Skip to main content

Zoonosis

  • Chapter
  • First Online:
2000 Years of Pandemics

Abstract

Zoonosis is defined as an infectious disease able to mutate from animals to humans. Over the past 2000 years of pandemics, we have observed the extent of zoonotic illnesses causing devastating pandemics. In this chapter, we describe the different pandemics of zoonotic origin, as well as the determinant factors for its development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones KE, Patel N, Levy M, et al. Global trends in emerging infectious diseases. Nature. 2008;451:990–4.

    Article  CAS  Google Scholar 

  2. Can ÖE, et al. Dealing in deadly pathogens: Taking stock of the legal trade in live wildlife and potential risks to human health. Glob Ecol Conserv. 2019;17:e00515.

    Article  Google Scholar 

  3. Lundstrom K, Seyran M, Pizzol D, Adadi P, Mohamed Abd El-Aziz T, Hassan SS, Soares A, Kandimalla R, Tambuwala MM, Aljabali AAA, Kumar Azad G, Pal Choudhury P, Uversky VN, Sherchan SP, Uhal BD, Rezaei N, Brufsky AM. The importance of research on the origin of SARS-CoV-2. Viruses. 2020;12(11):1203 https://doi.org/10.3390/v12111203.

  4. Institute of Medicine (US) Forum on Microbial Threats. Microbial evolution and co-adaptation: a tribute to the life and scientific legacies of Joshua Lederberg: workshop summary. Washington, DC: National Academies Press (US); 2009. p. 5. Infectious disease emergence: past, present, and future. Available from: https://www.ncbi.nlm.nih.gov/books/NBK45714/ Consulted on March 18th 2020

    Google Scholar 

  5. Mackenzie JS, Jeggo M. Editorial: The one health approach—why is it so important? Trop Med Infect Dis. 2019;4:88.

    Article  Google Scholar 

  6. Rohr JR, Barrett CB, Civitello DJ, et al. Emerging human infectious diseases and the links to global food production. Nat Sustain. 2019;2:445–56.

    Article  Google Scholar 

  7. Jordà Ò, Singh SR, Taylor AM. “Longer-Run Economic Consequences of Pandemics,” Federal Reserve Bank of San Francisco Working Paper 2020–09; 2020. https://doi.org/10.24148/wp2020-09.

  8. Fournié G, et al. Early animal farming and zoonotic disease dynamics: modelling brucellosis transmission in Neolithic goat populations. R Soc Open Sci. 2017;4(2):160943. https://doi.org/10.1098/rsos.160943.

    Article  Google Scholar 

  9. M Mazzeo L’assistenza sanitaria ispirata dal Cristianesimo. III. Crociate; grandi epidemic (lebbra, peste, fuoco sacro); ordini ospitalieri [Sanitary assistance inspired by Christianity. III. Crusades; great epidemics (leprosy, plague, ergotism); hospital religious orders]. Riv Stor Sci Mediche Nat. 1955 Jan-Jun;46(1):7-38. Italian. PMID: 13255783.

    Google Scholar 

  10. Sessa R, Palagiano C, Scifoni MG, di Pietro M, Del Piano M. The major epidemic infections: a gift from the Old World to the new? Panminerva Med. 1999 Mar;41(1):78–84.

    CAS  Google Scholar 

  11. Akin L, Gözel MG. Understanding dynamics of pandemics. Turk. J Med Sci. 2020;50(SI-1):515–9.

    CAS  Google Scholar 

  12. Bradshaw CJ, Brook BW. Human population reduction is not a quick fix for environmental problems. Proc Natl Acad Sci U S A. 2014;111(46):16610–5.

    Article  CAS  Google Scholar 

  13. Olynyk M, Westwood AR, Koper N. Effects of natural habitat loss and edge effects on wild bees and pollination Services in Remnant Prairies. Environ Entomol. 2021;50:nvaa186.

    Article  Google Scholar 

  14. McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83(1):37–46.

    Article  CAS  Google Scholar 

  15. Stuecker MF, Bitz CM, Armour KC, et al. Polar amplification dominated by local forcing and feedbacks. Nat Clim Change. 2018;8:1076–81.

    Article  CAS  Google Scholar 

  16. da Cunha RV, Trinta KS. Chikungunya virus: clinical aspects and treatment - A Review Mem Inst Oswaldo Cruz, Rio de Janeiro. 112(8): 523–531, August 2017 523 online | memorias.ioc.fiocruz.br Consulted on March 20, 2021.

    Google Scholar 

  17. Espinosa R, Tago D, Nicolas Treich. Infectious Diseases and Meat Production Environmental and Resource Economics. https://doi.org/10.1007/s10640-020-00484-313. Accepted: 13 July 2020 © Springer Nature B.V. 2020

  18. UN http://www.fao.org/news/story/en/item/1152031/icode/ Consulterd on 19 Mar 2021.

  19. Zhu S, Zimmerman D, Deem SL. A review of zoonotic pathogens of dromedary camels. EcoHealth. 2019;16:356–77.

    Article  Google Scholar 

  20. Aditiawati P, Astuti DI, Kriswantoro JA, et al. GC/MS-based metabolic profiling for the evaluation of solid state fermentation to improve quality of Arabica coffee beans. Metabolomics. 2020;16:57.

    Article  CAS  Google Scholar 

  21. Dutheil F, Clinchamps M, Bouillon-Minois JB. Bats, pathogens, and species richness. Pathogens. 2021;10(2):98.

    Article  Google Scholar 

  22. Coltart CEM, Lindsey B, Ghinai I, Johnson AM, Heymann DL. The Ebola outbreak, 2013–2016: old lessons for new epidemics. Phil Trans R Soc B. 2017;372:20160297. https://doi.org/10.1098/rstb.2016.0297.

    Article  Google Scholar 

  23. Coffey LL, Failloux A-B, Scott C. Chikungunya virus–vector interactions. Weaver Viruses. 2014;6:4628–63.

    Article  CAS  Google Scholar 

  24. https://www.who.int/news-room/fact-sheets/detail/zika-virus (consulted on 4 August 4 2021).

  25. Hayes EB. Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 15, No. 9, September 2009.

  26. Zhukova A, et al. Origin, evolution and global spread of SARS-CoV-2. C R Biol. 2020;344:57. https://doi.org/10.5802/crbiol.29. PMID:33274614I

    Article  Google Scholar 

  27. Petersen LR, Brault AC, Nasci RS, Virus WN. Review of the literature. JAMA. 2013;310(3):308–15.

    Article  CAS  Google Scholar 

  28. Looi LM, Chua KB. Lessons from the Nipah virus outbreak in Malaysia. Malays J Pathol. 2007;29(2):63–7.

    Google Scholar 

  29. Holmes EC, Twiddy SS. The origin, emergence and evolution genetics of dengue virus. Infect Genet Evol. 2003;3:19–28.

    Article  Google Scholar 

  30. Faria NR, Rambau A, et al. The early spread and epidemic ignition of HIV-1 in human populations. AIDS. 2000;14:2623–5.

    Google Scholar 

  31. Romero-Alvarez D, Escobar LE. Oropouche fever, an emergent disease from the Americas. Microbes Infect. 2018 Mar;20(3):135–46.

    Article  Google Scholar 

  32. Griffing SM, Gamboa D, Udhayakumar V. The history of 20th century malaria control in Peru. Malar J. 2013;12:303.

    Article  Google Scholar 

  33. Rasad AN, Agans KN, Sivasubramani SK, Geisbert JB, Borisevich V, Mire CE, Lawrence WS, Fenton KA, Geisbert TW. A lethal aerosol exposure model of Nipah Virus strain Bangladesh in African green monkeys. J Infect Dis. 2020;221(Suppl 4):S431–5.

    Google Scholar 

  34. Tan KS, Tan CT, Goh KJ. Epidemiological aspects of Nipah virus infection. Neurol J South East Asia. 1999;4:77–81.

    Google Scholar 

  35. Elisabet L, Thomas GT. Jaenson Lyme Borreliosis in Europe: Influences of Climate and climate change, epidemiology, ecology and adaptation measures WHO Europe.

    Google Scholar 

  36. Bloomfield L, McIntosh T, Lambin E. Habitat fragmentation, livelihood behaviors, and contact between people and nonhuman primates in Africa. Landscape Ecol. 2020;35:985–1000.

    Article  Google Scholar 

  37. Keesing F, Belden L, Daszak P. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature. 2010;468:647–52. https://doi.org/10.1038/nature09575.

  38. Espinosa R, Tago D, Treich N. Infectious diseases and meat production. Environ Resour Econ. 2020;76:1019–44.

    Article  Google Scholar 

  39. McIntyre KM, Setzkorn C, Hepworth PJ, Morand S, Morse AP, Baylis M. Systematic assessment of the climate sensitivity of important human and domestic animals pathogens in Europe. Sci Rep. 2017;7(1):7134.

    Article  Google Scholar 

  40. Schmid BV, Büntgen U, Easterday WR, Ginzler C, Walløe L, Bramanti B, Chr Stenseth N. Climate-driven introductions of plague into Europe. Proc Natl Acad Sci. 2015;112(10):3020–5.

    Article  CAS  Google Scholar 

  41. Colwell D, Dantas-Torres P, D. Otranto vector-borne parasitic zoonoses: emerging scenarios and new perspectives. Vet Parasitol. 2001;182:14–21.

    Article  Google Scholar 

  42. https://news.psu.edu/story/154054/2011/11/02/humans-and-climate-contributed-extinctions-large-ice-age-mammals (Consulted on 20 Mar 2021).

  43. https://www.nasa.gov/vision/earth/livingthings/extremophile1.html (Consulted on 20 Mar 2021).

  44. Legendre M, Lartigue A, Bertaux L, et al. In-depth study of Mollivirus sibericum giant virus. Proc Natl Acad Sci. 2015;112(38):E5327–35.

    Article  CAS  Google Scholar 

  45. Warren CJ, Sawyer SL. How host genetics dictates successful viral zoonosis. PLoS Biol. 2019;17(4):e3000217.

    Article  CAS  Google Scholar 

  46. V. Gregory Chinchar Replication of Viruses Encyclopaedia of Viruses; 1999. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149704/# (Consulted on 20 Mar 2021).

  47. Becken B, Multani A, Padival S, Cunningham CK. Human immunodeficiency Virus I: history, epidemiology, transmission, and pathogenesis. In: Domachowske J, editor. Introduction to clinical infectious diseases. Cham: Springer; 2019. https://doi.org/10.1007/978-3-319-91080-2_40.

    Chapter  Google Scholar 

  48. Antonovics J, Hood ME, Baker CH. Molecular virology: was the 1918 flu avian in origin? Nature. 2006;440:E9. discussion E9–10

    Article  CAS  Google Scholar 

  49. Garigliany MM, Habyarimana A, Lambrecht B, et al. Influenza a strain-dependent pathogenesis in fatal H1N1 and H5N1 subtype infections of mice. Emerg Infect Dis. 2010;16:595–603.

    Article  Google Scholar 

  50. https://onehealthinitiative.com/ (Consulted on 20 Mar 2021).

  51. Zhou NN, Senne DA, Landgraf JS, Swenson SL, Erickson G, Rossow K, Liu L, Yoon K, Krauss S, Webster RG. Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. J Virol. 1999;73:8851–6.

    Article  CAS  Google Scholar 

  52. Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nat Med. 2020;26:450–2.

    Article  CAS  Google Scholar 

  53. Rastogi M, Pandey N, Shukla A, et al. SARS coronavirus 2: from genome to infectome. Respir Res. 2020;21:318.

    Article  CAS  Google Scholar 

  54. Lam T, Shum M, Zhu H-C, Ni X-B, Yun-Shi L, et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature. 2020;583:282.

    Article  CAS  Google Scholar 

  55. Michael CA, Dominey-Howes D, Labbate M. The antibiotic resistance crisis: causes, consequences, and management. Front Public Health. 2014;2:145.

    Article  Google Scholar 

  56. Proske D. Catalogue of risks natural, technical, social and health risks. Berlin: Springer; 2008.

    Book  Google Scholar 

  57. Hinnebusch BJ, Perry RD, Schwan TG. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science. 1996;273(5273):367–70. pmid:8662526

    Article  CAS  Google Scholar 

  58. Tsiamis C, Poulakou-Rebelakou E, Petridou E. The Red Sea and the port of Clysma. A possible gate of Justinian's plague. Gesnerus. 2009;66(2):209–17.

    Article  Google Scholar 

  59. Norris J. East or west? The geographic origin of the black death. Bull Hist Med. 1977;51:1–24.

    CAS  Google Scholar 

  60. Oxford JS, Lambkin R, Sefton A, Daniels R, Elliot A, Brown R, Gill D. A hypothesis: the conjunction of soldiers, gas, pigs, ducks, geese and horses in northern France during the great war provided the conditions for the emergence of the "Spanish" influenza pandemic of 1918-1919. Vaccine. 2005;23(7):940–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferreira, C., Doursout, MF.J., Balingit, J.S. (2023). Zoonosis. In: 2000 Years of Pandemics. Springer, Cham. https://doi.org/10.1007/978-3-031-10035-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10035-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10034-5

  • Online ISBN: 978-3-031-10035-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics