Skip to main content

Atherosclerotic Cardiovascular Disease Prevention in the Older Adult: Part 1

  • Chapter
  • First Online:
Cardiovascular Disease in the Elderly

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Cardiovascular disease (CVD) remains the leading cause of death globally and an ageing world population is expected to increase the burden of CVD further. Among older adults, CVD is also a major cause of disability, functional decline, loss of independence, and reduction in quality of life. Therefore, early and effective measures to prevent CVD are key global health priorities, including among the elderly. However, with a more limited life expectancy and a higher risk of iatrogenic adverse events, balancing the risks and benefits of preventive strategies in older adults can present unique challenges for clinicians. Contributing to the challenge, older adults, particularly those with multiple comorbidities, have historically been excluded from major preventive trials, meaning that treatment decisions in these patients are often based on limited data or extrapolated from younger populations. In the subsequent two chapters, we aim to provide a pragmatic discussion on some of the key priorities and unique challenges faced when considering primary and secondary prevention of ASCVD in older patients. We will use the ABCDE approach as a framework for the discussion, highlighting current international guideline recommendations. The first chapter will cover ‘A and B’; assessing CVD risk, anti-platelet therapies, and blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Virani SS, Alonso A, Aparicio HJ, et al. Heart disease and stroke statistics—2021 update. Circulation. 2021;143(8):e254–743. https://doi.org/10.1161/CIR.0000000000000950.

    Article  Google Scholar 

  2. Yazdanyar A, Newman AB. The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs. Clin Geriatr Med. 2009;25(4):563–77, vii. https://doi.org/10.1016/j.cger.2009.07.007.

    Article  Google Scholar 

  3. Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 Study. J Am Coll Cardiol. 2020;76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010.

    Article  Google Scholar 

  4. Rich MW, Chyun DA, Skolnick AH, et al. Knowledge gaps in cardiovascular care of the older adult population: a scientific statement from the American Heart Association, American College of Cardiology, and American Geriatrics Society. J Am Coll Cardiol. 2016;67(20):2419–40. https://doi.org/10.1016/j.jacc.2016.03.004.

    Article  Google Scholar 

  5. Forman DE, Maurer MS, Boyd C, et al. Multimorbidity in older adults with cardiovascular disease. J Am Coll Cardiol. 2018;71(19):2149–61. https://doi.org/10.1016/j.jacc.2018.03.022.

    Article  Google Scholar 

  6. Forman DE, Rich MW, Alexander KP, et al. Cardiac care for older adults. Time for a new paradigm. J Am Coll Cardiol. 2011;57(18):1801–10. https://doi.org/10.1016/j.jacc.2011.02.014.

    Article  Google Scholar 

  7. O’Neill D, Forman DE. The importance of physical function as a clinical outcome: assessment and enhancement. Clin Cardiol. 2020;43(2):108–17. https://doi.org/10.1002/clc.23311.

    Article  Google Scholar 

  8. Braunstein JB, Cheng A, Fakhry C, Nass CM, Vigilance C, Blumenthal RS. ABCs of cardiovascular disease risk management. Cardiol Rev. 2001;9(2):96–105. https://doi.org/10.1097/00045415-200103000-00008.

    Article  CAS  Google Scholar 

  9. Arps K, Pallazola VA, Cardoso R, et al. Clinician’s guide to the updated ABCs of cardiovascular disease prevention: a review Part 1. Am J Med. 2019;132(6):e569–80. https://doi.org/10.1016/j.amjmed.2019.01.016.

    Article  Google Scholar 

  10. Arps K, Pallazola VA, Cardoso R, et al. Clinician’s guide to the updated ABCs of cardiovascular disease prevention: a review Part 2. Am J Med. 2019;132(7):e599–609. https://doi.org/10.1016/j.amjmed.2019.01.031.

    Article  Google Scholar 

  11. Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e596–646. https://doi.org/10.1161/CIR.0000000000000678.

    Article  Google Scholar 

  12. Pearson GJ, Thanassoulis G, Anderson TJ, et al. Canadian Cardiovascular Society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2021; https://doi.org/10.1016/j.cjca.2021.03.016.

  13. Cardiovascular disease: risk assessment and reduction, including lipid modification; 2014 (updated 2016).

    Google Scholar 

  14. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). Eur Heart J. 2021;42(34):3227–337. https://doi.org/10.1093/eurheartj/ehab484.

    Article  Google Scholar 

  15. DeFilippis AP, Young R, McEvoy JW, et al. Risk score overestimation: the impact of individual cardiovascular risk factors and preventive therapies on the performance of the American Heart Association-American College of Cardiology-Atherosclerotic Cardiovascular Disease risk score in a modern multi-ethnic cohort. Eur Heart J. 2017;38(8):598–608. https://doi.org/10.1093/eurheartj/ehw301.

    Article  CAS  Google Scholar 

  16. Lloyd-Jones DM, Braun LT, Ndumele CE, et al. Use of risk assessment tools to guide decision-making in the primary prevention of atherosclerotic cardiovascular disease: a special report from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2019;73(24):3153–67. https://doi.org/10.1016/j.jacc.2018.11.005.

    Article  Google Scholar 

  17. Conroy RM, Pyörälä K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24(11):987–1003. https://doi.org/10.1016/s0195-668x(03)00114-3.

    Article  CAS  Google Scholar 

  18. Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk. Circulation. 2014;129(25_Suppl_2):S49–73. https://doi.org/10.1161/01.cir.0000437741.48606.98.

    Article  Google Scholar 

  19. Nanna MG, Peterson ED, Wojdyla D, Navar AM. The accuracy of cardiovascular pooled cohort risk estimates in U.S. older adults. J Gen Intern Med. 2020;35(6):1701–8. https://doi.org/10.1007/s11606-019-05361-4.

    Article  Google Scholar 

  20. Koller MT, Steyerberg EW, Wolbers M, et al. Validity of the Framingham point scores in the elderly: results from the Rotterdam study. Am Heart J. 2007;154(1):87–93. https://doi.org/10.1016/j.ahj.2007.03.022.

    Article  Google Scholar 

  21. Barry AR, O’Neill DE, Graham MM. Primary prevention of cardiovascular disease in older adults. Can J Cardiol. 2016;32(9):1074–81. https://doi.org/10.1016/j.cjca.2016.01.032.

    Article  Google Scholar 

  22. Cooney MT, Selmer R, Lindman A, et al. Cardiovascular risk estimation in older persons: SCORE O.P. Eur J Prev Cardiol. 2016;23(10):1093–103. https://doi.org/10.1177/2047487315588390.

    Article  Google Scholar 

  23. Ahmadi SF, Streja E, Zahmatkesh G, et al. Reverse epidemiology of traditional cardiovascular risk factors in the geriatric population. J Am Med Dir Assoc. 2015;16(11):933–9. https://doi.org/10.1016/j.jamda.2015.07.014.

    Article  Google Scholar 

  24. SCORE2-OP working group and ESC Cardiovascular risk collaboration. SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in older persons in four geographical risk regions. Eur Heart J. 2021;42(25):2455–67. https://doi.org/10.1093/eurheartj/ehab312.

    Article  Google Scholar 

  25. van Bussel EF, Richard E, Busschers WB, et al. A cardiovascular risk prediction model for older people: development and validation in a primary care population. J Clin Hypertens. 2019;21(8):1145–52. https://doi.org/10.1111/jch.13617.

    Article  CAS  Google Scholar 

  26. Grundy Scott M, Stone Neil J, Bailey Alison L, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation. 2019;139(25):e1082–143. https://doi.org/10.1161/CIR.0000000000000625.

    Article  CAS  Google Scholar 

  27. D’Agostino RB, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care. Circulation. 2008;117(6):743–53. https://doi.org/10.1161/CIRCULATIONAHA.107.699579.

    Article  Google Scholar 

  28. Hippisley-Cox J, Coupland C, Vinogradova Y, et al. Predicting cardiovascular risk in England and Wales: prospective derivation and validation of QRISK2. BMJ. 2008;336(7659):1475–82. https://doi.org/10.1136/bmj.39609.449676.25.

    Article  Google Scholar 

  29. McClelland RL, Jorgensen NW, Budoff M, et al. 10-Year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Study). J Am Coll Cardiol. 2015;66(15):1643–53. https://doi.org/10.1016/j.jacc.2015.08.035.

    Article  CAS  Google Scholar 

  30. World Health Organization. Prevention of cardiovascular disease: guidelines for assessment and management of cardiovascular risk. World Health Organization; 2007.

    Google Scholar 

  31. Vega GL, Wang J, Grundy SM. Utility of metabolic syndrome as a risk enhancing factor in decision of statin use. J Clin Lipidol. 2021;15(2):255–65. https://doi.org/10.1016/j.jacl.2021.01.012.

    Article  Google Scholar 

  32. Golia E, Limongelli G, Natale F, et al. Inflammation and cardiovascular disease: from pathogenesis to therapeutic target. Curr Atheroscler Rep. 2014;16(9):435. https://doi.org/10.1007/s11883-014-0435-z.

    Article  CAS  Google Scholar 

  33. Cainzos-Achirica M, Miedema MD, McEvoy JW, et al. The prognostic value of high sensitivity C-reactive protein in a multi-ethnic population after >10 years of follow-up: The Multi-Ethnic Study of Atherosclerosis (MESA). Int J Cardiol. 2018;264:158–64. https://doi.org/10.1016/j.ijcard.2018.02.027.

    Article  Google Scholar 

  34. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31. https://doi.org/10.1056/NEJMoa1707914.

    Article  CAS  Google Scholar 

  35. Saeed A, Nambi V, Sun W, et al. Short-term global cardiovascular disease risk prediction in older adults. J Am Coll Cardiol. 2018;71(22):2527–36. https://doi.org/10.1016/j.jacc.2018.02.050.

    Article  Google Scholar 

  36. Störk S, Feelders RA, van den Beld AW, et al. Prediction of mortality risk in the elderly. Am J Med. 2006;119(6):519–25. https://doi.org/10.1016/j.amjmed.2005.10.062.

    Article  Google Scholar 

  37. Tota-Maharaj R, Blaha MJ, McEvoy JW, et al. Coronary artery calcium for the prediction of mortality in young adults <45 years old and elderly adults >75 years old. Eur Heart J. 2012;33(23):2955–62. https://doi.org/10.1093/eurheartj/ehs230.

    Article  CAS  Google Scholar 

  38. Bergman H, Ferrucci L, Guralnik J, et al. Frailty: an emerging research and clinical paradigm—issues and controversies. J Gerontol A. 2007;62(7):731–7. https://doi.org/10.1093/gerona/62.7.731.

    Article  Google Scholar 

  39. Afilalo J, Alexander KP, Mack MJ, et al. Frailty assessment in the cardiovascular care of older adults. J Am Coll Cardiol. 2014;63(8):747–62. https://doi.org/10.1016/j.jacc.2013.09.070.

    Article  Google Scholar 

  40. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381(9868):752–62. https://doi.org/10.1016/s0140-6736(12)62167-9.

    Article  Google Scholar 

  41. Newman AB, Gottdiener JS, McBurnie MA, et al. Associations of subclinical cardiovascular disease with frailty. J Gerontol A Biol Sci Med Sci. 2001;56(3):M158–66. https://doi.org/10.1093/gerona/56.3.m158.

    Article  CAS  Google Scholar 

  42. Virani Salim S, Alonso A, Aparicio Hugo J, et al. Heart disease and stroke statistics—2021 update. Circulation. 2021;143(8):e254–743. https://doi.org/10.1161/CIR.0000000000000950.

    Article  CAS  Google Scholar 

  43. Hawley CE, Roefaro J, Forman DE, Orkaby AR. Statins for primary prevention in those aged 70 years and older: a critical review of recent cholesterol guidelines. Drugs Aging. 2019;36(8):687–99. https://doi.org/10.1007/s40266-019-00673-w.

    Article  Google Scholar 

  44. Lee SJ, Kim CM. Individualizing prevention for older adults. J Am Geriatr Soc. 2018;66(2):229–34. https://doi.org/10.1111/jgs.15216.

    Article  Google Scholar 

  45. The Sprint Research Group. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16. https://doi.org/10.1056/NEJMoa1511939.

    Article  CAS  Google Scholar 

  46. Beckett N, Peters R, Tuomilehto J, et al. Immediate and late benefits of treating very elderly people with hypertension: results from active treatment extension to Hypertension in the Very Elderly randomised controlled trial. BMJ. 2012;344:d7541. https://doi.org/10.1136/bmj.d7541.

    Article  Google Scholar 

  47. Rodriguez-Gutierrez R, Gonzalez-Gonzalez JG, Zuñiga-Hernandez JA, McCoy RG. Benefits and harms of intensive glycemic control in patients with type 2 diabetes. BMJ. 2019;367:l5887. https://doi.org/10.1136/bmj.l5887.

    Article  Google Scholar 

  48. Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med. 1997;336(16):1117–24. https://doi.org/10.1056/NEJM199704173361601.

    Article  CAS  Google Scholar 

  49. Whelton PK, Appel LJ, Espeland MA, et al. Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled Trial of Nonpharmacologic Interventions in the Elderly (TONE). JAMA. 1998;279(11):839–46. https://doi.org/10.1001/jama.279.11.839.

    Article  CAS  Google Scholar 

  50. Gencer B, Marston NA, Im K, et al. Efficacy and safety of lowering LDL cholesterol in older patients: a systematic review and meta-analysis of randomised controlled trials. Lancet. 2020;396(10263):1637–43. https://doi.org/10.1016/s0140-6736(20)32332-1.

    Article  CAS  Google Scholar 

  51. Doll R, Peto R, Boreham J, Sutherland I. Mortality in relation to smoking: 50 years’ observations on male British doctors. BMJ. 2004;328(7455):1519. https://doi.org/10.1136/bmj.38142.554479.AE.

    Article  Google Scholar 

  52. Taylor DH Jr, Hasselblad V, Henley SJ, Thun MJ, Sloan FA. Benefits of smoking cessation for longevity. Am J Public Health. 2002;92(6):990–6. https://doi.org/10.2105/ajph.92.6.990.

    Article  Google Scholar 

  53. Mons U, Müezzinler A, Gellert C, et al. Impact of smoking and smoking cessation on cardiovascular events and mortality among older adults: meta-analysis of individual participant data from prospective cohort studies of the CHANCES consortium. BMJ. 2015;350:h1551. https://doi.org/10.1136/bmj.h1551.

    Article  Google Scholar 

  54. Bellettiere J, LaMonte MJ, Evenson KR, et al. Sedentary behavior and cardiovascular disease in older women. Circulation. 2019;139(8):1036–46. https://doi.org/10.1161/CIRCULATIONAHA.118.035312.

    Article  CAS  Google Scholar 

  55. O’Brien CW, Juraschek SP, Wee CC. Prevalence of aspirin use for primary prevention of cardiovascular disease in the United States: results from the 2017 National Health Interview Survey. Ann Intern Med. 2019;171(8):596–8. https://doi.org/10.7326/M19-0953.

    Article  Google Scholar 

  56. Boakye E, Uddin SMI, Obisesan OH, et al. Aspirin for cardiovascular disease prevention among adults in the United States: trends, prevalence, and participant characteristics associated with use. Am J Prev Cardiol. 2021;8:100256. https://doi.org/10.1016/j.ajpc.2021.100256.

    Article  Google Scholar 

  57. Jacobsen Alan P, Lim Zi L, Chang B, et al. A transatlantic comparison of patient-reported access to and use of aspirin in contemporary preventive cardiology. J Am Coll Cardiol. 2021;78(11):1193–5. https://doi.org/10.1016/j.jacc.2021.07.015.

    Article  CAS  Google Scholar 

  58. Raber I, McCarthy CP, Vaduganathan M, et al. The rise and fall of aspirin in the primary prevention of cardiovascular disease. Lancet. 2019;393(10186):2155–67. https://doi.org/10.1016/S0140-6736(19)30541-0.

    Article  Google Scholar 

  59. Murphy E, Curneen J, McEvoy JW. Aspirin in the modern era of cardiovascular disease prevention. Methodist Debakey Cardiovasc J. 2021;17(4):36–47. https://doi.org/10.14797/mdcvj.293.

    Article  Google Scholar 

  60. Steering Committee of the Physicians’ Health Study Research Group. Final report on the aspirin component of the ongoing Physicians’ Health Study. N Engl J Med. 1989;321(3):129–35. https://doi.org/10.1056/nejm198907203210301.

    Article  Google Scholar 

  61. Peto R, Gray R, Collins R, et al. Randomised trial of prophylactic daily aspirin in British male doctors. Br Med J (Clin Res Ed). 1988;296(6618):313–6. https://doi.org/10.1136/bmj.296.6618.313.

    Article  CAS  Google Scholar 

  62. Pearson Thomas A, Blair Steven N, Daniels Stephen R, et al. AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update. Circulation. 2002;106(3):388–91. https://doi.org/10.1161/01.CIR.0000020190.45892.75.

    Article  CAS  Google Scholar 

  63. Hayden M, Pignone M, Phillips C, Mulrow C. Aspirin for the primary prevention of cardiovascular events: a summary of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2002;136(2):161–72. https://doi.org/10.7326/0003-4819-136-2-200201150-00016.

    Article  CAS  Google Scholar 

  64. Graham I, Atar D, Borch-Johnsen K, et al. †European guidelines on cardiovascular disease prevention in clinical practice: executive summary: Fourth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by representatives of nine societies and by invited experts). Eur Heart J. 2007;28(19):2375–414. https://doi.org/10.1093/eurheartj/ehm316.

    Article  Google Scholar 

  65. Gaziano JM, Brotons C, Coppolecchia R, et al. Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): a randomised, double-blind, placebo-controlled trial. Lancet. 2018;392(10152):1036–46. https://doi.org/10.1016/s0140-6736(18)31924-x.

    Article  CAS  Google Scholar 

  66. Bowman L, Mafham M, Wallendszus K, et al. Effects of aspirin for primary prevention in persons with diabetes mellitus. N Engl J Med. 2018;379(16):1529–39. https://doi.org/10.1056/NEJMoa1804988.

    Article  CAS  Google Scholar 

  67. McNeil JJ, Wolfe R, Woods RL, et al. Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. N Engl J Med. 2018;379(16):1509–18. https://doi.org/10.1056/NEJMoa1805819.

    Article  CAS  Google Scholar 

  68. McNeil JJ, Nelson MR, Woods RL, et al. Effect of aspirin on all-cause mortality in the healthy elderly. N Engl J Med. 2018;379(16):1519–28. https://doi.org/10.1056/NEJMoa1803955.

    Article  CAS  Google Scholar 

  69. McNeil JJ, Woods RL, Nelson MR, et al. Effect of aspirin on disability-free survival in the healthy elderly. N Engl J Med. 2018;379(16):1499–508. https://doi.org/10.1056/NEJMoa1800722.

    Article  CAS  Google Scholar 

  70. Woods RL, Espinoza S, Thao LTP, et al. Effect of aspirin on activities of daily living disability in community-dwelling older adults. J Gerontol A. 2020; https://doi.org/10.1093/gerona/glaa316.

  71. Yusuf S, Joseph P, Dans A, et al. Polypill with or without aspirin in persons without cardiovascular disease. N Engl J Med. 2021;384(3):216–28. https://doi.org/10.1056/NEJMoa2028220.

    Article  CAS  Google Scholar 

  72. Steering Committee of the Physicians’ Health Study Research Group. Preliminary report: Findings from the aspirin component of the ongoing Physicians’ Health Study. N Engl J Med. 1988;318(4):262–4. https://doi.org/10.1056/nejm198801283180431.

    Article  Google Scholar 

  73. Meade TW, Wilkes HC, Stirling Y, Brennan PJ, Kelleher C, Browne W. Randomized controlled trial of low dose warfarin in the primary prevention of ischaemic heart disease in men at high risk: design and pilot study. Eur Heart J. 1988;9(8):836–43. https://doi.org/10.1093/oxfordjournals.eurheartj.a062576.

    Article  CAS  Google Scholar 

  74. The Medical Research Council’s General Practice Research Framework. Thrombosis prevention trial: randomised trial of low-intensity oral anticoagulation with warfarin and low-dose aspirin in the primary prevention of ischaemic heart disease in men at increased risk. Lancet. 1998;351(9098):233–41. https://doi.org/10.1016/S0140-6736(97)11475-1.

    Article  Google Scholar 

  75. The HOT Study Group. The hypertension optimal treatment study (the HOT Study). Blood Press. 1993;2(1):62–8. https://doi.org/10.3109/08037059309077529.

    Article  Google Scholar 

  76. Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet. 1998;351(9118):1755–62. https://doi.org/10.1016/s0140-6736(98)04311-6.

    Article  CAS  Google Scholar 

  77. de Gaetano G, Collaborative Group of the Primary Prevention Project. Low-dose aspirin and vitamin E in people at cardiovascular risk: a randomised trial in general practice. Collaborative Group of the Primary Prevention Project. Lancet. 2001;357(9250):89–95. https://doi.org/10.1016/s0140-6736(00)03539-x.

    Article  Google Scholar 

  78. Ridker PM, Cook NR, Lee IM, et al. A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N Engl J Med. 2005;352(13):1293–304. https://doi.org/10.1056/NEJMoa050613.

    Article  CAS  Google Scholar 

  79. Belch J, MacCuish A, Campbell I, et al. The prevention of progression of arterial disease and diabetes (POPADAD) trial: factorial randomised placebo controlled trial of aspirin and antioxidants in patients with diabetes and asymptomatic peripheral arterial disease. BMJ. 2008;337:a1840. https://doi.org/10.1136/bmj.a1840.

    Article  Google Scholar 

  80. Ogawa H, Nakayama M, Morimoto T, et al. Low-dose aspirin for primary prevention of atherosclerotic events in patients with type 2 diabetes: a randomized controlled trial. JAMA. 2008;300(18):2134–41. https://doi.org/10.1001/jama.2008.623.

    Article  CAS  Google Scholar 

  81. Fowkes FGR, Price JF, Stewart MCW, et al. Aspirin for prevention of cardiovascular events in a general population screened for a low ankle brachial index: a randomized controlled trial. JAMA. 2010;303(9):841–8. https://doi.org/10.1001/jama.2010.221.

    Article  CAS  Google Scholar 

  82. Ikeda Y, Shimada K, Teramoto T, et al. Low-dose aspirin for primary prevention of cardiovascular events in Japanese patients 60 years or older with atherosclerotic risk factors: a randomized clinical trial. JAMA. 2014;312(23):2510–20. https://doi.org/10.1001/jama.2014.15690.

    Article  CAS  Google Scholar 

  83. Abdelaziz HK, Saad M, Pothineni NVK, et al. Aspirin for primary prevention of cardiovascular events. J Am Coll Cardiol. 2019;73(23):2915–29. https://doi.org/10.1016/j.jacc.2019.03.501.

    Article  Google Scholar 

  84. Zheng SL, Roddick AJ. Association of aspirin use for primary prevention with cardiovascular events and bleeding events: a systematic review and meta-analysis. JAMA. 2019;321(3):277–87. https://doi.org/10.1001/jama.2018.20578.

    Article  CAS  Google Scholar 

  85. Mahmoud AN, Gad MM, Elgendy AY, Elgendy IY, Bavry AA. Efficacy and safety of aspirin for primary prevention of cardiovascular events: a meta-analysis and trial sequential analysis of randomized controlled trials. Eur Heart J. 2019;40(7):607–17. https://doi.org/10.1093/eurheartj/ehy813.

    Article  CAS  Google Scholar 

  86. McEvoy J, Keane M, Ng J. Primary prevention aspirin among the elderly: challenges in translating trial evidence to the clinic. Br J Cardiol. 2020;2020:31–3. https://doi.org/10.5837/bjc.2020.007.

    Article  Google Scholar 

  87. Weil J, Colin-Jones D, Langman M, et al. Prophylactic aspirin and risk of peptic ulcer bleeding. BMJ. 1995;310(6983):827–30. https://doi.org/10.1136/bmj.310.6983.827.

    Article  CAS  Google Scholar 

  88. Bhatt DL, Scheiman J, Abraham NS, et al. ACCF/ACG/AHA 2008 expert consensus document on reducing the gastrointestinal risks of antiplatelet therapy and NSAID use. Circulation. 2008;118(18):1894–909. https://doi.org/10.1161/CIRCULATIONAHA.108.191087.

    Article  Google Scholar 

  89. Marquis-Gravel G, Roe MT, Harrington RA, Muñoz D, Hernandez AF, Jones WS. Revisiting the role of aspirin for the primary prevention of cardiovascular disease. Circulation. 2019;140(13):1115–24. https://doi.org/10.1161/CIRCULATIONAHA.119.040205.

    Article  CAS  Google Scholar 

  90. de Abajo FJ, García Rodríguez LA. Risk of upper gastrointestinal bleeding and perforation associated with low-dose aspirin as plain and enteric-coated formulations. BMC Clin Pharmacol. 2001;1:1–1. https://doi.org/10.1186/1472-6904-1-1.

    Article  Google Scholar 

  91. Bhatt DL, Grosser T, Dong JF, et al. Enteric coating and aspirin nonresponsiveness in patients with type 2 diabetes mellitus. J Am Coll Cardiol. 2017;69(6):603–12. https://doi.org/10.1016/j.jacc.2016.11.050.

    Article  CAS  Google Scholar 

  92. Rothwell PM, Cook NR, Gaziano JM, et al. Effects of aspirin on risks of vascular events and cancer according to bodyweight and dose: analysis of individual patient data from randomised trials. Lancet. 2018;392(10145):387–99. https://doi.org/10.1016/S0140-6736(18)31133-4.

    Article  CAS  Google Scholar 

  93. Murphy S, McCarthy CP, McEvoy JW. Aspirin for the primary prevention of cardiovascular disease: weighing up the evidence. Am J Med. 2019;132(9):1007–8. https://doi.org/10.1016/j.amjmed.2019.02.025.

    Article  Google Scholar 

  94. Nelson MR, Doust JA. Primary prevention of cardiovascular disease: new guidelines, technologies and therapies. Med J Aust. 2013;198(11):606–10. https://doi.org/10.5694/mja12.11054.

    Article  Google Scholar 

  95. National Institute for Health and Care Excellence. Scenario: Antiplatelet treatment for primary prevention of cardiovascular disease (CVD). https://cks.nice.org.uk/topics/antiplatelet-treatment/management/primary-prevention-of-cvd/. Accessed 20 Sept 2021.

  96. Wein T, Lindsay MP, Gladstone DJ, et al. Canadian Stroke Best Practice Recommendations, seventh edition: acetylsalicylic acid for prevention of vascular events. CMAJ. 2020;192(12):E302–e311. https://doi.org/10.1503/cmaj.191599.

    Article  CAS  Google Scholar 

  97. American Diabetes Association. 10. Cardiovascular disease and risk management: standards of medical care in diabetes—2021. Diabetes Care. 2021;44(Suppl 1):S125. https://doi.org/10.2337/dc21-S010.

    Article  Google Scholar 

  98. U.S. Preventive Services Task Force. Aspirin use to prevent cardiovascular disease: preventive medication (Draft Evidence Review); 2021

    Google Scholar 

  99. Antithrombotic Trialists Collaboration. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373(9678):1849–60. https://doi.org/10.1016/S0140-6736(09)60503-1.

    Article  CAS  Google Scholar 

  100. Jones WS, Mulder H, Wruck LM, et al. Comparative effectiveness of aspirin dosing in cardiovascular disease. N Engl J Med. 2021;384(21):1981–90. https://doi.org/10.1056/NEJMoa2102137.

    Article  CAS  Google Scholar 

  101. Jacobsen AP, Raber I, McCarthy CP, et al. Lifelong aspirin for all in the secondary prevention of chronic coronary syndrome. Circulation. 2020;142(16):1579–90. https://doi.org/10.1161/CIRCULATIONAHA.120.045695.

    Article  Google Scholar 

  102. Cao D, Chandiramani R, Chiarito M, Claessen BE, Mehran R. Evolution of antithrombotic therapy in patients undergoing percutaneous coronary intervention: a 40-year journey. Eur Heart J. 2021;42(4):339–51. https://doi.org/10.1093/eurheartj/ehaa824.

    Article  Google Scholar 

  103. Giacoppo D, Matsuda Y, Fovino LN, et al. Short dual antiplatelet therapy followed by P2Y12 inhibitor monotherapy vs. prolonged dual antiplatelet therapy after percutaneous coronary intervention with second-generation drug-eluting stents: a systematic review and meta-analysis of randomized clinical trials. Eur Heart J. 2020;42(4):308–19. https://doi.org/10.1093/eurheartj/ehaa739.

    Article  CAS  Google Scholar 

  104. O’Donoghue ML, Murphy SA, Sabatine MS. The safety and efficacy of aspirin discontinuation on a background of a P2Y(12) inhibitor in patients after percutaneous coronary intervention: a systematic review and meta-analysis. Circulation. 2020;142(6):538–45. https://doi.org/10.1161/circulationaha.120.046251.

    Article  Google Scholar 

  105. Choi KH, Song YB, Lee JM, et al. Clinical usefulness of PRECISE-DAPT score for predicting bleeding events in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Circ Cardiovasc Interv. 2020;13(5):e008530. https://doi.org/10.1161/CIRCINTERVENTIONS.119.008530.

    Article  CAS  Google Scholar 

  106. Chiarito M, Sanz-Sánchez J, Cannata F, et al. Monotherapy with a P2Y(12) inhibitor or aspirin for secondary prevention in patients with established atherosclerosis: a systematic review and meta-analysis. Lancet. 2020;395(10235):1487–95. https://doi.org/10.1016/s0140-6736(20)30315-9.

    Article  Google Scholar 

  107. Collet J-P, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2020; https://doi.org/10.1093/eurheartj/ehaa575.

  108. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2017;39(2):119–77. https://doi.org/10.1093/eurheartj/ehx393.

    Article  Google Scholar 

  109. Levine GN, Bates ER, Bittl JA, et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation. 2016;134(10):e123–55. https://doi.org/10.1161/CIR.0000000000000404.

    Article  Google Scholar 

  110. Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361(11):1045–57. https://doi.org/10.1056/NEJMoa0904327.

    Article  CAS  Google Scholar 

  111. Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357(20):2001–15. https://doi.org/10.1056/NEJMoa0706482.

    Article  CAS  Google Scholar 

  112. Eikelboom JW, Mehta SR, Anand SS, Xie C, Fox KA, Yusuf S. Adverse impact of bleeding on prognosis in patients with acute coronary syndromes. Circulation. 2006;114(8):774–82. https://doi.org/10.1161/circulationaha.106.612812.

    Article  Google Scholar 

  113. Roe MT, Goodman SG, Ohman EM, et al. Elderly patients with acute coronary syndromes managed without revascularization. Circulation. 2013;128(8):823–33. https://doi.org/10.1161/CIRCULATIONAHA.113.002303.

    Article  CAS  Google Scholar 

  114. Savonitto S, Ferri LA, Piatti L, et al. Comparison of reduced-dose prasugrel and standard-dose clopidogrel in elderly patients with acute coronary syndromes undergoing early percutaneous revascularization. Circulation. 2018;137(23):2435–45. https://doi.org/10.1161/circulationaha.117.032180.

    Article  CAS  Google Scholar 

  115. Gimbel M, Qaderdan K, Willemsen L, et al. Clopidogrel versus ticagrelor or prasugrel in patients aged 70 years or older with non-ST-elevation acute coronary syndrome (POPular AGE): the randomised, open-label, non-inferiority trial. Lancet. 2020;395(10233):1374–81. https://doi.org/10.1016/s0140-6736(20)30325-1.

    Article  CAS  Google Scholar 

  116. Cuisset T, Deharo P, Quilici J, et al. Benefit of switching dual antiplatelet therapy after acute coronary syndrome: the TOPIC (timing of platelet inhibition after acute coronary syndrome) randomized study. Eur Heart J. 2017;38(41):3070–8. https://doi.org/10.1093/eurheartj/ehx175.

    Article  CAS  Google Scholar 

  117. Eikelboom JW, Connolly SJ, Bosch J, et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N Engl J Med. 2017;377(14):1319–30. https://doi.org/10.1056/NEJMoa1709118.

    Article  CAS  Google Scholar 

  118. Mega JL, Braunwald E, Wiviott SD, et al. Rivaroxaban in patients with a recent acute coronary syndrome. N Engl J Med. 2012;366(1):9–19. https://doi.org/10.1056/NEJMoa1112277.

    Article  CAS  Google Scholar 

  119. Michniewicz E, Mlodawska E, Lopatowska P, Tomaszuk-Kazberuk A, Malyszko J. Patients with atrial fibrillation and coronary artery disease - double trouble. Adv Med Sci. 2018;63(1):30–5. https://doi.org/10.1016/j.advms.2017.06.005.

    Article  Google Scholar 

  120. Hansen ML, Sørensen R, Clausen MT, et al. Risk of bleeding with single, dual, or triple therapy with warfarin, aspirin, and clopidogrel in patients with atrial fibrillation. Arch Intern Med. 2010;170(16):1433–41. https://doi.org/10.1001/archinternmed.2010.271.

    Article  CAS  Google Scholar 

  121. van Rein N, Heide-Jørgensen U, Lijfering WM, Dekkers OM, Sørensen HT, Cannegieter SC. Major bleeding rates in atrial fibrillation patients on single, dual, or triple antithrombotic therapy. Circulation. 2019;139(6):775–86. https://doi.org/10.1161/circulationaha.118.036248.

    Article  Google Scholar 

  122. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS): the Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2020; https://doi.org/10.1093/eurheartj/ehaa612.

  123. January CT, Wann LS, Calkins H, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons. Circulation. 2019;140(2):e125–51. https://doi.org/10.1161/CIR.0000000000000665.

    Article  Google Scholar 

  124. Kleindorfer DO, Towfighi A, Chaturvedi S, et al. 2021 Guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/American Stroke Association. Stroke. 2021;52(7):e364–467. https://doi.org/10.1161/STR.0000000000000375.

    Article  Google Scholar 

  125. Fonseca AC, Merwick Á, Dennis M, et al. European Stroke Organisation (ESO) guidelines on management of transient ischaemic attack. Eur Stroke J. 2021;6(2):CLXIII–CLXXXVI. https://doi.org/10.1177/2396987321992905.

    Article  Google Scholar 

  126. Wang Y, Wang Y, Zhao X, et al. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N Engl J Med. 2013;369(1):11–9. https://doi.org/10.1056/NEJMoa1215340.

    Article  CAS  Google Scholar 

  127. Johnston SC, Easton JD, Farrant M, et al. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA. N Engl J Med. 2018;379(3):215–25. https://doi.org/10.1056/NEJMoa1800410.

    Article  CAS  Google Scholar 

  128. Johnston SC, Amarenco P, Denison H, et al. Ticagrelor and aspirin or aspirin alone in acute ischemic stroke or TIA. N Engl J Med. 2020;383(3):207–17. https://doi.org/10.1056/NEJMoa1916870.

    Article  CAS  Google Scholar 

  129. Wang Y, Johnston C, Bath PM, et al. Clopidogrel with aspirin in High-risk patients with Acute Non-disabling Cerebrovascular Events II (CHANCE-2): rationale and design of a multicentre randomised trial. Stroke Vasc Neurol. 2021;6(2):280–5. https://doi.org/10.1136/svn-2020-000791.

    Article  Google Scholar 

  130. Ding L, Peng B. Efficacy and safety of dual antiplatelet therapy in the elderly for stroke prevention: a systematic review and meta-analysis. Eur J Neurol. 2018;25(10):1276–84. https://doi.org/10.1111/ene.13695.

    Article  CAS  Google Scholar 

  131. Dawson J, Merwick Á, Webb A, Dennis M, Ferrari J, Fonseca AC. European Stroke Organisation expedited recommendation for the use of short-term dual antiplatelet therapy early after minor stroke and high-risk TIA. Eur Stroke J. 2021;6(2):CLXXXVII–CXCI. https://doi.org/10.1177/23969873211000877.

    Article  Google Scholar 

  132. Pan Y, Elm JJ, Li H, et al. Outcomes associated with clopidogrel-aspirin use in minor stroke or transient ischemic attack: a pooled analysis of Clopidogrel in High-Risk Patients With Acute Non-Disabling Cerebrovascular Events (CHANCE) and Platelet-Oriented Inhibition in New TIA and Minor Ischemic Stroke (POINT) Trials. JAMA Neurol. 2019;76(12):1466–73. https://doi.org/10.1001/jamaneurol.2019.2531.

    Article  Google Scholar 

  133. Diener HC, Bogousslavsky J, Brass LM, et al. Aspirin and clopidogrel compared with clopidogrel alone after recent ischaemic stroke or transient ischaemic attack in high-risk patients (MATCH): randomised, double-blind, placebo-controlled trial. Lancet. 2004;364(9431):331–7. https://doi.org/10.1016/s0140-6736(04)16721-4.

    Article  CAS  Google Scholar 

  134. Benavente OR, Hart RG, McClure LA, Szychowski JM, Coffey CS, Pearce LA. Effects of clopidogrel added to aspirin in patients with recent lacunar stroke. N Engl J Med. 2012;367(9):817–25. https://doi.org/10.1056/NEJMoa1204133.

    Article  CAS  Google Scholar 

  135. Aboyans V, Ricco J-B, Bartelink M-LEL, et al. 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS): document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries. Endorsed by: the European Stroke Organization (ESO) The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J. 2018;39(9):763–816. https://doi.org/10.1093/eurheartj/ehx095.

    Article  Google Scholar 

  136. Gerhard-Herman MD, Gornik HL, Barrett C, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017;135(12):e686–725. https://doi.org/10.1161/CIR.0000000000000470.

    Article  Google Scholar 

  137. Navarese EP, Wernly B, Lichtenauer M, et al. Dual vs single antiplatelet therapy in patients with lower extremity peripheral artery disease; a meta-analysis. Int J Cardiol. 2018;269:292–7. https://doi.org/10.1016/j.ijcard.2018.07.009.

    Article  Google Scholar 

  138. Franklin SS, Larson MG, Khan SA, et al. Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham Heart Study. Circulation. 2001;103(9):1245–9. https://doi.org/10.1161/01.cir.103.9.1245.

    Article  CAS  Google Scholar 

  139. Saklayen MG, Deshpande NV. Timeline of history of hypertension treatment. Front Cardiovasc Med. 2016;3:3–3. https://doi.org/10.3389/fcvm.2016.00003.

    Article  CAS  Google Scholar 

  140. Goldring W, Chasis H. Antihypertensive drug therapy; an appraisal. Arch Intern Med. 1965;115:523–5. https://doi.org/10.1001/archinte.1960.03860170005002.

    Article  CAS  Google Scholar 

  141. Tsimploulis A, Sheriff HM, Lam PH, et al. Systolic-diastolic hypertension versus isolated systolic hypertension and incident heart failure in older adults: Insights from the Cardiovascular Health Study. Int J Cardiol. May 15 2017;235:11–6. https://doi.org/10.1016/j.ijcard.2017.02.139.

    Article  Google Scholar 

  142. Oliveros E, Patel H, Kyung S, et al. Hypertension in older adults: assessment, management, and challenges. Clin Cardiol. 2020;43(2):99–107. https://doi.org/10.1002/clc.23303.

    Article  Google Scholar 

  143. Pierdomenico SD, Pierdomenico AM, Coccina F, Porreca E. Prognosis of masked and white coat uncontrolled hypertension detected by ambulatory blood pressure monitoring in elderly treated hypertensive patients. Am J Hypertens. 2017;30(11):1106–11. https://doi.org/10.1093/ajh/hpx104.

    Article  CAS  Google Scholar 

  144. Bobrie G, Chatellier G, Genes N, et al. Cardiovascular prognosis of “masked hypertension” detected by blood pressure self-measurement in elderly treated hypertensive patients. JAMA. 2004;291(11):1342–9. https://doi.org/10.1001/jama.291.11.1342.

    Article  CAS  Google Scholar 

  145. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13. https://doi.org/10.1016/s0140-6736(02)11911-8.

    Article  Google Scholar 

  146. Musini VM, Tejani AM, Bassett K, Puil L, Wright JM. Pharmacotherapy for hypertension in adults 60 years or older. Cochrane Database Syst Rev. 2019;(6) https://doi.org/10.1002/14651858.CD000028.pub3.

  147. Hughes D, Judge C, Murphy R, et al. Association of blood pressure lowering with incident dementia or cognitive impairment: a systematic review and meta-analysis. JAMA. 2020;323(19):1934–44. https://doi.org/10.1001/jama.2020.4249.

    Article  Google Scholar 

  148. Alsarah A, Alsara O, Bachauwa G. Hypertension management in the elderly: what is the optimal target blood pressure? Heart Views. 2019;20(1):11–6. https://doi.org/10.4103/HEARTVIEWS.HEARTVIEWS_28_18.

    Article  Google Scholar 

  149. Wright JT, Fine LJ, Lackland DT, Ogedegbe G, Dennison Himmelfarb CR. Evidence supporting a systolic blood pressure goal of less than 150 mmHg in patients aged 60 years or older: the minority view. Ann Intern Med. 2014;160(7):499–503. https://doi.org/10.7326/M13-2981.

    Article  Google Scholar 

  150. James PA, Oparil S, Carter BL, et al. 2014 Evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20. https://doi.org/10.1001/jama.2013.284427.

    Article  CAS  Google Scholar 

  151. Rahman F, McEvoy JW. The J-shaped curve for blood pressure and cardiovascular disease risk: historical context and recent updates. Curr Atheroscler Rep. 2017;19(8):34. https://doi.org/10.1007/s11883-017-0670-1.

    Article  Google Scholar 

  152. Vidal-Petiot E, Ford I, Greenlaw N, et al. Cardiovascular event rates and mortality according to achieved systolic and diastolic blood pressure in patients with stable coronary artery disease: an international cohort study. Lancet. 2016;388(10056):2142–52. https://doi.org/10.1016/s0140-6736(16)31326-5.

    Article  Google Scholar 

  153. Boshuizen HC, Izaks GJ, van Buuren S, Ligthart GJ. Blood pressure and mortality in elderly people aged 85 and older: community based study. BMJ. 1998;316(7147):1780–4. https://doi.org/10.1136/bmj.316.7147.1780.

    Article  CAS  Google Scholar 

  154. Mattila K, Haavisto M, Rajala S, Heikinheimo R. Blood pressure and five year survival in the very old. BMJ. 1988;296(6626):887–9. https://doi.org/10.1136/bmj.296.6626.887.

    Article  CAS  Google Scholar 

  155. Dillon P, Smith SM, Gallagher PJ, Cousins G. Association between gaps in antihypertensive medication adherence and injurious falls in older community-dwelling adults: a prospective cohort study. BMJ Open. 2019;9(3):e022927. https://doi.org/10.1136/bmjopen-2018-022927.

    Article  Google Scholar 

  156. Tinetti ME, Han L, Lee DS, et al. Antihypertensive medications and serious fall injuries in a nationally representative sample of older adults. JAMA Intern Med. 2014;174(4):588–95. https://doi.org/10.1001/jamainternmed.2013.14764.

    Article  Google Scholar 

  157. Beckett NS, Connor M, Sadler JD, Fletcher AE, Bulpitt CJ. Orthostatic fall in blood pressure in the very elderly hypertensive: results from the hypertension in the very elderly trial (HYVET) - pilot. J Hum Hypertens. 1999;13(12):839–40. https://doi.org/10.1038/sj.jhh.1000901.

    Article  CAS  Google Scholar 

  158. Butt DA, Mamdani M, Austin PC, Tu K, Gomes T, Glazier RH. The risk of hip fracture after initiating antihypertensive drugs in the elderly. Arch Intern Med. 2012;172(22):1739–44. https://doi.org/10.1001/2013.jamainternmed.469.

    Article  Google Scholar 

  159. Stroup-Benham CA, Markides KS, Black SA, Goodwin JS. Relationship between low blood pressure and depressive symptomatology in older people. J Am Geriatr Soc. 2000;48(3):250–5. https://doi.org/10.1111/j.1532-5415.2000.tb02642.x.

    Article  CAS  Google Scholar 

  160. Shimbo D, Barrett Bowling C, Levitan EB, et al. Short-term risk of serious fall injuries in older adults initiating and intensifying treatment with antihypertensive medication. Circ Cardiovasc Qual Outcomes. 2016;9(3):222–9. https://doi.org/10.1161/circoutcomes.115.002524.

    Article  Google Scholar 

  161. Kahlaee HR, Latt MD, Schneider CR. Association between chronic or acute use of antihypertensive class of medications and falls in older adults. A systematic review and meta-analysis. Am J Hypertens. 2018;31(4):467–79. https://doi.org/10.1093/ajh/hpx189.

    Article  CAS  Google Scholar 

  162. Oates DJ, Berlowitz DR, Glickman ME, Silliman RA, Borzecki AM. Blood pressure and survival in the oldest old. J Am Geriatr Soc. 2007;55(3):383–8. https://doi.org/10.1111/j.1532-5415.2007.01069.x.

    Article  Google Scholar 

  163. Amery A, Birkenhäger W, Brixko P, et al. Mortality and morbidity results from the European Working Party on High Blood Pressure in the Elderly trial. Lancet. 1985;1(8442):1349–54. https://doi.org/10.1016/s0140-6736(85)91783-0.

    Article  CAS  Google Scholar 

  164. Coope J, Warrender TS. Randomised trial of treatment of hypertension in elderly patients in primary care. BMJ. 1986;293(6555):1145–51. https://doi.org/10.1136/bmj.293.6555.1145.

    Article  CAS  Google Scholar 

  165. Perry HM Jr, Smith WM, McDonald RH, et al. Morbidity and mortality in the Systolic Hypertension in the Elderly Program (SHEP) pilot study. Stroke. 1989;20(1):4–13. https://doi.org/10.1161/01.str.20.1.4.

    Article  Google Scholar 

  166. Vogt TM, Ireland CC, Black D, Camel G, Hughes G. Recruitment of elderly volunteers for a multicenter clinical trial: the SHEP pilot study. Control Clin Trials. 1986;7(2):118–33. https://doi.org/10.1016/0197-2456(86)90028-0.

    Article  CAS  Google Scholar 

  167. Hulley SB, Feigal D, Ireland C, Kuller LH, Smith WM. Systolic Hypertension in the Elderly Program (SHEP). The first three months. J Am Geriatr Soc. 1986;34(2):101–5. https://doi.org/10.1111/j.1532-5415.1986.tb05476.x.

    Article  CAS  Google Scholar 

  168. Hulley SB, Furberg CD, Gurland B, et al. Systolic Hypertension in the Elderly Program (SHEP): antihypertensive efficacy of chlorthalidone. Am J Cardiol. 1985;56(15):913–20. https://doi.org/10.1016/0002-9149(85)90404-7.

    Article  CAS  Google Scholar 

  169. SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension: final results of the Systolic Hypertension in the Elderly Program (SHEP). JAMA. 1991;265(24):3255–64. https://doi.org/10.1001/jama.1991.03460240051027.

    Article  Google Scholar 

  170. SHEP Cooperative Research Group. Rationale and design of a randomized clinical trial on prevention of stroke in isolated systolic hypertension. The Systolic Hypertension in the Elderly Program (SHEP) Cooperative Research Group. J Clin Epidemiol. 1988;41(12):1197–208. https://doi.org/10.1016/0895-4356(88)90024-8.

    Article  Google Scholar 

  171. Charlesworth CJ, Peralta CA, Odden MC. Functional status and antihypertensive therapy in older adults: a new perspective on old data. Am J Hypertens. 2016;29(6):690–5. https://doi.org/10.1093/ajh/hpv177.

    Article  Google Scholar 

  172. Dahlöf B, Lindholm LH, Hansson L, Scherstén B, Ekbom T, Wester PO. Morbidity and mortality in the Swedish Trial in Old Patients with Hypertension (STOP-Hypertension). Lancet. 1991;338(8778):1281–5. https://doi.org/10.1016/0140-6736(91)92589-t.

    Article  Google Scholar 

  173. Dahlöf B, Hansson L, Lindholm LH, Scherstén B, Ekbom T, Wester PO. Swedish Trial in Old Patients with Hypertension (STOP-Hypertension) analyses performed up to 1992. Clin Exp Hypertens. 1993;15(6):925–39. https://doi.org/10.3109/10641969309037082.

    Article  Google Scholar 

  174. MRC Working Party. Medical Research Council trial of treatment of hypertension in older adults: principal results. MRC Working Party. BMJ. 1992;304(6824):405–12. https://doi.org/10.1136/bmj.304.6824.405.

    Article  Google Scholar 

  175. Gong L, Zhang W, Zhu Y, et al. Shanghai trial of nifedipine in the elderly (STONE). J Hypertens. 1996;14(10):1237–45. https://doi.org/10.1097/00004872-199610000-00013.

    Article  CAS  Google Scholar 

  176. Staessen JA, Fagard R, Thijs L, et al. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. Lancet. 1997;350(9080):757–64. https://doi.org/10.1016/S0140-6736(97)05381-6.

    Article  CAS  Google Scholar 

  177. Amery A, Birkenhäger W, Bulpitt CJ, et al. Syst-Eur. A multicentre trial on the treatment of isolated systolic hypertension in the elderly: objectives, protocol, and organization. Aging (Milano). 1991;3(3):287–302. https://doi.org/10.1007/bf03324024.

    Article  CAS  Google Scholar 

  178. Liu L, Wang JG, Gong L, Liu G, Staessen JA. Comparison of active treatment and placebo in older Chinese patients with isolated systolic hypertension. Systolic Hypertension in China (Syst-China) Collaborative Group. J Hypertens. 1998;16(12 Pt 1):1823–9. https://doi.org/10.1097/00004872-199816120-00016.

    Article  CAS  Google Scholar 

  179. Bulpitt CJ, Beckett NS, Cooke J, et al. Results of the pilot study for the Hypertension in the Very Elderly Trial. J Hypertens. 2003;21(12):2409–17. https://doi.org/10.1097/00004872-200312000-00030.

    Article  CAS  Google Scholar 

  180. Bulpitt CJ, Fletcher AE, Amery A, et al. The Hypertension in the Very Elderly Trial (HYVET). Rationale, methodology and comparison with previous trials. Drugs Aging. 1994;5(3):171–83. https://doi.org/10.2165/00002512-199405030-00003.

    Article  CAS  Google Scholar 

  181. Bulpitt C, Fletcher A, Beckett N, et al. Hypertension in the Very Elderly Trial (HYVET): protocol for the main trial. Drugs Aging. 2001;18(3):151–64. https://doi.org/10.2165/00002512-200118030-00001.

    Article  CAS  Google Scholar 

  182. Beckett NS, Peters R, Fletcher AE, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358(18):1887–98. https://doi.org/10.1056/NEJMoa0801369.

    Article  CAS  Google Scholar 

  183. Warwick J, Falaschetti E, Rockwood K, et al. No evidence that frailty modifies the positive impact of antihypertensive treatment in very elderly people: an investigation of the impact of frailty upon treatment effect in the HYpertension in the Very Elderly Trial (HYVET) study, a double-blind, placebo-controlled study of antihypertensives in people with hypertension aged 80 and over. BMC Med. 2015;13:78. https://doi.org/10.1186/s12916-015-0328-1.

    Article  Google Scholar 

  184. JATOS Study Group. Principal results of the Japanese trial to assess optimal systolic blood pressure in elderly hypertensive patients (JATOS). Hypertens Res. 2008;31(12):2115–27. https://doi.org/10.1291/hypres.31.2115.

    Article  Google Scholar 

  185. Jatos Study Group. The Japanese Trial to Assess Optimal Systolic Blood Pressure in Elderly Hypertensive Patients (JATOS): protocol, patient characteristics, and blood pressure during the first 12 months. Hypertens Res. 2005;28(6):513–20. https://doi.org/10.1291/hypres.28.513.

    Article  Google Scholar 

  186. Ogihara T, Saruta T, Rakugi H, et al. Target blood pressure for treatment of isolated systolic hypertension in the elderly: valsartan in elderly isolated systolic hypertension study. Hypertension. 2010;56(2):196–202. https://doi.org/10.1161/hypertensionaha.109.146035.

    Article  CAS  Google Scholar 

  187. Ogihara T, Saruta T, Matsuoka H, et al. Valsartan in elderly isolated systolic hypertension (VALISH) study: rationale and design. Hypertens Res. 2004;27(9):657–61. https://doi.org/10.1291/hypres.27.657.

    Article  Google Scholar 

  188. Wei Y, Jin Z, Shen G, et al. Effects of intensive antihypertensive treatment on chinese hypertensive patients older than 70 years. J Clin Hypertens. 2013;15(6):420–7. https://doi.org/10.1111/jch.12094.

    Article  CAS  Google Scholar 

  189. Williamson JD, Supiano MA, Applegate WB, et al. Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged ≥75 years: a randomized clinical trial. JAMA. 2016;315(24):2673–82. https://doi.org/10.1001/jama.2016.7050.

    Article  CAS  Google Scholar 

  190. Garrison SR, Kolber MR, Korownyk CS, McCracken RK, Heran BS, Allan GM. Blood pressure targets for hypertension in older adults. Cochrane Database Syst Rev. 2017;(8) https://doi.org/10.1002/14651858.CD011575.pub2.

  191. Drazen JM, Morrissey S, Campion EW, Jarcho JA. A SPRINT to the finish. N Engl J Med. 2015;373(22):2174–5. https://doi.org/10.1056/NEJMe1513991.

    Article  Google Scholar 

  192. Jones DW, Weatherly L, Hall JE. SPRINT: what remains unanswered and where do we go from here? Hypertension. 2016;67(2):261–2. https://doi.org/10.1161/hypertensionaha.115.06723.

    Article  CAS  Google Scholar 

  193. Esler M. SPRINT, or false start, toward a lower universal treated blood pressure target in hypertension. Hypertension. 2016;67(2):266–7. https://doi.org/10.1161/HYPERTENSIONAHA.115.06735.

    Article  CAS  Google Scholar 

  194. Chellingsworth M, Beevers DG. The treatment of hypertension in the elderly. Postgrad Med J. 1986;62(723):1–5. https://doi.org/10.1136/pgmj.62.723.1.

    Article  CAS  Google Scholar 

  195. Messerli FH, Sulicka J. Correspondance: treatment of hypertension in the elderly. N Engl J Med. 2008;359(9):971–4. https://doi.org/10.1056/NEJMc081224.

    Article  Google Scholar 

  196. Grassi G, Quarti-Trevano F, Casati A, Dell’Oro R. Threshold and target for blood pressure lowering in the elderly. Curr Atheroscler Rep. 2016;18(12):70. https://doi.org/10.1007/s11883-016-0627-9.

    Article  CAS  Google Scholar 

  197. Bress AP, Tanner RM, Hess R, Colantonio LD, Shimbo D, Muntner P. Generalizability of SPRINT results to the U.S. adult population. J Am Coll Cardiol. 2016;67(5):463–72. https://doi.org/10.1016/j.jacc.2015.10.037.

    Article  Google Scholar 

  198. The Accord Study Group. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–85. https://doi.org/10.1056/NEJMoa1001286.

    Article  CAS  Google Scholar 

  199. Perkovic V, Rodgers A. Redefining blood-pressure targets—SPRINT starts the marathon. N Engl J Med. 2015;373(22):2175–8. https://doi.org/10.1056/NEJMe1513301.

    Article  Google Scholar 

  200. Margolis KL, Palermo L, Vittinghoff E, et al. Intensive blood pressure control, falls, and fractures in patients with type 2 diabetes: the ACCORD trial. J Gen Intern Med. 2014;29(12):1599–606. https://doi.org/10.1007/s11606-014-2961-3.

    Article  Google Scholar 

  201. Kjeldsen SE, Mancia G. The un-observed automated office blood pressure measurement technique used in the SPRINT study points to a standard target office systolic blood pressure <140 mmHg. Curr Hypertens Rep. 2017;19(1):3. https://doi.org/10.1007/s11906-017-0700-y.

    Article  Google Scholar 

  202. Myers MG, Godwin M, Dawes M, Kiss A, Tobe SW, Kaczorowski J. Measurement of blood pressure in the office. Hypertension. 2010;55(2):195–200. https://doi.org/10.1161/HYPERTENSIONAHA.109.141879.

    Article  CAS  Google Scholar 

  203. Benetos A, Petrovic M, Strandberg T. Hypertension management in older and frail older patients. Circ Res. 2019;124(7):1045–60. https://doi.org/10.1161/CIRCRESAHA.118.313236.

    Article  CAS  Google Scholar 

  204. Ambrosius WT, Sink KM, Foy CG, et al. The design and rationale of a multicenter clinical trial comparing two strategies for control of systolic blood pressure: the Systolic Blood Pressure Intervention Trial (SPRINT). Clin Trials. 2014;11(5):532–46. https://doi.org/10.1177/1740774514537404.

    Article  Google Scholar 

  205. Wright JT, Whelton PK, Reboussin DM. Correspondance: A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2016;374(23):2290–5. https://doi.org/10.1056/NEJMc1602668.

    Article  Google Scholar 

  206. Pfeffer M. Correspondance: A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2016;374(23):2290–5. https://doi.org/10.1056/NEJMc1602668.

    Article  Google Scholar 

  207. Baffour-Awuah B, Dieberg G, Pearson MJ, Smart NA. Blood pressure control in older adults with hypertension: a systematic review with meta-analysis and meta-regression. Int J Cardiol Hypertens. 2020;6:100040. https://doi.org/10.1016/j.ijchy.2020.100040.

    Article  Google Scholar 

  208. Delgado J, Masoli JAH, Bowman K, et al. Outcomes of treated hypertension at age 80 and older: cohort analysis of 79,376 individuals. J Am Geriatr Soc. 2017;65(5):995–1003. https://doi.org/10.1111/jgs.14712.

    Article  Google Scholar 

  209. Gueyffier F, Bulpitt C, Boissel JP, et al. Antihypertensive drugs in very old people: a subgroup meta-analysis of randomised controlled trials. INDANA Group. Lancet. 1999;353(9155):793–6. https://doi.org/10.1016/s0140-6736(98)08127-6.

    Article  CAS  Google Scholar 

  210. Kostis JB. Treating hypertension in the very old. N Engl J Med. 2008;358(18):1958–60. https://doi.org/10.1056/NEJMe0801709.

    Article  CAS  Google Scholar 

  211. Benetos A, Bulpitt CJ, Petrovic M, et al. An expert opinion from the European Society of Hypertension-European Union Geriatric Medicine Society Working Group on the management of hypertension in very old, frail subjects. Hypertension. 2016;67(5):820–5. https://doi.org/10.1161/hypertensionaha.115.07020.

    Article  CAS  Google Scholar 

  212. Bejan-Angoulvant T, Saadatian-Elahi M, Wright JM, et al. Treatment of hypertension in patients 80 years and older: the lower the better? A meta-analysis of randomized controlled trials. J Hypertens. 2010;28(7):1366–72. https://doi.org/10.1097/hjh.0b013e328339f9c5.

    Article  CAS  Google Scholar 

  213. Morley JE. Systolic hypertension should not be treated in persons aged 80 and older until blood pressure is greater than 160 mmHg. J Am Geriatr Soc. 2013;61(7):1197–8. https://doi.org/10.1111/jgs.12322_1.

    Article  Google Scholar 

  214. Sheppard JP, Burt J, Lown M, et al. Effect of antihypertensive medication reduction vs usual care on short-term blood pressure control in patients with hypertension aged 80 years and older: the OPTIMISE randomized clinical trial. JAMA. 2020;323(20):2039–51. https://doi.org/10.1001/jama.2020.4871.

    Article  CAS  Google Scholar 

  215. Chobanian AV. SPRINT results in older patients: how low to go? JAMA. 2016;315(24):2669–70. https://doi.org/10.1001/jama.2016.7070.

    Article  CAS  Google Scholar 

  216. Vetrano DL, Palmer KM, Galluzzo L, et al. Hypertension and frailty: a systematic review and meta-analysis. BMJ Open. 2018;8(12):e024406. https://doi.org/10.1136/bmjopen-2018-024406.

    Article  Google Scholar 

  217. Zhang XE, Cheng B, Wang Q. Relationship between high blood pressure and cardiovascular outcomes in elderly frail patients: a systematic review and meta-analysis. Geriatr Nurs. 2016;37(5):385–92. https://doi.org/10.1016/j.gerinurse.2016.05.006.

    Article  CAS  Google Scholar 

  218. Liu P, Li Y, Zhang Y, Mesbah SE, Ji T, Ma L. Frailty and hypertension in older adults: current understanding and future perspectives. Hypertens Res. 2020;43(12):1352–60. https://doi.org/10.1038/s41440-020-0510-5.

    Article  Google Scholar 

  219. Bromfield SG, Ngameni C-A, Colantonio LD, et al. Blood pressure, antihypertensive polypharmacy, frailty, and risk for serious fall injuries among older treated adults with hypertension. Hypertension. 2017;70(2):259–66. https://doi.org/10.1161/HYPERTENSIONAHA.116.09390.

    Article  CAS  Google Scholar 

  220. Odden MC, Peralta CA, Haan MN, Covinsky KE. Rethinking the association of high blood pressure with mortality in elderly adults: the impact of frailty. Arch Intern Med. 2012;172(15):1162–8. https://doi.org/10.1001/archinternmed.2012.2555.

    Article  Google Scholar 

  221. Pajewski NM, Williamson JD, Applegate WB, et al. Characterizing frailty status in the systolic blood pressure intervention trial. J Gerontol A. 2016;71(5):649–55. https://doi.org/10.1093/gerona/glv228.

    Article  Google Scholar 

  222. Bowling CB, Lee A, Williamson JD. Blood pressure control among older adults with hypertension: narrative review and introduction of a framework for improving care. Am J Hypertens. 2021;34(3):258–66. https://doi.org/10.1093/ajh/hpab002.

    Article  Google Scholar 

  223. Mühlbauer V, Dallmeier D, Brefka S, Bollig C, Voigt-Radloff S, Denkinger M. The pharmacological treatment of arterial hypertension in frail, older patients—a systematic review. Dtsch Arztebl Int. 2019;116(3):23–30. https://doi.org/10.3238/arztebl.2019.0023.

    Article  Google Scholar 

  224. Boockvar KS, Song W, Lee S, Intrator O. Hypertension treatment in US long-term nursing home residents with and without dementia. J Am Geriatr Soc. 2019;67(10):2058–64. https://doi.org/10.1111/jgs.16081.

    Article  Google Scholar 

  225. Vu M, Schleiden LJ, Harlan ML, Thorpe CT. Hypertension management in nursing homes: review of evidence and considerations for care. Curr Hypertens Rep. 2020;22(1):8. https://doi.org/10.1007/s11906-019-1012-1.

    Article  Google Scholar 

  226. Onder G, Landi F, Fusco D, et al. Recommendations to prescribe in complex older adults: results of the CRIteria to assess appropriate Medication use among Elderly complex patients (CRIME) project. Drugs Aging. 2014;31(1):33–45. https://doi.org/10.1007/s40266-013-0134-4.

    Article  Google Scholar 

  227. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665. https://doi.org/10.1136/bmj.b1665.

    Article  CAS  Google Scholar 

  228. Kjeldsen SE, Stenehjem A, Os I, et al. Treatment of high blood pressure in elderly and octogenarians: European Society of Hypertension statement on blood pressure targets. Blood Press. 2016;25(6):333–6. https://doi.org/10.1080/08037051.2016.1236329.

    Article  Google Scholar 

  229. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;39(33):3021–104. https://doi.org/10.1093/eurheartj/ehy339.

    Article  Google Scholar 

  230. Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e13–e115. https://doi.org/10.1161/HYP.0000000000000065.

    Article  CAS  Google Scholar 

  231. National Institute for Health and Care Excellence. Hypertension in adults: diagnosis and management. nice.org.uk/guidance/ng136. Accessed 24 May 2021.

  232. Unger T, Borghi C, Charchar F, et al. 2020 International Society of Hypertension Global Hypertension practice guidelines. Hypertension. 2020;75(6):1334–57. https://doi.org/10.1161/HYPERTENSIONAHA.120.15026.

    Article  CAS  Google Scholar 

  233. Rabi DM, McBrien KA, Sapir-Pichhadze R, et al. Hypertension Canada’s 2020 comprehensive guidelines for the prevention, diagnosis, risk assessment, and treatment of hypertension in adults and children. Can J Cardiol. 2020;36(5):596–624. https://doi.org/10.1016/j.cjca.2020.02.086.

    Article  Google Scholar 

  234. Harrap SB, Lung T, Chalmers J. New blood pressure guidelines pose difficult choices for Australian physicians. Circ Res. 2019;124(7):975–7. https://doi.org/10.1161/CIRCRESAHA.118.314637.

    Article  CAS  Google Scholar 

  235. Gabb GM, Mangoni AA, Anderson CS, et al. Guideline for the diagnosis and management of hypertension in adults—2016. Med J Aust. 2016;205(2):85–9. https://doi.org/10.5694/mja16.00526.

    Article  Google Scholar 

  236. Qaseem A, Wilt TJ, Rich R, Humphrey LL, Frost J, Forciea MA. Pharmacologic treatment of hypertension in adults aged 60 years or older to higher versus lower blood pressure targets: a clinical practice guideline from the American College of Physicians and the American Academy of Family Physicians. Ann Intern Med. 2017;166(6):430–7. https://doi.org/10.7326/m16-1785.

    Article  Google Scholar 

Download references

Disclosures and Other Relevant Conflicts of Interest

None Reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. McEvoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murphy, E., Cooney, M.T., McEvoy, J.W. (2023). Atherosclerotic Cardiovascular Disease Prevention in the Older Adult: Part 1. In: Leucker, T.M., Gerstenblith, G. (eds) Cardiovascular Disease in the Elderly. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-16594-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16594-8_1

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-16593-1

  • Online ISBN: 978-3-031-16594-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics