Skip to main content

The Sound of Mathematics—Summary of International Research on Interdisciplinary Educational Work Between Mathematics and Music

  • Chapter
  • First Online:
Mathematics and Its Connections to the Arts and Sciences (MACAS)

Abstract

If music had an axiomatic foundation, it would be a mathematical discipline, like arithmetic or trigonometry. When one looks into research, one can see that this proposition is currently transforming from a bold statement into a possibility (Geist, Early Childhood Newsletter 15:36, 2009; Nutzinger, Proceedings of MACAS 2015, 2016). A growing number of studies are repeatedly proving that there is a close relationship between mathematics and music, yet they stand in stark contradiction to statements of doubters (Pietsching, 2010). In-depth research of this kind of interdisciplinary work has been presented at the MACAS Symposium since 2015 (Robichaud & Freiman, Paper presented at the MACAS Conference, 2015; Nutzinger, Proceedings of MACAS 2015, 2016; Nutzinger, Proceedings of MACAS 2017, 2018). The initiating point was an investigation that focused on the beliefs of teachers and students. It was aimed at determining step by step that it is probably less a question of belief or doubt whether this connection is seen as an important insight for education. Instead, it seems to be more a question of whether a connection of the two fields is already existing in the thought pattern of the individual person. As this field of research has been a part of MACAS for more than 5 years now, it is time to summarize the findings of relevant research, both within the symposium and internationally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acotto, E., & Andreatta, M. (2012). Between mind and mathematics. Different kinds of computational representations of music. Mathematics and Social Sciences, 199, 9–26.

    Google Scholar 

  • Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., & Angel, S. (1977). A pattern language: Towns, buildings, construction. Oxford University Press.

    Google Scholar 

  • Antovic, M. (2013). Towards the semantics of music: The 20th century. Language & History, 52(1), 119–129.

    Article  Google Scholar 

  • Bailey, R. L. (1980). Music and mathematics an interface in the writings of Leonhard Euler. State University of New York.

    Google Scholar 

  • Bamberger, J. (2013). Discovering the musical mind: A view of creativity as learning. Oxford University Press.

    Book  Google Scholar 

  • Bauersfeld, H. (1983). Subjektive Erfahrungsbereiche als Grundlage einer Interaktionstheorie des Mathematiklernens und - lehrens Lernen und Lehren von Mathematik (Vol. 6). Aulis Verlag.

    Google Scholar 

  • Beal, A. L. (1985). The skill of recognizing musical structures. Memory & Cognition, 13(5), 405–412.

    Article  Google Scholar 

  • Beckmann, A. (2003). Fächerübergreifender Mathematikunterricht. Franzbecker.

    Google Scholar 

  • Bellmer, S. (2010). Cognitive structures and students’ understanding of mathematics.

    Google Scholar 

  • Bastian, H. G. (1997). Beeinflusst intensive Musikerziehung die Entwicklung von Kindern? Zwischenbilanz zu einer Langzeitstudie an Berliner Grundschulen, in: Persönlichkeitsentfaltung durch Musikerziehung, hrsg. v. Hubert Eiholzer, Aarau: Nepomuk.

    Google Scholar 

  • Bod, R. (2002). A unified model of structural organization in language and music. Journal of Artificial Intelligence Research, 17, 289–308.

    Article  Google Scholar 

  • Bräu, K. (2002). Qualitative school and teaching research—On the use of Anselm Strauss’ worksheet concept as a heuristic instrument for analysing pupil-group work. ZBBS, 2, 241–261.

    Google Scholar 

  • Cavey, J. V. D., & Hartsuiker, R. J. (2016). Is there a domain-general cognitive structuring system? Evidence from structural priming across music, math, action descriptions, and language. Cognition, 146, 172–184. https://doi.org/10.1016/j.cognition.2015.09.013.

  • Coxeter, H. S. M. (1962). Mathematics and music, in Canadian Music Journal VI.

    Google Scholar 

  • Dales, H. G., & Dieudonné, J. A. (1992). Mathematics—The music of reason. Springer.

    Google Scholar 

  • Deutsch, D. (2012). The psychology of music (3rd ed.). Academic Press.

    Google Scholar 

  • Dewey, J. (1952). Experience and education (14th print. ed.). Macmillan.

    Google Scholar 

  • Du Sautoy, M. (2003). The music of the primes why an unsolved problem in mathematics matters. Fourth Estate.

    Google Scholar 

  • Eichler, K.-P. (2007a). Muster auf unseren Wegen - ein fächerübergreifendes Thema von Klasse 1 an. Praxis Grundschule, 30. Jg. Heft 2.

    Google Scholar 

  • Eichler, K.-P. (2007b). Ziele hinsichtlich vorschulischer geometrischer Erfahrungen. In H. Radatz (Ed.), Impulse für den Mathematikunterricht. Bildungshaus Schulbuchverlage.

    Google Scholar 

  • Eichler, K.-P. (2022, April 24). Mathematik in der Grundschule – Gestaltung, Analyse und Bilanz (published online). https://www.mathematikus.de/fileadmin/user_upload/www.mathematikus.de/lehren-und-lernen/artikel/vorschule/2005-11_vorkenntnisse-von-schulanfaengern-hinsichtlich-ausgewaehlter-geometrischer-begriffe/2005-11_vorkenntnisse-von-schulanfaengern-hinsichtlich-ausgewaehlter-geometrischer-begriffe.pdf.

  • Fanghänel, G. (2000). Arbeit mit Aufgaben – wesentliches Mittel zur Gestaltung modernen Mathematikunterrichts. PAETEC.

    Google Scholar 

  • Fauvel, J. (2004). Music and mathematics from Pythagoras to fractals (Reprinted (twice) ed.). Oxford University Press.

    Google Scholar 

  • Geist, K. (2009). The color train song: Teaching patterning with 3- and 4-year-old children. Early Childhood Newsletter, 15(1), 36.

    Google Scholar 

  • Ginsburg, H. P. (1977). Children’s arithmetic: The learning. D. Van Nostrand Co.

    Google Scholar 

  • Glasersfeld, E. (1991). Radical constructivism in mathematics education. Kluwer.

    Google Scholar 

  • Gottfried Wilhelm Leibniz in a letter of April 1712 to Christian Goldbach published in: Gottschalk Eduard Guhrauer: Nachträge zu der Biographie. Gottfried Wilhelm Freiherr von Leibnitz, Ferdinand Hirt's Verlag, Breslau 1846, P. 66.

    Google Scholar 

  • Helmholtz, H. (1877). Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik (4. umgearb. Ausg. ed.). Vieweg.

    Google Scholar 

  • Hofstadter, D. R. (1999). Gödel, Escher, Bach: An eternal golden braid (20th anniversary ed.). Basic Books.

    Google Scholar 

  • Jespersen, O. (1922). Language—Its nature development and origin. G. Allen & Unwin ltd.

    Google Scholar 

  • Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. Basic Books.

    Google Scholar 

  • Lawler, R. W. (1981). The progressive construction of mind. Cognitive Science, 5(1), 1–30.

    Article  Google Scholar 

  • Madden, C. (1999). Fractals in music introductory mathematics for musical analysis. High Art Press.

    Google Scholar 

  • Michelsen, C. (2006). Functions: A modelling tool in mathematics and science. ZDM, 38(3), 269.

    Article  Google Scholar 

  • Nutzinger, H. P. (2016). The connection of mathematics and music as an opportunity to change beliefs. In Proceedings of MACAS 2015, Schwäbisch Gmünd. Franz Becker.

    Google Scholar 

  • Nutzinger, H. P. (2018). The beauty of patterns—The hidden mathematics of music. In Proceedings of MACAS 2017, Kopenhagen.

    Google Scholar 

  • Piaget, J. (1976). Die Aequilibration der kognitiven Strukturen. Klett.

    Google Scholar 

  • Pietschnig, J., Voracek, M., & Formann, A. (2010). Mozart effect–Shmozart effect. Intelligence, 38(3), 314–323.

    Article  Google Scholar 

  • Rauscher, F. H., Shaw, G. L., & Ky, K. N. (1993). Music and spatial task performance. Nature, 365(6447), 611. https://doi.org/10.1038/365611a0.

    Article  Google Scholar 

  • Reich, K. (2008). Konstruktivistische Didaktik. Beltz Verlag.

    Google Scholar 

  • Robichaud, X., & Freiman, V. (2016). Exploring deeper connections between mathematics, music and ICT: Hat avenues for research in education? Paper presented at the MACAS Conference, Schwäbisch Gmünd.

    Google Scholar 

  • Schulkin, J., & Raglan, G. (2014). The evolution of music and human social capability. https://doi.org/10.3389/fnins.2014.00292.

  • Slevc, L. R., & Okada, B. M. (2015). Processing structure in language and music: A case for shared reliance on cognitive control. Psychonomic Bulletin & Review, 22(3), 637–652. https://doi.org/10.3758/s13423-014-0712-4.

    Article  Google Scholar 

  • Sloboda, J. A. (1986). The musical mind the cognitive psychology of music ([Repr.] ed.). Clarendon Pr.

    Google Scholar 

  • Sylvester, J. J. (1864) Algebraical researches, containing a disquisition on Newton's rule for the discovery of imaginary roots. In Philosophical Transactions of the Royal Society, Vol. 154, pp. 579–666.

    Google Scholar 

  • Tymoczko, D. (2011). A geometry of music harmony and counterpoint in the extended common practice. Oxford University Press.

    Google Scholar 

  • Verhoef, L. (2007). Why designers can’t understand their users: Developing a systematic approach using cognitive psychology. (Dr.), Leiden University, Leiden.

    Google Scholar 

  • Vygotskij, L. S. (1969). Denken und Sprechen (Lizenzausg. ed.). Fischer.

    Google Scholar 

  • Winkler, R. (2014). Die Geburt der Mathematik aus den Bedingungen der Musik. Schriftenreihe Zur Didaktik Der Mathematik Der Österreichischen Mathematischen Gesellschaft, 47, 108–122.

    Google Scholar 

  • Wittmann, E. (2003). Was ist Mathematik und welche pädagogische Bedeutung hat das wohlverstandene Fach für den Mathematikunterricht auch in der Grundschule? In M. Baum & H. Wilpütz (Eds.), Mathematik in der Grundschule. Ein Arbeitsbuch. Kallmeyer.

    Google Scholar 

  • Wright, D. (2009). Mathematics and music. AMS.

    Google Scholar 

  • Xenakis, I. (1977). Formalized music thought and mathematics in composition ([2nd, English edition, a corrected and completed of the French edition, 4th printing] ed.). Indiana University Press.

    Google Scholar 

  • Zbikowski, L. M. (2002). Conceptualizing music cognitive structure, theory, and analysis. Oxford University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Peter Nutzinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nutzinger, H.P. (2022). The Sound of Mathematics—Summary of International Research on Interdisciplinary Educational Work Between Mathematics and Music. In: Michelsen, C., Beckmann, A., Freiman, V., Jankvist, U.T., Savard, A. (eds) Mathematics and Its Connections to the Arts and Sciences (MACAS). Mathematics Education in the Digital Era, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-031-10518-0_25

Download citation

Publish with us

Policies and ethics