Skip to main content

Mesenteric Adenopathy and Adenitis

  • Chapter
  • First Online:
The Mesentery and Inflammation

Abstract

Mesenteric adenopathy and adenitis are common causes of abdominal pain, requiring emergency admission to hospital. The term mesenteric adenitis is generally used to denote painful lymphadenopathy due to viral infection and is mostly associated with self-limiting viral infections. However, mesenteric adenopathy and adenitis can be associated with infection with SARS-Cov-2 or the human immunodeficiency virus in which setting these have a particularly poor prognosis. Recent advances in our understanding of the mesentery and the organisation of the human body shed new light on the position of mesenteric adenopathy and adenitis in disease in general. Both these abnormalities of the mesentery are observed in most diseases of the abdomen. The frequency with which they are observed means there is an increasing need to scientifically and clinically investigate both. Improved understanding of mesenteric adenopathy and adenitis is likely to greatly enhance our understanding of abdominal and systemic diseases in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collins DC. Mesenteric lymphadenitis in adolescents simulating appendicitis. Can Med Assoc J. 1936;34(4):402–5.

    CAS  Google Scholar 

  2. Helbling R, Conficconi E, Wyttenbach M, Benetti C, Simonetti GD, Bianchetti MG, et al. Acute nonspecific mesenteric lymphadenitis: more than “no need for surgery”. Biomed Res Int. 2017;2017:9784565.

    Article  Google Scholar 

  3. Adams WE, Olney MB. Mesenteric lymphadenitis and the acute abdomen: report of thirteen cases. Ann Surg. 1938;107(3):359–70.

    Article  CAS  Google Scholar 

  4. Treves F. Lectures on the anatomy of the intestinal canal and peritoneum in man. BMJ. 1885;7(1):470–4.

    Article  Google Scholar 

  5. Gray H. Anatomy descriptive and surgical. London: John W. Parker and Son, West Strand; 1858.

    Google Scholar 

  6. Coffey JC, Walsh D, Byrnes KG, Hohenberger W, Heald RJ. Mesentery - a ‘New’ organ. Emerg Top Life Sci. 2020;4(2):191–206.

    Article  Google Scholar 

  7. Byrnes KG, Walsh D, Walsh LG, Coffey DM, Ullah MF, Mirapeix R, Hikspoors J, Lamers W, Wu Y, Zhang X-Q, Zhang S-X, Brama P, Dunne CP, O’Brien IS, Peirce CB, Shelly MG, Scanlon TG, Luther ME, Brady HD, Dockery P, McDermott KW, Coffey JC. The development and structure of the mesentery. Commun Biol. 2021;4:982.

    Article  Google Scholar 

  8. Tirkes T, Sandrasegaran K, Patel AA, Hollar MA, Tejada JG, Tann M, et al. Peritoneal and retroperitoneal anatomy and its relevance for cross-sectional imaging. Radiographics. 2012;32(2):437–51.

    Article  Google Scholar 

  9. Meyers MA, Oliphant M, Berne AS, Feldberg MA. The peritoneal ligaments and mesenteries: pathways of intraabdominal spread of disease. Radiology. 1987;163(3):593–604.

    Article  CAS  Google Scholar 

  10. Oliphant M, Berne AS. Computed tomography of the subperitoneal space: demonstration of direct spread of intraabdominal disease. J Comput Assist Tomogr. 1982;6(6):1127–37.

    Article  CAS  Google Scholar 

  11. Oliphant M, Berne AS, Meyers MA. The subperitoneal space of the abdomen and pelvis: planes of continuity. AJR Am J Roentgenol. 1996;167(6):1433–9.

    Article  CAS  Google Scholar 

  12. Coffey JC, Byrnes KG, Walsh D, Dockery P. The mesentery and the mesenteric model of abdominal compartmentalisation. Gray’s Anatomy. 2020;8(1):1330.e3. Commentary.

    Google Scholar 

  13. Benetti C, Conficconi E, Hamitaga F, Wyttenbach M, Lava SAG, Milani GP, et al. Course of acute nonspecific mesenteric lymphadenitis: single-center experience. Eur J Pediatr. 2018;177(2):243–6.

    Article  Google Scholar 

  14. Sahebally SM, Burke JP, Chang KH, Kiernan MG, O’Connell PR, Coffey JC. Circulating fibrocytes and Crohn’s disease. Br J Surg. 2013;100(12):1549–56.

    Article  CAS  Google Scholar 

  15. Sorrentino D. Fibrocytes, inflammation, and fibrosis in Crohn’s disease: another piece of the puzzle. Dig Dis Sci. 2014;59(4):699–701.

    Article  CAS  Google Scholar 

  16. Sazuka S, Katsuno T, Nakagawa T, Saito M, Saito K, Maruoka D, et al. Fibrocytes are involved in inflammation as well as fibrosis in the pathogenesis of Crohn’s disease. Dig Dis Sci. 2014;59(4):760–8.

    Article  CAS  Google Scholar 

  17. Giraudo C, Fichera G, Motta R, Guarnieri G, Plebani M, Pelloso M, et al. It’s not just the lungs: COVID-19 and the misty mesentery sign. Quant Imaging Med Surg. 2021;11(5):2201–3.

    Article  Google Scholar 

  18. Noda S, Ma J, Romberg EK, Hernandez RE, Ferguson MR. Severe COVID-19 initially presenting as mesenteric adenopathy. Pediatr Radiol. 2021;51(1):140–3.

    Article  Google Scholar 

  19. Blevrakis E, Vergadi E, Stefanaki M, Alexiadi-Oikonomou I, Rouva G, Germanakis I, et al. Mesenteric lymphadenitis presenting as acute abdomen in a child with multisystem inflammatory syndrome. Infect Dis Rep. 2022;14(3):428–32.

    Article  Google Scholar 

  20. Uzzan M, Corcos O, Martin JC, Treton X, Bouhnik Y. Why is SARS-CoV-2 infection more severe in obese men? The gut lymphatics - lung axis hypothesis. Med Hypotheses. 2020;144:110023.

    Article  CAS  Google Scholar 

  21. Harwood R, Partridge R, Minford J, Almond S. Paediatric abdominal pain in the time of COVID-19: a new diagnostic dilemma. J Surg Case Rep. 2020;2020(9):rjaa337.

    Article  Google Scholar 

  22. Roland D, Harwood R, Bishop N, Hargreaves D, Patel S, Sinha I. Children’s emergency presentations during the COVID-19 pandemic. Lancet Child Adolesc Health. 2020;4(8):e32–e3.

    Article  CAS  Google Scholar 

  23. Harwood R, Sinha I. Diagnosis of COVID-19 in children: the story evolves. BMC Med. 2020;18(1):158.

    Article  CAS  Google Scholar 

  24. Buck BE, Yang LC, Caleb MH, Greene JM, South MA. Measles virus panniculitis subsequent to vaccine administration. J Pediatr. 1982;101(3):366–73.

    Article  CAS  Google Scholar 

  25. Davey RT Jr, Bhat N, Yoder C, Chun TW, Metcalf JA, Dewar R, et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci U S A. 1999;96(26):15109–14.

    Article  CAS  Google Scholar 

  26. Pierson T, McArthur J, Siliciano RF. Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu Rev Immunol. 2000;18:665–708.

    Article  CAS  Google Scholar 

  27. Blankson JN, Persaud D, Siliciano RF. The challenge of viral reservoirs in HIV-1 infection. Annu Rev Med. 2002;53:557–93.

    Article  CAS  Google Scholar 

  28. Estaquier J, Hutrel B. Mesenteric lymph nodes, a sanctuary for persistence of HIV. Escape mechanisms. Med Sci. 2008;24(12):1055–60.

    Google Scholar 

  29. Mantegazza C, Maconi G, Giacomet V, Furfaro F, Mameli C, Bezzio C, et al. Gut and mesenteric lymph node involvement in pediatric patients infected with human immunodeficiency virus. HIV AIDS (Auckl). 2014;6:69–74.

    Google Scholar 

  30. Lennon P, Crotty M, Fenton JE. Infectious mononucleosis. BMJ. 2015;350:h1825.

    Article  Google Scholar 

  31. Gupta RK, Best J, MacMahon E. Mumps and the UK epidemic 2005. BMJ. 2005;330(7500):1132–5.

    Article  Google Scholar 

  32. Bliska JB, Brodsky IE, Mecsas J. Role of the yersinia pseudotuberculosis virulence plasmid in pathogen-phagocyte interactions in mesenteric lymph nodes. EcoSal Plus. 2021;9(2):eESP00142021.

    Article  Google Scholar 

  33. Fonnes S, Rasmussen T, Brunchmann A, Holzknecht BJ, Rosenberg J. Mesenteric lymphadenitis and terminal ileitis is associated with yersinia infection: a meta-analysis. J Surg Res. 2022;270:12–21.

    Article  Google Scholar 

  34. Lee CC, Su CP, Chen SY, Chen SC, Chen WJ. Mesenteric adenitis caused by Salmonella enterica serovar Enteritidis. J Formos Med Assoc. 2004;103(6):463–6.

    Google Scholar 

  35. Ferreira LL, Araujo FF, Martinelli PM, Teixeira-Carvalho A, Alves-Silva J, Guarneri AA. New features on the survival of human-infective Trypanosoma rangeli in a murine model: parasite accumulation is observed in lymphoid organs. PLoS Negl Trop Dis. 2020;14(12):e0009015.

    Article  CAS  Google Scholar 

  36. de Meis J, Barreto de Albuquerque J, Silva Dos Santos D, Farias-de-Oliveira DA, Berbert LR, Cotta-de-Almeida V, et al. Trypanosoma cruzi entrance through systemic or mucosal infection sites differentially modulates regional immune response following acute infection in mice. Front Immunol. 2013;4:216.

    Google Scholar 

  37. Blank CA, Anderson DA, Beard M, Lemon SM. Infection of polarized cultures of human intestinal epithelial cells with hepatitis A virus: vectorial release of progeny virions through apical cellular membranes. J Virol. 2000;74(14):6476–84.

    Article  CAS  Google Scholar 

  38. Fotopoulos G, Harari A, Michetti P, Trono D, Pantaleo G, Kraehenbuhl JP. Transepithelial transport of HIV-1 by M cells is receptor-mediated. Proc Natl Acad Sci U S A. 2002;99(14):9410–4.

    Article  CAS  Google Scholar 

  39. Bomsel M. Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nat Med. 1997;3(1):42–7.

    Article  CAS  Google Scholar 

  40. Desgraupes S, Hubert M, Gessain A, Ceccaldi PE, Vidy A. Mother-to-child transmission of arboviruses during breastfeeding: from epidemiology to cellular mechanisms. Viruses. 2021;13(7):1312.

    Article  CAS  Google Scholar 

  41. Dickman KG, Hempson SJ, Anderson J, Lippe S, Zhao L, Burakoff R, et al. Rotavirus alters paracellular permeability and energy metabolism in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol. 2000;279(4):G757–66.

    Article  CAS  Google Scholar 

  42. Benias PC, Wells RG, Sackey-Aboagye B, Klavan H, Reidy J, Buonocore D, et al. Structure and distribution of an unrecognized interstitium in human tissues. Sci Rep. 2018;8(1):4947.

    Article  Google Scholar 

  43. Theise ND, de Jong IEM. The interstitium of the mesentery: contents and inter-organ connections. In: Coffey JC, editor. The mesentery in inflammation. 1st ed. Cham: Springer Nature; 2022.

    Google Scholar 

  44. Cenaj O, Allison DHR, Imam R, Zeck B, Drohan LM, Chiriboga L, et al. Evidence for continuity of interstitial spaces across tissue and organ boundaries in humans. Commun Biol. 2021;4(1):436.

    Article  Google Scholar 

  45. Mao R, Kurada S, Gordon IO, Baker ME, Gandhi N, McDonald C, et al. The mesenteric fat and intestinal muscle interface: creeping fat influencing stricture formation in Crohn’s disease. Inflamm Bowel Dis. 2019;25(3):421–6.

    Article  Google Scholar 

  46. Mao R, Gao X, Zhu ZH, Feng ST, Chen BL, He Y, et al. CT enterography in evaluating postoperative recurrence of Crohn’s disease after ileocolic resection: complementary role to endoscopy. Inflamm Bowel Dis. 2013;19(5):977–82.

    Article  Google Scholar 

  47. Li XH, Feng ST, Cao QH, Coffey JC, Baker ME, Huang L, et al. Degree of creeping fat assessed by CT enterography is associated with intestinal fibrotic stricture in patients with Crohn’s disease: a potentially novel mesenteric creeping fat index. J Crohn’s Colitis. 2021;15:1161.

    Article  Google Scholar 

  48. Mao R, Liu Z, Rieder F. The effects of mesenteric inflammation on intestinal fibrosis. In: Coffey JC, editor. The mesentery in inflammation. 1st ed. Cham: Springer Nature; 2022.

    Google Scholar 

  49. Mao R, Doyon G, Gordon IO, Li J, Lin S, Wang J, et al. Activated intestinal muscle cells promote preadipocyte migration: a novel mechanism for creeping fat formation in Crohn’s disease. Gut. 2022;71(1):55–67.

    Article  CAS  Google Scholar 

  50. Coffey CJ, Kiernan MG, Sahebally SM, Jarrar A, Burke JP, Kiely PA, et al. Inclusion of the mesentery in ileocolic resection for Crohn’s disease is associated with reduced surgical recurrence. J Crohn’s Colitis. 2018;12(10):1139–50.

    Article  Google Scholar 

  51. Coffey JC, O’Leary DP, Kiernan MG, Faul P. The mesentery in Crohn’s disease: friend or foe? Curr Opin Gastroenterol. 2016;32(4):267–73.

    Article  Google Scholar 

  52. Kiernan MG, Coffey JC, McDermott K, Cotter PD, Cabrera-Rubio R, Kiely PA, et al. The human mesenteric lymph node microbiome differentiates between Crohn’s disease and ulcerative colitis. J Crohn’s Colitis. 2019;13(1):58–66.

    Article  Google Scholar 

  53. Kiernan MG, Shine Dunne S, McDermott K, Jakeman P, Gilmore B, Thompson TP, Kelly S, Coffey JC, Dunne CP. Mesenteric microbiology and inflammatory bowel disease improved understanding due to accelerating innovation and sophistication of molecular technology. In: Coffey JC, editor. The mesentery in inflammation. 1st ed. Cham: Springer Nature; 2022.

    Google Scholar 

  54. Hogan J, Chang KH, Duff G, Samaha G, Kelly N, Burton M, et al. Lymphovascular invasion: a comprehensive appraisal in colon and rectal adenocarcinoma. Dis Colon Rectum. 2015;58(6):547–55.

    Article  Google Scholar 

  55. Hogan J, Burke JP, Samaha G, Condon E, Waldron D, Faul P, et al. Overall survival is improved in mucinous adenocarcinoma of the colon. Int J Color Dis. 2014;29(5):563–9.

    Article  CAS  Google Scholar 

  56. Coffey JC, O’Leary DP. The mesentery: structure, function, and role in disease. Lancet Gastroenterol Hepatol. 2016;1(3):238–47.

    Article  Google Scholar 

  57. Coffey JC, Byrnes KG, Walsh D, Cunningham R. Update on the mesentery: structure, function and role in disease. Lancet Gastroenterol Hepatol. 2022;7:96.

    Article  Google Scholar 

  58. Duerkop BA, Hooper LV. Resident viruses and their interactions with the immune system. Nat Immunol. 2013;14(7):654–9.

    Article  CAS  Google Scholar 

  59. Lusiak-Szelachowska M, Weber-Dabrowska B, Jonczyk-Matysiak E, Wojciechowska R, Gorski A. Bacteriophages in the gastrointestinal tract and their implications. Gut Pathog. 2017;9:44.

    Article  Google Scholar 

  60. Zhang T, Breitbart M, Lee WH, Run JQ, Wei CL, Soh SW, et al. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol. 2006;4(1):e3.

    Article  Google Scholar 

  61. Arey LB. The mesenteries and coelom. Developmental anatomy. Philadelphia, PA; London: W. B. Saunders Company; 1944. p. 240–60.

    Google Scholar 

  62. Bardeen CC. The critical period in the development of the intestines. Am J Anat. 1914;16:427–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Calvin Coffey .

Editor information

Editors and Affiliations

Ethics declarations

Funding

No direct funding was received to write this chapter.

Conflict

The authors have no conflict of interest to declare.

Ethics

Consent was obtained from all patients from whom clinical photography was obtained and included.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Devine, M., Coffey, J.C. (2023). Mesenteric Adenopathy and Adenitis. In: Coffey, J.C. (eds) The Mesentery and Inflammation . Progress in Inflammation Research, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-031-17774-3_8

Download citation

Publish with us

Policies and ethics