatment and prevention of Mycobacterium ulcerans infection (Buruli ulcer) in Australia: guideline update. Med J Aust. 2014;200(5):267–70. https://doi.org/10.5694/mja13.11331.

    Article  PubMed  Google Scholar 

  70. WHO. Treatment of Mycobacterium ulcerans disease (Buruli Ulcer) [Internet]. Geneva, WHO; 2012. 66 p. Available from: https://www.afro.who.int/publications/treatment-mycobacterium-ulcerans-disease-buruli-ulcer

  71. Janssens PG, Pattyn SR, Boveroulle MT, Quertinmont MJ, Demuynk A. A tropical necrotic ulcer originating in Bas-Katanga. Ann Soc Belg Med Trop 1920. 1963;43:729–37.

    CAS  PubMed  Google Scholar 

  72. Clancey JK, Dodge OG, Lunn HF, Oduori ML. Mycobacterial skin ulcers in Uganda. Lancet. 1961;2(7209):951–4. https://doi.org/10.1016/s0140-6736(61)90793-0.

    Article  CAS  PubMed  Google Scholar 

  73. Rondini S, Horsfield C, Mensah-Quainoo E, Junghanss T, Lucas S, Pluschke G. Contiguous spread of Mycobacterium ulcerans in Buruli ulcer lesions analysed by histopathology and real-time PCR quantification of mycobacterial DNA. J Pathol. 2006;208(1):119–28. https://doi.org/10.1002/path.1864.

    Article  CAS  PubMed  Google Scholar 

  74. Wadagni AC, Steinhorst J, Barogui YT, Catraye PM, Gnimavo R, Abass KM, et al. Buruli ulcer treatment: rate of surgical intervention differs highly between treatment centers in West Africa. PLoS Negl Trop Dis. 2019;13(10):e0007866. https://doi.org/10.1371/journal.pntd.0007866.

    Article  PubMed  PubMed Central  Google Scholar 

  75. O’Brien DP, Hughes AJ, Cheng AC, Henry MJ, Callan P, McDonald A, et al. Outcomes for Mycobacterium ulcerans infection with combined surgery and antibiotic therapy: findings from a south-eastern Australian case series. Med J Aust. 2007;186(2):58–61. https://doi.org/10.5694/j.1326-5377.2007.tb00799.x.

    Article  PubMed  Google Scholar 

  76. Wadagni AC, Barogui YT, Johnson RC, Sopoh GE, Affolabi D, van der Werf TS, et al. Delayed versus standard assessment for excision surgery in patients with Buruli ulcer in Benin: a randomised controlled trial. Lancet Infect Dis. 2018;18(6):650–6. https://doi.org/10.1016/S1473-3099(18)30160-9.

    Article  PubMed  Google Scholar 

  77. Carswell JW. Surgery for Buruli ulcer in the antibiotic era. Lancet Infect Dis. 2018;18(9):947. https://doi.org/10.1016/S1473-3099(18)30474-2.

    Article  PubMed  Google Scholar 

  78. Junghanss T, Um Boock A, Vogel M, Schuette D, Weinlaeder H, Pluschke G. Phase change material for thermotherapy of Buruli ulcer: a prospective observational single centre proof-of-principle trial. PLoS Negl Trop Dis. 2009;3(2):e380. https://doi.org/10.1371/journal.pntd.0000380.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Vogel M, Bayi PF, Ruf MT, Bratschi MW, Bolz M, Um Boock A, et al. Local heat application for the treatment of Buruli ulcer: results of a Phase II open label single center non comparative clinical trial. Clin Infect Dis. 2016;62(3):342–50. https://doi.org/10.1093/cid/civ883.

    Article  CAS  PubMed  Google Scholar 

  80. WHO. In: Asiedu K, editor. Wound and Lymphoedema Management. Geneva: WHO; 2010. p. 1–136. Available from: https://www.who.int/lymphatic_filariasis/resources/9789241599139/en/.

    Google Scholar 

  81. Velding K, Klis S-A, Abass KM, Tuah W, Stienstra Y, van der Werf TS. Wound care in Buruli ulcer disease in Ghana and Benin. Am J Trop Med Hyg. 2014;91(2):313–8. https://doi.org/10.4269/ajtmh.13-0255.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Woolley RJ, Velink A, Phillips RO, Thompson WA, Abass KM, van der Werf TS, et al. Experiences of pain and expectations for its treatment among former Buruli ulcer patients. Am J Trop Med Hyg. 2016;95(5):1011–5. https://doi.org/10.4269/ajtmh.16-0419.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Alferink M, de Zeeuw J, Sopoh G, Agossadou C, Abass KM, Phillips RO, et al. Pain associated with wound care treatment among Buruli ulcer patients from Ghana and Benin. PLoS One. 2015;10(6):e0119926. https://doi.org/10.1371/journal.pone.0119926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Velink A, Woolley RJ, Phillips RO, Abass KM, van der Werf TS, Agumah E, et al. Former Buruli ulcer patients’ experiences and wishes may serve as a guide to further improve buruli ulcer management. PLoS Negl Trop Dis. 2016;10(12):e0005261. https://doi.org/10.1371/journal.pntd.0005261.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fokou PVT, Kissi-Twum AA, Yeboah-Manu D, Appiah-Opong R, Addo P, Yamthe LRT, et al. In vitro activity of selected West African medicinal plants against Mycobacterium ulcerans disease. Molecules. 2016;21(4):455. https://doi.org/10.3390/molecules21040455.

    Article  CAS  Google Scholar 

  86. Van Leuvenhaege C, Vandelannoote K, Affolabi D, Portaels F, Sopoh G, de Jong BC, et al. Bacterial diversity in Buruli ulcer skin lesions: challenges in the clinical microbiome analysis of a skin disease. PLoS One. 2017;12(7):e0181994. https://doi.org/10.1371/journal.pone.0181994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yeboah-Manu D, Kpeli GS, Ruf MT, Asan-Ampah K, Quenin-Fosu K, Owusu-Mireku E, et al. Secondary bacterial infections of Buruli ulcer lesions before and after chemotherapy with streptomycin and rifampicin. PLoS Negl Trop Dis. 2013;7(5):e2191. https://doi.org/10.1371/journal.pntd.0002191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Amissah NA, Chlebowicz MA, Ablordey A, Tetteh CS, Prah I, van der Werf TS, et al. Virulence potential of Staphylococcus aureus isolates from Buruli ulcer patients. Int J Med Microbiol. 2017;307(4–5):223–32. https://doi.org/10.1016/j.ijmm.2017.04.002.

    Article  CAS  PubMed  Google Scholar 

  89. Barogui YT, Klis S, Bankolé HS, Sopoh GE, Mamo S, Baba-Moussa L, et al. Towards rational use of antibiotics for suspected secondary infections in Buruli ulcer patients. PLoS Negl Trop Dis. 2013;7(1):e2010. https://doi.org/10.1371/journal.pntd.0002010.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Aujoulat I, Johnson C, Zinsou C, Guédénon A, Portaels F. Psychosocial aspects of health seeking behaviours of patients with Buruli ulcer in southern Benin. Trop Med Int Health. 2003;8(8):750–9. https://doi.org/10.1046/j.1365-3156.2003.01089.x.

    Article  PubMed  Google Scholar 

  91. Alferink M, van der Werf TS, Sopoh GE, Agossadou DC, Barogui YT, Assouto F, et al. Perceptions on the effectiveness of treatment and the timeline of Buruli ulcer influence pre-hospital delay reported by healthy individuals. PLoS Negl Trop Dis. 2013;7(1):e2014. https://doi.org/10.1371/journal.pntd.0002014.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Barogui YT, Sopoh GE, Johnson RC, de Zeeuw J, Dossou AD, Houezo JG, et al. Contribution of the community health volunteers in the control of Buruli ulcer in Bénin. PLoS Negl Trop Dis. 2014;8(10):e3200. https://doi.org/10.1371/journal.pntd.0003200.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Klis S, Ranchor A, Phillips RO, Abass KM, Tuah W, Loth S, et al. Good quality of life in former Buruli ulcer patients with small lesions: long-term follow-up of the BURULICO trial. PLoS Negl Trop Dis. 2014;8(7):e2964. https://doi.org/10.1371/journal.pntd.0002964.

    Article  PubMed  PubMed Central  Google Scholar 

  94. de Zeeuw J, Douwstra M, Omansen TF, Sopoh GE, Johnson C, Phillips RO, et al. Psychometric properties of the participation scale among former Buruli ulcer patients in Ghana and Benin. PLoS Negl Trop Dis. 2014;8(11):e3254. https://doi.org/10.1371/journal.pntd.0003254.

    Article  PubMed  PubMed Central  Google Scholar 

  95. O’Brien DP, Ford N, Vitoria M, Christinet V, Comte E, Calmy A, et al. Management of BU-HIV co-infection. Trop Med Int Health. 2014;19(9):1040–7. https://doi.org/10.1371/journal.pntd.0004075.

    Article  CAS  PubMed  Google Scholar 

  96. O’Brien DP, Comte E, Serafini M, Ehounou G, Antierens A, Vuagnat H, et al. The urgent need for clinical, diagnostic, and operational research for management of Buruli ulcer in Africa. Lancet Infect Dis. 2014;14(5):435–40. https://doi.org/10.1016/S1473-3099(13)70201-9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tjip S. van der Werf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Werf, T.S., Phillips, R.O., Johnson, R.C., Barogui, Y.T. (2022). Treatment of Buruli Ulcer. In: Nunzi, E., Massone, C., Portaels, F. (eds) Leprosy and Buruli Ulcer. Springer, Cham. https://doi.org/10.1007/978-3-030-89704-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89704-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89703-1

  • Online ISBN: 978-3-030-89704-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics