Skip to main content

Abstract

The digestive system consists of the gastrointestinal tract, hepatobiliary system, pancreas, and salivary glands. Nuclear medicine is concerned with the evaluation of normal and abnormal functions of the gastrointestinal tract and hepatobiliary system. To date, the role of nuclear medicine in pancreatic disorders is limited to evaluation of its tumors which is dealt with elsewhere in the book. This chapter deals with gastrointestinal tract, salivary glands, and the hepatobiliary system. It discusses pathophysiologic changes of the most relevant diseases and diagnostic imaging in a correlative approach.

The primary purpose of scintigraphic liver imaging includes tissue-specific characterization of hepatic lesions, evaluation of functional liver mass, and evaluation of hepatobiliary function. Advances in instrumentation, e.g., the use of single-photon emission computed tomography/X-ray computed tomography (SPECT/CT), use of pharmacological interventions in conjunction with cholescintigraphy, and development of new radiopharmaceuticals have significantly improved the efficacy of scintigraphic imaging with expanded clinical applications. Scintigraphy has proven extremely useful in the diagnosis of acute cholecystitis, chronic gall bladder disease, biliary leaks, biliary obstruction, and biliary atresia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuo B, Urma D (2006) Esophagus-anatomy and development. GI Motility online

    Google Scholar 

  2. Mittal RK (2011) Upper esophageal sphincter. In: Mittal RK (ed) Motor function of the pharynx, esophagus and its sphincters. Morgan and Claypool Life Sciences, San Rafael. https://www.ncbi.nlm.nih.gov/books/NBK54282

  3. Sama SK, Daniel EE, Waterfall WE (1977) Myogenic and neural control systems for esophageal motility. Gastroenereology 73:1345–1352

    Article  Google Scholar 

  4. Richards WG, Stamler JS, Kobzik L et al (1995) Role of nitric oxide in human esophageal circular smooth muscle in vitro. J Thorac Cardiovasc Surg 110:157–164

    Article  CAS  PubMed  Google Scholar 

  5. Meyer GW, Gerhardt DC, Castell DO (1981) Human esophageal response to rapid swallowing: muscle refractory period or neural inhibition? Am J Phys 241:G129–G136

    CAS  Google Scholar 

  6. Sidhu AS, Triadafilopoulos G (2008) Neuro-regulation of lower esophageal sphincter function as treatment for gastro-esophageal reflux disease. World J Gastroenterol 14:985–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wong RKH, Waysonovitch CL (1995) Achalasia. In: Castell DO (ed) The esophagus, 3rd edn. Little Brown, Boston, pp 219–245

    Google Scholar 

  8. Oude Nijhuis RAB, Zaninotto G, Roman S, Boeckxstaens GE, Fockens P, Langendam MW et al (2020) European guidelines on achalasia: United European Gastroenterology and European Society of Neurogastroenterology and Motility recommendations. United European Gastroenterol J 8(1):13–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lacy BE, Weiser K (2008) Esophageal disorders: medical therapy. J Clin Gastroenterol 42:652–658

    Article  PubMed  Google Scholar 

  10. Penaginie R, Schoeman MN, Dent J, Tipnett MD, Holloway RH (1996) Motor events underlying gastroesophageal reflux in ambulant patient with reflux esophagitis. Neurogastroenterol Motil 8:131–141

    Article  Google Scholar 

  11. Kahrilas PJ (1999) The role of hiatus hernia in GERD. Yale J Biol Med 72:101–111

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kahrilas PJ, Manka M, Shi G, Joehl RJ (2000) Increased frequency of transient lower esophageal sphincter relaxation induced by gastric distention in reflux patients with hiatal hernia. Gastroenterology 118:688–695

    Article  CAS  PubMed  Google Scholar 

  13. Galmiche JP, Janssens J (1995) The pathophysiology of gastroesophageal reflux disease: an overview. Scand J Gastroenterol Suppl 211:7–18

    Article  CAS  PubMed  Google Scholar 

  14. Goldstein JL, Waykins JL, Greger JA, Layden TL (1994) The esophageal mucosal resistance. J Lab Clin Med 123:653–659

    CAS  PubMed  Google Scholar 

  15. Minami H, McCallum RW (1984) The physiology and pathophysiology of gastric emptying in humans. Gastroenterology 86:1592–1600

    Article  CAS  PubMed  Google Scholar 

  16. Hinder RA, Kelly KA (1977) Human gastric pacesetter potential: site of origin, spread and response to gastric transection and proximal gastric vagotomy. Am J Surg 133:29–33

    Article  CAS  PubMed  Google Scholar 

  17. Meyer JH, Ohashi H, Jehn D et al (1981) Size of liver particles emptied from the human stomach. Gastroenterology 80:1489–1496

    Article  CAS  PubMed  Google Scholar 

  18. Brener W, Hendrix TR, McHugh PR (1983) Regulation of the gastric emptying of glucose. Gastroenterology 85:76–82

    Article  CAS  PubMed  Google Scholar 

  19. Siegel JA, Urbain JL, Adler LP, Charkes ND, Maurer AH, Krevsky B, Knight LC, Fisher RS, Malmud LS (1988) Biphasic nature of gastric emptying. Gut 29:85–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Loo FD, Palmer DW, Soergel KH, Kalbfleisch JH, Wood CM (1984) Gastric emptying in patients with diabetes mellitus. Gastroenterology 86:485–494

    Article  CAS  PubMed  Google Scholar 

  21. Horowitz M, Harding PE, Chatterton BE et al (1985) Acute and chronic effects of domperidone on gastric emptying in diabetic autonomic neuropathy. Dig Dis Sci 30:1–9

    Article  CAS  PubMed  Google Scholar 

  22. Muller-Lissner SA, Fimmel CJ, Sonnenberg A et al (1983) Novel approach to quantify duodenogastric reflux in healthy volunteers and in patients with type I gastric ulcer. Gut 24:510–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tolin RD, Malmud LS, Stelzer F et al (1979) Enterogastric reflux in normal subjects and patients with Billroth II gastroenterostomy. Gastroenterology 77:1027–1033

    Article  CAS  PubMed  Google Scholar 

  24. Shaffer EA, McOrmond P, Duggant T (1980) Assessment of gall bladder filling and emptying and duodenogastric reflux. Gastroenterology 79:899–906

    Article  CAS  PubMed  Google Scholar 

  25. Markowitz JF (1990) Duodenogastric reflux: state of the art. J Pediatr Gastroenterol 10:287–289

    Article  CAS  Google Scholar 

  26. Elgazzar AH, Fernandez-Ulloa M, Ryan JR et al (1992) Scintigraphic evaluation of duodenogastric reflux: significance in the diagnosis of acute cholecystitis. Am J Physiol Imaging 3(4):239–241

    Google Scholar 

  27. Slavin JD, Sharzynski JJ, Spencer RP (1985) High incidence of gastric reflux during hepatobiliary imaging in pancreatitis. Clin Nucl Med 10:5–6

    Article  CAS  PubMed  Google Scholar 

  28. Kutchai HC (2000) Gastrointestinal system. In: Berne RM, Levy MN (eds) Principles of physiology, 3rd edn. Mosby, St. Louis, pp 366–371

    Google Scholar 

  29. Chandran P, Satthaporn S, Robins A, Eremin O (2003) Inflammatory bowel disease; dysfunction of GALT and gut bacterial flora (I). Surgeon 2:63–75

    Article  Google Scholar 

  30. Halsted CH (2003) Absorption of water-soluble vitamins. Curr Opin Gastroenterol 19:113–117

    Article  CAS  PubMed  Google Scholar 

  31. Divgi CR, Lisann NM, Yeh SD, Benua RS (1995) Technetium-99m albumin scintigraphy in the diagnosis of protein-losing enteropathy. J Nucl Med 27:1710–1712

    Google Scholar 

  32. Bhatnagar A, Lahoti D, Singh AK et al (1995) Scintigraphic diagnosis of protein losing enteropathy using Tc-99m dextran. Clin Nucl Med 20:1070–1073

    Article  CAS  PubMed  Google Scholar 

  33. Bhatnagar A, Singh K (1996) Technetium-99m dextran: a promising new protein-losing enteropathy imaging agent. Eur J Nucl Med 23:572–578

    Article  Google Scholar 

  34. Hatoum OA, Binion DG (2005) The vasculature and inflammatory bowel disease: contribution to pathogenesis and clinical pathology. Inflamm Bowel Dis 11:304–313

    Article  PubMed  Google Scholar 

  35. Rogler G, Biedermann L, Scharl M (2018) New insights into the pathophysiology of inflammatory bowel disease: microbiota, epigenetics and common signalling pathways. Swiss Med Wkly 148:w14599

    PubMed  Google Scholar 

  36. Wen Z, Fiocchi C (2004) Inflammatory bowel disease; autoimmune or immune-mediated pathogenesis? Clin Dev Immunol 11:195–204

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ahmad T, Tamboli CP, Jewell D, Colombel JF (2004) Clinical relevance of advances in genetics and pharmacogenetics of IBD. Gastroenterology 126:1533–1549

    Article  CAS  PubMed  Google Scholar 

  38. Old JL, Dusing RW, Yap W, Dirks J (2005) Imaging for suspected appendicitis. Am Fam Physician 71:71–78

    PubMed  Google Scholar 

  39. Whiteford MH, Whiteford HM, Yee LF, Ogunbiyi OA, Dehdashti F, Siegel BA, Birnbaum EH, Fleshman JW, Kodner IJ, Read TE (2000) Usefulness of FDG-PET scan in the assessment of suspected metastatic or recurrent adenocarcinoma of the colon and rectum. Dis Colon Rectum 43(6):759–767; discussion 767–70

    Article  CAS  PubMed  Google Scholar 

  40. Aabakken L (2005) Non variceal upper gastrointestinal bleeding. Endoscopy 37:195–200

    Article  CAS  PubMed  Google Scholar 

  41. Carney BW, Khatri G, Shenoy-Bhangle AS (2019) The role of imaging in gastrointestinal bleed. Cardiovasc Diagn Ther 9(Suppl 1):S88

    Article  PubMed  PubMed Central  Google Scholar 

  42. Strate LL, Gralnek IM (2016) Management of patients with acute lower gastrointestinal bleeding. Am J Gastroenterol 111(4):459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zurkiya O, Walker TG (2015) Angiographic evaluation and management of nonvariceal gastrointestinal hemorrhage. Am J Roentgenol 205(4):753–763

    Article  Google Scholar 

  44. Gerson LB, Fidler JL, Cave DR, Leighton JA (2015) ACG clinical guideline: diagnosis and management of small bowel bleeding. Am J Gastroenterol 110(9):1265–1287

    Article  CAS  PubMed  Google Scholar 

  45. ACR Appropriateness Criteria for LGIB 2014. https://www.acr.org/Clinical-Resources/ACR-Appropriateness-Criteria

  46. Stone DN, Mancuso AA, Rice D, Hanafee WN (1981) Parotid CT sialography. Radiology 138:393–397

    Article  CAS  PubMed  Google Scholar 

  47. Arroyo V, Bernadi M, Epstein M (1998) Pathophysiology of ascites and functional renal failure in cirrhosis. J Hepatol 6:239

    Article  Google Scholar 

  48. Bories P (1986) The treatment of refractory ascites by the Leveen shunts; a multicenter controlled trial of 57 patients. J Hepatol 3:212–218

    Article  CAS  PubMed  Google Scholar 

  49. Conn HO (1993) Transjugular intrahepatic porto-systemic shunts: the state of the art. Hepatology 17:148–158

    Article  CAS  PubMed  Google Scholar 

  50. Singh A (1996) Peritoneovenous shunts: patency studies. In: Henkin RE, Bles MA, Dillehay GL, Halama JR, Karesh SM, Wagner PH, Zimmer AM (eds) Textbook of nuclear medicine. Mosby, New York, pp 1041–1052

    Google Scholar 

  51. Desai A, O’Connor M, Neja B, Delaney K, Camilleri M, Zinsmeister AR, Bharucha AE (2018) Reproducibility of gastric emptying assessed with scintigraphy in patients with upper GI symptoms. Neurogastroenterol Motil 30(10):e13365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang YT, Mohammed SD, Farmer AD, Wang D, Zarate N, Hobson AR et al (2015) Regional gastrointestinal transit and pH studied in 215 healthy volunteers using the wireless motility capsule: influence of age, gender, study country and testing protocol. Aliment Pharmacol Ther 42(6):761–772

    Article  CAS  PubMed  Google Scholar 

  53. Kostamo KL (1996) Evaluation of gastrointestinal bleeding by nuclear medicine techniques. In: Henkin RE, Bles MA, Dillehay GL, Halama JR, Karesh SM, Wagner PH, Zimmer AM (eds) Textbook of nuclear medicine. Mosby, New York, pp 1016–1022

    Google Scholar 

  54. Nicholson ML, Neoptlemos JP, Sharp JF et al (1989) Localization of lower gastrointestinal bleeding using in vivo technetium 99m-labeled red blood cell scintigraphy. Br J Surg 76:358–361

    Article  CAS  PubMed  Google Scholar 

  55. Nogueira HJV (2020) Detection of ectopic gastric mucosa using scintigraphy in pediatric patients

    Google Scholar 

  56. Gyorke T, Duffek L, Bratfai K et al (2000) The role of nuclear medicine in inflammatory bowel disease. A review with experiences of a specific bowel activity using immunoscintigraphy with 99mTc anti-granulocyte antibodies. Eur J Radiol 3:183–192

    Article  Google Scholar 

  57. Lantto E (1994) Investigation of suspected intra-abdominal sepsis: the contribution of nuclear medicine. Scand J Gastroenterol Suppl 203:11–14

    Article  CAS  PubMed  Google Scholar 

  58. Perlman SB, Hall BS, Reichelderfer M (2013) PET/CT imaging of inflammatory bowel disease. Semin Nucl Med 43:420–426

    Article  PubMed  Google Scholar 

  59. Saha GB (2009) Fundamentals of nuclear pharmacy, 6th edn. Springer, New York

    Google Scholar 

  60. Sarkady E, Sapi Z, Toth V, Kiss S (1999) Warthin-like tumor of the thyroid: a case report. Pathol Oncol Res 5:315–317

    Article  CAS  PubMed  Google Scholar 

  61. Loutfi I, Nair MK, Ebrahim AK (2003) Salivary gland scintigraphy: the use of semi quantitative analysis for uptake and clearance. J Nucl Med Technol 31(2):81–85

    PubMed  Google Scholar 

  62. Rypins EB, Evans DG, Hinrichs W et al (1997) Tc-99m-HMPAO white blood cell scan for diagnosis of acute appendicitis in patients with equivocal clinical presentation. Ann Surg 226:58–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kipper SL (1999) The role of radiolabeled leukocyte imaging in the management of patients with acute appendicitis. Q J Nucl Med 43:83–92

    CAS  PubMed  Google Scholar 

  64. Bourgeois S, Van Den Berghe I, De Geeter F (2016) Incidental finding of silent appendicitis on F-FDG PET/CT in a patient with small cell lung adenocarcinoma. Hell J Nucl Med 19:164–166

    PubMed  Google Scholar 

  65. O’Connor A (2021) The Urea Breath Test for the noninvasive detection of Helicobacter pylori. In: Helicobacter pylori. Humana, New York, pp 15–20

    Chapter  Google Scholar 

  66. Graham DY, Malaty HM, Evans DG et al (1991) Epidemiology of Helicobacter pylori in asymptomatic population in the United States. Gastroenterology 100:1495–1501

    Article  CAS  PubMed  Google Scholar 

  67. Peterson WL (1991) Helicobacter pylori and peptic ulcer disease. N Engl J Med 324:1043–1048

    Article  CAS  PubMed  Google Scholar 

  68. Parsonnet J, Friedman GD, Vandersteen DP et al (1991) Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 325:1127–1131

    Article  CAS  PubMed  Google Scholar 

  69. Logan RP, Dill S, Baner FE et al (1991) The European C13 urea breath test for the detection of Helicobacter pylori. Eur J Gastroenterol Hepatol 3:915–921

    Google Scholar 

  70. Philips M (1992) Breath tests in medicine. Sci Am 267:74–79

    Article  Google Scholar 

  71. Ormand JE, Talley NJ, Carpenter HA et al (1990) C-14 urea breath test for diagnosis of Helicobacter pylori. Dig Dis Sci 35:879–884

    Article  CAS  PubMed  Google Scholar 

  72. Debongnie JC, Pauwels S, Raat A et al (1991) Quantification of Helicobacter pylori infection in gastritis and peptic ulcer disease using a simple and rapid carbon-14-urea breath test. J Nucl Med 32:1192–1198

    CAS  PubMed  Google Scholar 

  73. Strubbs JB, Marshall BJ (1993) Radiation dose estimates for the C-14 labeled urea breath test. J Nucl Med 34:821–825

    Google Scholar 

  74. Sasaki Y, Lio M, Kameda H et al (1970) Measurement of C-14 lactose absorption in the diagnosis of lactase deficiency. J Lab Clin Med 76:824–835

    CAS  PubMed  Google Scholar 

  75. Sasaki Y (1991) Breath test by CO2 analysis: I. Progress of breath test using isotopes of carbon in Japan. Radioisotopes 40:475–484

    Article  CAS  Google Scholar 

  76. Sherr HP, Sasaki Y, Newman A et al (1971) Detection of bacterial deconjugation of bile salts by a convenient breath analysis technique. N Engl J Med 285:656–661

    Article  CAS  PubMed  Google Scholar 

  77. Sasaki Y (1995) Carbon-14 and carbon 13 breath tests. In: Wagner HN, Buchanan JW, Szabo Z (eds) Principles of nuclear medicine, 2nd edn. Elsevier, Amsterdam, pp 958–965

    Google Scholar 

  78. Rassam F, Olthof PB, Richardson H, van Gulik TM, Bennink RJ (2019) Practical guidelines for the use of technetium-99m mebrofenin hepatobiliary scintigraphy in the quantitative assessment of liver function. Nucl Med Commun 40(4):297–307

    Article  PubMed  Google Scholar 

  79. Imura S, Shimada M, Utsunomiya T (2015) Estimation of hepatic functional reserve. Hepatol Res 45:10–19. https://doi.org/10.1111/hepr.12325

    Article  CAS  PubMed  Google Scholar 

  80. Katabathina VS, Zafar AM, Suri R (2015) Clinical presentation, imaging, and management of acute cholecystitis. Tech Vasc Interv Radiol 18:256–265

    Article  PubMed  Google Scholar 

  81. Lambie H, Cook AM, Scarsbrook AF, Lodge JPA, Robinson PJ, Chowdhury FU (2011) Tc99m- hepatobiliary iminodiacetic acid (HIDA) scintigraphy in clinical practice. Clin Radiol 66:1094–1105

    Article  CAS  PubMed  Google Scholar 

  82. Koizumi K, Uchiyama G, Arai T et al (1992) A new liver functional study using Tc-99m DTPA-galactosyl human serum albumin: evaluation of the validity of several functional parameters. Ann Nucl Med 6:83–87

    Article  CAS  PubMed  Google Scholar 

  83. Yumoto Y, Yagi T, Sato S, Nouso K, Kobayashi Y, Ohmoto M, Yumoto E, Nagaya I, Nakatsukasa H (2010) Preoperative estimation of remnant hepatic function using fusion images obtained by 99mTc-labelled galactosyl-human serum albumin liver scintigraphy and computed tomography. Br J Surg 97(6):934–944

    Article  CAS  PubMed  Google Scholar 

  84. Harvey E, Loberg M, Ryan J, Sikorski S, Faith W, Cooper M (1979) Hepatic clearance mechanism of Tc-99m-HIDA and its effect on quantitation of hepatobiliary function: concise communication. J Nucl Med 20:310–313

    CAS  PubMed  Google Scholar 

  85. Tulchinsky M, Ciak BW, Debelke D, Hilsom A, Holes-Lewis KA et al (2010) SNM practice guidelines fir hepatobiliary scintigraphy 4. J Nucl Med Technol 38:210–218

    Article  PubMed  Google Scholar 

  86. Krishnamurthy S, Krishnamurthy GT (1988) Quantitative assessment of hepatobiliary disease with Tc-99m-IDA scintigraphy. In: Freeman LM, Weissman HS (eds) Nuclear medicine annual. Raven, New York, pp 309–330

    Google Scholar 

  87. Doo E, Krishnamurthy GT, Eklem MJ, Gilbert S, Brown PH (1991) Quantification of hepatobiliary function as an integral part of imaging with technetium-99m-mebrofenin in health and disease. J Nucl Med 32:48–57

    CAS  PubMed  Google Scholar 

  88. Mitsumori A, Nagaya I, Kimoto S, Akaki S, Togami I, Takeda Y, Joja I, Hiraki Y (1998) Preoperative evaluation of hepatic functional reserve following hepatectomy by technetium-99m galactosyl human serum albumin liver scintigraphy and computed tomography. Eur J Nucl Med 25:1377–1382

    Article  CAS  PubMed  Google Scholar 

  89. Fujimoto H, Uchiyama G, Araki T et al (1991) Exophytic regenerating nodule of the liver: misleading appearance on iodized-oil CT. J Comput Assist Tomogr 15:495–497

    Article  CAS  PubMed  Google Scholar 

  90. Calvet X, Pons F, Bruix J et al (1988) Technetium-99m DISIDA hepatobiliary agent in diagnosis of hepatocellular carcinoma: relationship between detectability and tumor differentiation. J Nucl Med 29:1916–1920

    CAS  PubMed  Google Scholar 

  91. Hasegawa Y, Nakano S, Hiyama T et al (1991) Relationship of uptake of technetium-99m(Sn)-N-pyridoxyl-5-methyltryptophan by hepatocellular carcinoma to prognosis. J Nucl Med 32:228–235

    CAS  PubMed  Google Scholar 

  92. Boulahdour H, Cherqui D, Charlotte F et al (1993) The hot spot hepatobiliary scan in focal nodular hyperplasia. J Nucl Med 34:2105–2110

    CAS  PubMed  Google Scholar 

  93. Kotzerke J, Schwarzrock R, Krischek O et al (1989) Technetium-99m DISIDA hepatobiliary agent in diagnosis of hepatocellular carcinoma, adenoma, and focal nodular hyperplasia (letter). J Nucl Med 30:1278–1280

    CAS  PubMed  Google Scholar 

  94. Barwick KW, Rosai J (1996) Liver (non-neoplastic disease). In: Rosai J (ed) Ackerman’s surgical pathology. Mosby-Year Book, St Louis, pp 857–942

    Google Scholar 

  95. Lin J, Westerhoff M (2021) Vascular neoplasms of the liver. Clin Liver Dis 17:261–266

    Article  Google Scholar 

  96. Brant WE, Floyd JL, Jackson DE et al (1987) The radiological evaluation of hepatic cavernous hemangioma. JAMA 257:2471–2474

    Article  CAS  PubMed  Google Scholar 

  97. Kudo M, Ikekubo K, Yamamoto K et al (1989) Distinction between hemangioma of the liver and hepatocellular carcinoma: value of labeled RBC-SPECT scanning. AJR Am J Roentgenol 152:977–983

    Article  CAS  PubMed  Google Scholar 

  98. Ziessman HA, Silverman PM, Patterson J et al (1991) Improved detection of small cavernous hemangiomas of the liver with high-resolution three-headed SPECT. J Nucl Med 32:2086–2091

    CAS  PubMed  Google Scholar 

  99. Langsteger W, Lind P, Eber B et al (1989) Diagnosis of hepatic hemangioma with 99mTc-labeled red cells: single photon emission computed tomography (SPECT) versus planar imaging. Liver 9:288–293

    Article  CAS  PubMed  Google Scholar 

  100. Farlow DC, Chapman PR, Gruenewald SM et al (1990) Investigation of focal hepatic lesions: is tomographic red blood cell imaging useful? World J Surg 14:463–467

    Article  CAS  PubMed  Google Scholar 

  101. Krause T, Hauenstein K, Studier-Fischer B et al (1993) Improved evaluation of technetium-99m-red blood cell SPECT in hemangioma of the liver. J Nucl Med 34:375–380

    CAS  PubMed  Google Scholar 

  102. Bonanno N, Baldari S, Cerrito A et al (1991) Diagnosis of hepatic hemangiomas with 99mTc-labeled red blood cell scanning: value of SPECT. J Nucl Biol Med 35:135–140

    CAS  PubMed  Google Scholar 

  103. Moon DH, Lee MH, Yang SK et al (1992) Diagnosis of hepatic hemangioma (HH) with triple-head (3H) high-resolution SPECT. J Nucl Med 33:918(abstract)

    Google Scholar 

  104. Birnbaum BA, Weinreb JC, Megibow AJ et al (1990) Definitive diagnosis of hepatic hemangiomas: MR imaging versus Tc-99m-labeled red blood cell SPECT. Radiology 176:95–101

    Article  CAS  PubMed  Google Scholar 

  105. Jhuang J-Y, Lin L-W, Hsieh M-S (2011) Adult capillary hemangioma of the liver: case report and literature review. Kaohsiung J Med Sci 27:344–347

    Article  PubMed  Google Scholar 

  106. Swayne LC, Diehl WL, Brown TD et al (1991) False-positive hepatic blood pool scintigraphy in metastatic colon carcinoma. Clin Nucl Med 16:630–632

    Article  CAS  PubMed  Google Scholar 

  107. Hod N, Pour MC, Juven Y, Horne T (2004) “Positive” Tc-99m red blood cell scintigraphy in a patient with hepatic lymphoma. Clin Nucl Med 29:272–274

    Article  PubMed  Google Scholar 

  108. Kim CK (1998) Scintigraphic evaluation of the liver and biliary tract. In: Gazelle SG, Saini S, Mueller PR (eds) Hepatobiliary and pancreatic radiology: imaging and interventions. Thieme, New York, pp 108–153

    Google Scholar 

  109. Zheng JG, Yao ZM, Shu CY, Zhang Y, Zhang X (2005) Role of SPECT/CT in diagnosis of hepatic hemangiomas. World J Gastroenterol 11:5336–5341

    Article  PubMed  PubMed Central  Google Scholar 

  110. Schillaci O, Danieli R, Manni C, Capoccetti F, Simonetti G (2004) Technetium-99m-labelled red blood cell imaging in the diagnosis of hepatic haemangiomas: the role of SPECT/CT with a hybrid camera. Eur J Nucl Med Mol Imaging 31:1011–1015

    Article  PubMed  Google Scholar 

  111. Siegel A, Mazurek R (1997) Early dynamic SPECT acquisition for the imaging of hepatic hemangiomas utilizing Tc-99m-labeled red blood cells. Clin Nucl Med 22:745–748

    Article  CAS  PubMed  Google Scholar 

  112. Khosa F, Khan AN, Eisenberg RL (2011) Hypervascular liver lesions on MRI. AJR Am J Roentgenol 197:W204–W220

    Article  PubMed  Google Scholar 

  113. Kobayashi S, Maruyama H, Okugawa H, Yoshizumi H, Matsutani S, Ebara M et al (2008) Contrast-enhanced US with Levovist for the diagnosis of hepatic hemangioma: time-related changes of enhancement appearance and the hemodynamic background. Hepato-Gastroenterology 55:1222–1228

    PubMed  Google Scholar 

  114. Kim CK, Worsley WF, Lentle B (1998) Scintigraphic evaluation of tumors of the liver. In: Murray IPC, Ell PJ (eds) Nuclear medicine in clinical diagnosis and treatment, 2nd edn. Churchill Livingstone, London, pp 775–782

    Google Scholar 

  115. Tanasescu D, Brachman M, Rigby J et al (1984) Scintigraphic triad in focal nodular hyperplasia. Am J Gastroenterol 79:61–64

    CAS  PubMed  Google Scholar 

  116. Welch TJ, Sheedy PF Jr, Johnson CM et al (1985) Focal nodular hyperplasia and hepatic adenoma: comparison of angiography, CT, US, and scintigraphy. Radiology 156:593–595

    Article  CAS  PubMed  Google Scholar 

  117. Salvo AF, Schiller A, Athanasoulis C et al (1977) Hepatoadenoma and focal nodular hyperplasia; pitfalls in radiocolloid imaging. Radiology 125:451–455

    Article  CAS  PubMed  Google Scholar 

  118. Lubbers PR, Ros PR, Goodman ZD et al (1987) Accumulation of technetium-99m sulfur colloid by hepatocellular adenoma: scintigraphic-pathologic correlation. AJR Am J Roentgenol 148:1105–1108

    Article  CAS  PubMed  Google Scholar 

  119. Schein CJ (1972) Acute cholecystitis. Harper and Row, New York, p 40

    Google Scholar 

  120. Jivegard L, Thornell E, Svanvik J (1987) Pathophysiology of acute obstructive cholecystitis: implications for non-operative management. Br J Surg 74:1084–1086

    Article  CAS  PubMed  Google Scholar 

  121. Jivegard L, Thornell E, Bjorck S, Svanvik J (1985) The effects of morphine and enkephaline on gallbladder function in experimental cholecystitis. Inhibition of inflammatory gallbladder secretion. Scand J Gastroenterol 20:1049–1056

    Article  CAS  PubMed  Google Scholar 

  122. Greenberger NJ, Isselbacher KJ (1991) Diseases of the gallbladder and bile ducts. In: Wilson JD, Braunwald E, Isselbacher KJ et al (eds) Harrison’s principles of internal medicine, 12th edn. McGraw-Hill, New York, pp 1358–1368

    Google Scholar 

  123. Freitas JE (1994) Cholescintigraphy. In: Murray IPC, Ell PJ (eds) Nuclear medicine in clinical diagnosis and treatment. Churchill Livingstone, London, pp 77–86

    Google Scholar 

  124. Ziessman HA (2014) Hepatobiliary Scintigraphy in 2014. J Nucl Med Technol 42:249–259

    PubMed  Google Scholar 

  125. Ziessman HA (2010) Nuclear medicine hepatobiliary imaging. Clin Gastroenterol Hepatol 8:111–116

    Article  PubMed  Google Scholar 

  126. Kumar V, Abbas A, Aster JC (2014) Robbins and Cotzan, pathologic basis of disease, 9th edn. Saunders, Philadelphia

    Google Scholar 

  127. Shea JA, Berlin JA, Escarce JJ et al (1994) Revised estimates of diagnostic test sensitivity and specificity in suspected biliary tract disease. Arch Intern Med 154:2573–2581

    Article  CAS  PubMed  Google Scholar 

  128. Ziessman HA (2003) Acute cholecystitis, biliary obstruction and biliary leakage. Semin Nucl Med 38:279–296

    Article  Google Scholar 

  129. Kiewiet JJ, Leeuwenburgh MM, Bipat S, Bossuyt PM, Stoker J, Boermeester MA (2012) A systematic review and meta-analysis of diagnostic performance of imaging in acute cholecystitis. Radiology 264:708–720

    Article  PubMed  Google Scholar 

  130. Colletti PM, Cirimelli KM, Radin DR et al (1989) Radionuclide angiography in suspected acute cholecystitis: further observations. Clin Nucl Med 14:867–873

    Article  CAS  PubMed  Google Scholar 

  131. Brachman MB, Goodman MD, Waxman AD (1993) The rim sign in acute cholecystitis. Comparison of radionuclide, surgical, and pathologic findings. Clin Nucl Med 18:863–866

    Article  CAS  PubMed  Google Scholar 

  132. Nahrwold DL (1991) Chronic cholecystitis and cholelithiasis. In: Sabiston DC (ed) Textbook of surgery, 14th edn. Saunders, Philadelphia, pp 1057–1063

    Google Scholar 

  133. Weedon D (1984) Pathology of the gallbladder. Masson, New York

    Google Scholar 

  134. Bolen G, Javitt NB (1982) Biliary dyskinesia: mechanisms and management. Hosp Pract 17:115–130

    Article  CAS  Google Scholar 

  135. Misra DC Jr, Blossom GB, Fink-Bennett D et al (1991) Results of surgical therapy for biliary dyskinesia. Arch Surg 126:957–960

    Article  PubMed  Google Scholar 

  136. Hogan WJ, Geenen JE (1988) Biliarydyskinesia. Endoscopy 20:179–183

    Article  PubMed  Google Scholar 

  137. Coelho JC, Wiederkehr JC (1996) Motility of Oddi’s sphincter: recent developments and clinical applications. Am J Surg 172:48–51

    Article  CAS  PubMed  Google Scholar 

  138. Sostre S, Kalloo AN, Spiegler EJ et al (1992) A noninvasive test of sphincter of Oddi dysfunction in postcholecystectomy patients: the scintigraphic score. J Nucl Med 33:1216–1222

    CAS  PubMed  Google Scholar 

  139. Ziessman HA (1992) Atlas of cholescintigraphy: selective update. In: Ziessman HA, Van Nostrand D (eds) Selected atlas of gastrointestinal scintigraphy. Springer, Berlin, pp 1–34

    Chapter  Google Scholar 

  140. Fink-Bennett D (1991) Augmented cholescintigraphy: its roles in detecting acute and chronic disorders of the hepatobiliary tree. Semin Nucl Med 21:128–139

    Article  CAS  PubMed  Google Scholar 

  141. Madacsy L, Velosy B, Lonovics J et al (1994) Differentiation between organic stenosis and functional dyskinesia of the sphincter of Oddi with amyl nitrite-augmented quantitative hepatobiliary scintigraphy. Eur J Nucl Med 21:203–208

    Article  CAS  PubMed  Google Scholar 

  142. Freeman LM, Sugarman LA, Weissmann HS (1981) Role of cholecystokinetic agents in 99mTc-IDA cholescintigraphy. Semin Nucl Med 11:186–193

    Article  CAS  PubMed  Google Scholar 

  143. Fink-Bennett D, DeRidder P, Kolozsi WZ et al (1991) Cholecystokinin cholescintigraphy: detection of abnormal gallbladder motor function in patients with chronic acalculous gallbladder disease. J Nucl Med 32:1695–1699

    CAS  PubMed  Google Scholar 

  144. Halverson JD, Garner BA, Siegel BA et al (1992) The use of hepatobiliary scintigraphy in patients with acalculous biliary colic. Arch Intern Med 152:1305–1307

    Article  CAS  PubMed  Google Scholar 

  145. Reed DN Jr, Fernandez M, Hicks RD (1993) Kinevac-assisted cholescintigraphy as an accurate predictor of chronic acalculous gallbladder disease and the likelihood of symptom relief with cholecystectomy. Am Surg 5:273–277

    Google Scholar 

  146. Zech ER, Simmons LB, Kendrick RR et al (1991) Cholecystokinin enhanced hepatobiliary scanning with ejection fraction calculation as an indicator of disease of the gallbladder. Surg Gynecol Obstet 17:21–24

    Google Scholar 

  147. Ziessman HA, Fahey FH, Hixson DJ (1992) Calculation of a gallbladder ejection fraction: advantage of continuous sincalide infusion over the three-minute infusion method. J Nucl Med 33:537–541

    CAS  PubMed  Google Scholar 

  148. Kim CK, Worsley DF, Machac J (1996) Interventions in gastrointerventional nuclear medicine. In: Freeman LM (ed) Nuclear medicine annual. Raven, New York, pp 213–257

    Google Scholar 

  149. Ziessman HA, Muenz LR, Agarwal AK, ZaZa AA (2001) Normal values for sincalidecholescintigraphy: comparison of two methods. Radiology 221:404–410

    Article  CAS  PubMed  Google Scholar 

  150. DiBaise JK, Richmond BK, Ziessman HH, Everson GT, Fanelli RD, Maurer A, Ouyang A, Shamamian P, Simons RJ, Wall LA, Weida TJ, Tulchinsky M (2011) Cholecystokinin-cholescintigraphy in adults: consensus recommendations of an interdisciplinary panel. Clin Gastroenterol Hepatol 9:376–384

    Article  PubMed  Google Scholar 

  151. Fisher RS, Rock E, Malmud LS (1987) Effects of meal composition on gallbladder and gastric emptying in man. Dig Dis Sci 32:337–344

    Article  Google Scholar 

  152. Maton PN, Selden AC, Fitzpatrick ML, Chadwick VS (1985) Defective gallbladder emptying and cholecystokinin release in celiac disease: reversal by gluten-free diet. Gastroenterology 88:391–396

    Article  CAS  PubMed  Google Scholar 

  153. Masclee AAM, Jansen JBMJ, Corstens FHM, Lamers CBHW (1989) Reversible gallbladder dysfunction in severe pancreatic insufficiency. Gut 30:866–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Masclee AA, Jansen JB, Driessen WM, Geuskens LM, Lamers CB (1991) Gallbladder sensitivity to cholecystokinin in coeliac disease. Correlation of gallbladder contraction with plasma cholecystokinin-like immunoreactivity during infusion of cerulein. Scand J Gastroenterol 26:1279–1284

    Article  CAS  PubMed  Google Scholar 

  155. Oster-Jorgensen E, Qvist N, Pedersen SA, Rasmussen L, Hovendal CP (1992) Postprandial gallbladder emptying is related to intestinal motility at the time of meal ingestion. Scand J Gastroenterol 27:699–702

    Article  CAS  PubMed  Google Scholar 

  156. Brugge WR (1991) Motor function of the gallbladder: measurement and clinical significance. Semin Roentgenol 16:226–231

    Article  Google Scholar 

  157. Kloiber R, Molnar CP, Shaffer EA (1992) Chronic biliary-type pain in the absence of gallstones: the value of cholecystokinin cholescintigraphy. AJR Am J Roentgenol 159:509–513

    Article  CAS  PubMed  Google Scholar 

  158. Torsoli A, Corazziari E, Habib FI, Cicala M (1990) Pressure relationships within the human bile tract. Normal and abnormal physiology. Scand J Gastroenterol Suppl 175:52–57

    Article  CAS  PubMed  Google Scholar 

  159. Murphy P, Solomon J, Roseman DL (1980) Narcotic anesthetic drugs: their effect on biliary dynamics. Arch Surg 115:710–711

    Article  CAS  PubMed  Google Scholar 

  160. Dedrick DF, Tanner WW, Bushkin FL (1980) Common bile duct pressure during enflurane anesthesia: effects of morphine and subsequent naloxone. Arch Surg 115:820–821

    Article  CAS  PubMed  Google Scholar 

  161. Chen CC, Holder LE, Maunoury C et al (1997) Morphine augmentation increases gallbladder visualization in patients pretreated with cholecystokinin. J Nucl Med 38:644–647

    CAS  PubMed  Google Scholar 

  162. Kim CK, Goyal M, San Pedro E et al (1995) The effect of CCK pretreatment on gallbladder visualization on delayed or morphine-augmented imaging (abstract). J Nucl Med 36:74

    CAS  Google Scholar 

  163. Klingensmith WC (1988) Hepatobiliary imaging: normal appearance and normal variations. In: Gottschalk A, Hoffer PB, Potchen J (eds) Diagnostic nuclear medicine. Williams and Wilkins, Baltimore, pp 575–581

    Google Scholar 

  164. Kim CK, Palestro CJ, Solomon RW et al (1990) Delayed biliary-to-bowel transit in cholescintigraphy after cholecystokinin treatment. Radiology 176:553–556

    Article  CAS  PubMed  Google Scholar 

  165. Oates E, Achong DM (1992) Incidence and significance of enterogastric reflux during morphine-augmented cholescintigraphy. Clin Nucl Med 17:926–928

    Article  CAS  PubMed  Google Scholar 

  166. Shih WJ, Lee JK, Magoun S et al (1995) Morphine-augmented cholescintigraphy enhances duodenogastric reflux. Ann Nucl Med 9:225–228

    Article  CAS  PubMed  Google Scholar 

  167. Zeman RK, Lee C, Jaffe MH et al (1984) Hepatobiliary scintigraphy and sonography in early biliary obstruction. Radiology 153:793–798

    Article  CAS  PubMed  Google Scholar 

  168. Miller DR, Egbert RM, Braunstein P (1984) Comparison of ultrasound and hepatobiliary imaging in the early detection of acute total common bile duct obstruction. Arch Surg 119:1233–1237

    Article  CAS  PubMed  Google Scholar 

  169. Juni JE, Reichle R (1990) Measurement of hepatocellular function with deconvolutional analysis: application in the differential diagnosis of acute jaundice. Radiology 177:171–175

    Article  CAS  PubMed  Google Scholar 

  170. Lieberman DA, Brown PH, Krishnamurthy GT (1990) Improved scintigraphic assessment of severe cholestasis with the hepatic extraction fraction. Dig Dis Sci 35:1385–1390

    Article  CAS  PubMed  Google Scholar 

  171. Balistreri WF, Grand R, Hoofnagle JH et al (1996) Biliary atresia: current concepts and research directions. Summary of a symposium. Hepatology 23:1682–1692

    Article  CAS  PubMed  Google Scholar 

  172. Bezerra JA, Tiao G, Ryckman FC et al (2002) Genetic induction of proinflammatory immunity in children with biliary atresia. Lancet 360(9346):1653–1659

    Article  PubMed  Google Scholar 

  173. Perlmutter DH, Shepherd RW (2002) Extrahepatic biliary atresia: a disease or a phenotype? Hepatology 35(6):1297–1304

    Article  PubMed  Google Scholar 

  174. Miyano T, Fujimoto T, Ohya T, Shimomura H (1993) Current concept of the treatment of biliary atresia. World J Surg 17:332–336

    Article  CAS  PubMed  Google Scholar 

  175. McEvoy CF, Suchy FJ (1996) Biliary tract disease in children. Pediatr Clin N Am 43:75–98

    Article  CAS  Google Scholar 

  176. Kasai M, Suzuki K, Ohashi E et al (1978) Technique and results of operative management of biliary atresia. World J Surg 2:571–580

    Article  CAS  PubMed  Google Scholar 

  177. Gerhold JP, Klingensmith WC III, Kuni CC et al (1983) Diagnosis of biliary atresia with radionuclide hepatobiliary imaging. Radiology 146:499–504

    Article  CAS  PubMed  Google Scholar 

  178. Spivak W, Sarkar S, Winter D et al (1987) Diagnostic utility of hepatobiliary scintigraphy with 99mTc-DISIDA in neonatal cholestasis. J Pediatr 110:855–861

    Article  CAS  PubMed  Google Scholar 

  179. Ben-Haim S, Seabold JE, Kao SC et al (1995) Utility of Tc-99m mebrofenin scintigraphy in the assessment of infantile jaundice. Clin Nucl Med 20:153–163

    Article  CAS  PubMed  Google Scholar 

  180. Cox KL, Stadalnik RC, McGahan JP et al (1987) Hepatobiliary scintigraphy with technetium-99m disofenin in the evaluation of neonatal cholestasis. J Pediatr Gastroenterol Nutr 6:885–891

    Article  CAS  PubMed  Google Scholar 

  181. Howman-Giles R, Moase A, Gaskin K, Uren R (1993) Hepatobiliary scintigraphy in a pediatric population: determination of hepatic extraction fraction by deconvolution analysis. J Nucl Med 34:214–221

    CAS  PubMed  Google Scholar 

  182. Howman-Giles R, Uren R, Bernard E, Dorney S (1998) Hepatobiliary scintigraphy in infancy. J Nucl Med 39:311–319

    CAS  PubMed  Google Scholar 

  183. Majd M, Reba RC, Altman RP (1981) Effect of phenobarbital on 99mTc-IDA scintigraphy in the evaluation of neonatal jaundice. Semin Nucl Med 11:194–204

    Article  CAS  PubMed  Google Scholar 

  184. Balistreri WF (1985) Neonatal cholestasis. J Pediatr 106:171–184

    Article  CAS  PubMed  Google Scholar 

  185. Larrosa-Haro A, Caro-Lopez AM, Coello-Ramirez P et al (2001) Duodenal tube test in the diagnosis of biliary atresia. J Pediatr Gastroenterol Nutr 32:311–315

    Article  CAS  PubMed  Google Scholar 

  186. Lin WY, Lin CC, Changlai SP et al (1997) Comparison technetium of Tc-99m disofenin cholescintigraphy with ultrasonography in the differentiation of biliary atresia from other forms of neonatal jaundice. Pediatr Surg Int 12(1):30–33

    Article  CAS  PubMed  Google Scholar 

  187. Johnson K, Alton HM, Chapman S (1998) Evaluation of mebrofenin hepatoscintigraphy in neonatal-onset jaundice. Pediatr Radiol 28:937–941

    Article  CAS  PubMed  Google Scholar 

  188. Kim CK, Heyman S (1994) Scintigraphic evaluation of liver transplants. In: Murray IPC, Ell PJ (eds) Nuclear medicine in clinical diagnosis and treatment. Churchill Livingstone, London, pp 69–75

    Google Scholar 

  189. Rayter Z, Tonge C, Bennett C et al (1991) Ultrasound and HIDA: scanning in evaluating bile leaks after cholecystectomy. Nucl Med Commun 12:197–202

    Article  CAS  PubMed  Google Scholar 

  190. Brugge WR, Rosenberg DJ, Alavi A (1994) Diagnosis of postoperative bile leaks. Am J Gastroenterol 89:2178–2183

    CAS  PubMed  Google Scholar 

  191. Walker AT, Shapiro AW, Brooks DC et al (1992) Bile duct disruption and biloma after laparoscopic cholecystectomy: imaging evaluation. AJR Am J Roentgenol 158:785–789

    Article  CAS  PubMed  Google Scholar 

  192. Banzo I, Blanco I, Gutierrez-Mendiguchia C, Gomez-Barquin R, Quirce R, Carril JM (1998) Hepatobiliary scintigraphy for the diagnosis of bile leaks produced after T-tube removal in orthotopic liver transplantation. Nucl Med Commun 19:229–236

    Article  CAS  PubMed  Google Scholar 

  193. Worsley DF, Kim CK (1994) Hepatic and splenic trauma. In: Murray IPC, Ell PJ (eds) Nuclear medicine in clinical diagnosis and treatment. Churchill Livingstone, London, pp 63–67

    Google Scholar 

  194. Trerotola SO, Savader SJ, Lund GB et al (1992) Biliary tract complications following laparoscopic cholecystectomy: imaging and intervention. Radiology 184:195–200

    Article  CAS  PubMed  Google Scholar 

  195. Peters JH, Ollila D, Nichols KE et al (1994) Diagnosis and management of bile leaks following laparoscopic cholecystectomy. Surg Laparosc Endosc 4:163–170

    CAS  PubMed  Google Scholar 

  196. Rodman CA, Keeffe EB, Lieberman DA et al (1987) Diagnosis of sclerosing cholangitis with technetium 99m-labeled iminodiacetic acid planar and single photon emission computed tomographic scintigraphy. Gastroenterology 92:777–785

    Article  CAS  PubMed  Google Scholar 

  197. O’Brien S, Keogan M, Casey M et al (1992) Biliary complications of cystic fibrosis. Gut 33:387–391

    Article  PubMed  PubMed Central  Google Scholar 

  198. Colombo C, Castellani MR, Balistreri WF et al (1992) Scintigraphic documentation of an improvement in hepatobiliary excretory function after treatment with ursodeoxycholic acid in patients with cystic fibrosis and associated liver disease. Hepatology 15:677–684

    Article  CAS  PubMed  Google Scholar 

  199. Dogan AS, Conway JJ, Lloyd-Till JD (1994) Hepatobiliary scintigraphy in children with cystic fibrosis and liver disease. J Nucl Med 35:432–435

    CAS  PubMed  Google Scholar 

  200. O’Connor PJ, Southern KW, Bowler IM et al (1996) The role of hepatobiliary scintigraphy in cystic fibrosis. Hepatology 23:281–287

    Article  PubMed  Google Scholar 

  201. Buscombe JR, Miller RF, Ell PJ (1992) Hepatobiliary scintigraphy in the diagnosis of AIDS-related sclerosing cholangitis. Nucl Med Commun 13:154–160

    Article  CAS  PubMed  Google Scholar 

  202. Quinn D, Pocock N, Freund J et al (1993) Radionuclide hepatobiliary scanning in patients with AIDS-related sclerosing cholangitis. Clin Nucl Med 18:417–422

    Article  CAS  PubMed  Google Scholar 

  203. Kim OH, Chung HJ, Choi BG (1995) Imaging of the choledochal cyst. Radiographics 15:69–88

    Article  CAS  PubMed  Google Scholar 

  204. Camponovo E, Buck JL, Drane WE (1989) Scintigraphic features of choledochal cyst. J Nucl Med 30:622–628

    CAS  PubMed  Google Scholar 

  205. Rosenthall L, Fonseca C, Arzoumanian A et al (1979) 99mTc-IDA hepatobiliary imaging following upper abdominal surgery. Radiology 130:735–739

    Google Scholar 

  206. Zeman RK, Lee C, Stahl RS et al (1982) Ultrasonography and hepatobiliary scintigraphy in the assessment of biliary-enteric anastomoses. Radiology 145:109–115

    Article  CAS  PubMed  Google Scholar 

  207. Weissmann HS, Gliedman ML, Wilk PJ et al (1982) Evaluation of the postoperative patient with 99mTc-IDA cholescintigraphy. Semin Nucl Med 12:27–52

    Article  CAS  PubMed  Google Scholar 

  208. Belli G, Romano G, Monaco A et al (1988) HIDA scan in the follow-up of biliary-enteric anastomoses. HPB Surg 1:29–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Aigner RM, Fueger GF, Schimpl G, Sauer H, Nicoletti R (1997) Cholescintigraphy in the evaluation of bile flow after Roux-en-Y hepatico-jejunostomy and hepatico-antrostomy in infants with choledochal cysts. Pediatr Radiol 27:850–854

    Article  CAS  PubMed  Google Scholar 

  210. Lucas MH, Elgazzar AH, Cummings DD (1995) Positional biliary stasis: scintigraphic findings following biliary-enteric bypass surgery. J Nucl Med 36:104–106

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elgazzar, A.H., Alenezi, S.A. (2022). Digestive System. In: Elgazzar, A.H. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-96252-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96252-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96251-7

  • Online ISBN: 978-3-030-96252-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics