Skip to main content

Introduction

  • Chapter
  • First Online:
Latin American Blackberries Biology

Abstract

Rubus glaucus Benth. is an economically important crop from the Andes that has relevant bio compounds and elements that are favorable to human health and nutrition. The reproductive biology of R. glaucus is an important topic because it provides essential information that can be used in the cultivation, breeding, and improvement programs. The current book focuses on reproductive biology-related aspects of Mora de Castilla. It explores the plant’s distribution, phenology, flower morphology, pollen morphology and viability, stigma receptivity, insect visitation, wind pollination, self-pollination, fruit development, chromosome number, genetic diversity, morphological diversity, postharvest physiology, breeding programs, propagation, cultivation, and the influence of climate change. R. glaucus has a unique everbearing habit that benefits growers and local economies through a constant supply of fruit throughout the year. It has been hybridized with other Rubus species producing new and better-quality hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcón-Barrera KS, Armijos-Montesinos DS, García-Tenesaca M et al (2018) Wild Andean blackberry (Rubus glaucus Benth) and Andean blueberry (Vaccinium floribundum Kunth) from the Highlands of Ecuador: nutritional composition and protective effect on human dermal fibroblasts against cytotoxic oxidative damage. J Berry Res 8:223–236. https://doi.org/10.3233/JBR-180316

    CAS  Google Scholar 

  • Arturo-Perdomo D, Jiménez J, Ibáñez E et al (2021) Extraction and characterization of the polar lipid fraction of blackberry and passion fruit seeds oils using supercritical fluid extraction. Food Anal Methods 1–12. https://doi.org/10.1007/s12161-021-02020-5

  • Benítez E, Viera W, Garrido P, Flores F (2020) Current research on Andean fruit crop diseases. In: Chong P, Newman D, Steinmacher D (eds) Agricultural, forestry and bioindustry biotechnology and biodiscovery. Springer, Cham, pp 387–401

    Google Scholar 

  • Bentham G (1839) Rubus glaucus sp. n. Royal Society of London, London

    Google Scholar 

  • Cancino-Escalante GO, Sánchez-Montaño LR, Quevedo-García E, Díaz-Carvajal C (2011) Caracterización fenotípica de accesiones de especies de Rubus L. de los municipios de Pamplona y Chitagá, región Nororiental de Colombia. Univ Sci 16:219–233. https://doi.org/10.11144/javeriana.sc16-3.pcor

    Google Scholar 

  • Carrillo-Perdomo E, Aller A, Cruz-Quintana SM et al (2015) Andean berries from Ecuador: a review on botany, agronomy, chemistry and health potential. J Berry Res 5:49–69. https://doi.org/10.3233/JBR-140093

    Google Scholar 

  • Carter K, Liston A, Bassil N et al (2019) Target capture sequencing unravels Rubus evolution. Front Plant Sci 10:1615. https://doi.org/10.3389/fpls.2019.01615

    PubMed  PubMed Central  Google Scholar 

  • Clark J, Stafne E, Hall H, Finn C (2007) Blackberry breeding and genetics. In: Janick J (ed) Plant breeding reviews, vol 29. Wiley, pp 19–144

    Google Scholar 

  • Cortés M, Villegas YC, Gil J, Ortega-Toro R (2020) Effect of a multifunctional edible coating based on cassava starch on the shelf life of Andean blackberry. Heliyon 6:e03974. https://doi.org/10.1016/j.heliyon.2020.e03974

    Google Scholar 

  • Darrow G (1952) Rubus glaucus, the Andes blackberry of Central America and northern South America. Ceiba 3:97–101

    Google Scholar 

  • De la Cadena J, Orellana A (1984) El cultivo de la mora. Ministerio de Agricultura y Ganadería, Quito

    Google Scholar 

  • de los Rios C, Cortés M, Arango J (2021) Physicochemical quality and antioxidant activity of blackberry suspensions: compositional and process effects. J Food Process Preserv:e15498. https://doi.org/10.1111/jfpp.15498

  • Delgado S, Fernández González H, Angulo Graterol L et al (2014) Caracterización molecular de genotipos de Rubus mediante marcadores microsatélites. Agron Trop 64:61–72

    Google Scholar 

  • Espinosa N, Medina C, Lobo M (2009) Identificación taxonómica de las especies del género Rubus presentes en la colección colombiana de mora. In: Barrero Meneses L (ed) Caracterización, evaluación y producción de material limpio de mora con alto valor agregado. CORPOICA, Bogotá, pp 25–33

    Google Scholar 

  • Fischer G, Orduz-Rodríguez J (2012) Ecofisiología en frutales. In: Fischer G (ed) Manual para el cultivo de frutales en el trópico. Produmedios, Bogotá, pp 54–72

    Google Scholar 

  • Franco G, Bernal Estrada J, Díaz Diez C et al (2020) Tecnología para el cultivo de la mora (Rubus glaucus Benth.). AGROSAVIA, Bogotá

    Google Scholar 

  • Garzón GA, Riedl KM, Schwartz SJ (2009) Determination of anthocyanins, total phenolic content, and antioxidant activity in Andes berry (Rubus glaucus Benth). J Food Sci 74:C227–C232. https://doi.org/10.1111/j.1750-3841.2009.01092.x

    CAS  PubMed  Google Scholar 

  • Glimn-Lacy J, Kaufman PB (2006) Botany illustrated. Introduction to plants, major groups, flowering plant families. Springer, Indianapolis

    Google Scholar 

  • Graham J, Brennan R (2018) Introduction to the Rubus genus. In: Graham J, Brennan R (eds) Raspberry: breeding, challenges and advances. Springer, Cham, pp 1–16

    Google Scholar 

  • Hall H (1990) Blackberry breeding. Plant Breed Rev 8:249–312

    Google Scholar 

  • Heywood VHV, Heenan PB, Brummitt RK et al (2007) Flowering plant families of the world. Firefly Books, London

    Google Scholar 

  • Horvitz S, Chanaguano D, Arozarena I (2017) Andean blackberries (Rubus glaucus Benth) quality as affected by harvest maturity and storage conditions. Sci Hortic 226:293–301. https://doi.org/10.1016/j.scienta.2017.09.002

    CAS  Google Scholar 

  • Hummer K (2017) Blackberries: an introduction. In: Hall H, Funt RC (eds) Blackberries and their hybrids. CABI, Wallingford, pp 1–16

    Google Scholar 

  • Iza M, Viteri P, Hinojosa M et al (2020) Diferenciación morfológica, fenológica y pomológica de cultivares comerciales de mora (Rubus glaucus Benth). Enfoque UTE 11:47–58. https://doi.org/10.29019/enfoque.v11n2.529

    Google Scholar 

  • Kalkman C (2004) Rosaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 6. Springer, Berlin, pp 343–386

    Google Scholar 

  • Lechowicz K, Wrońska-Pilarek D, Bocianowski J, Maliński T (2020) Pollen morphology of Polish species from the genus Rubus L. (Rosaceae) and its systematic importance. PLoS One 15:e0221607. https://doi.org/10.1371/journal.pone.0221607

    CAS  PubMed  PubMed Central  Google Scholar 

  • López A, Marulanda M, Gómez L, Barrera C (2019) Rubus glaucus Benth.: morphology and floral biology aimed at plant breeding processes. Rev Fac Nac Agron Medellín 72:8909–8915. https://doi.org/10.15446/rfnam.v72n1.75910

    Google Scholar 

  • Marulanda M, López A (2009) Characterization of thornless Rubus glaucus in Colombia. Can J Pure Appl Sci 3:875–885

    Google Scholar 

  • Mertz C, Cheynier V, Günata Z, Brat P (2007) Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) by high-performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. J Agric Food Chem 55:8616–8624. https://doi.org/10.1021/jf071475d

    CAS  PubMed  Google Scholar 

  • Mikulic-Petkovsek M, Rescic J, Schmitzer V et al (2014) Changes in fruit quality parameters of four Ribes species during ripening. Food Chem 173:363–374. https://doi.org/10.1016/j.foodchem.2014.10.011

    CAS  PubMed  Google Scholar 

  • Monroy D, Cardona W, García M, Benavides BBM (2019) Relationship between variable doses of N, P, K and Ca and the physicochemical and proximal characteristics of Andean blackberry (Rubus glaucus Benth.). Sci Hortic 256:108528. https://doi.org/10.1016/j.scienta.2019.05.055

    CAS  Google Scholar 

  • Morales C, Villegas B (2012) Mora (Rubus glaucus Benth.). In: Fischer G (ed) Manual para el cultivo de frutales en el trópico. Bogotá, Produmedios, pp 728–754

    Google Scholar 

  • Moreno-Medina B, Casierra-Posada F, Cutler J (2018) Phytochemical composition and potential use of Rubus species. Gesunde Pflanz 70:65–74. https://doi.org/10.1007/s10343-018-0416-1

    CAS  Google Scholar 

  • National Research Council (1989) Lost crops of the Incas: little-known plants of the Andes with promise for worldwide cultivation. National Academy Press

    Google Scholar 

  • Osorio C, Hurtado N, Dawid C et al (2012) Chemical characterization of anthocyanins in tamarillo (Solanum betaceum Cav.) and Andes berry (Rubus glaucus Benth.) fruits. Food Chem 132:1915–1921. https://doi.org/10.1016/j.foodchem.2011.12.026

    CAS  Google Scholar 

  • Patiño VM (1963) Plantas cultivadas y animales domesticos en America. Imprenta Departamental, Cali

    Google Scholar 

  • Popenoe W (1921) The Andes berry. J Hered 12:387–393. https://doi.org/10.1093/oxfordjournals.jhered.a102129

    Google Scholar 

  • Popenoe W (1924) Economic fruit-bearing plants of Ecuador. Contrib US Natl Herb 24:101–134

    Google Scholar 

  • Ramírez F, Davenport T (2013) Apple pollination: a review. Sci Hortic 162:188–203. https://doi.org/10.1016/j.scienta.2013.08.007

    Google Scholar 

  • Ramírez F, Davenport T (2016) The phenology of the capuli cherry [Prunus serotina subsp. capuli (Cav.) McVaugh] characterized by the BBCH scale, landmark stages and implications for urban forestry in Bogotá, Colombia. Urban For Urban Green 19:202–211. https://doi.org/10.1016/J.UFUG.2016.06.028

    Google Scholar 

  • Rodríguez-Bernal J, Herrera-Ardila Y, Olivares-Tenorio M et al (2020) Determination of antioxidant capacity in blackberry (Rubus glaucus) jam processed by hydrotermodynamic cavitation compared with traditional technology. Dyna 87:118–125. https://doi.org/10.15446/dyna.v87n215.84521

    CAS  Google Scholar 

  • Samaniego I, Brito B, Viera W et al (2020) Influence of the maturity stage on the phytochemical composition and the antioxidant activity of four Andean blackberry cultivars (Rubus glaucus Benth.) from Ecuador. Plan Theory 9:1–15. https://doi.org/10.3390/plants9081027

    CAS  Google Scholar 

  • Sánchez-Betancourt E, García-Muñoz M, Argüelles-Cárdenas J et al (2020) Fruit quality attributes of ten Colombian blackberry (Rubus glaucus Benth.) genotypes. Agron Colomb 38:85–94. https://doi.org/10.15446/agron.colomb.v38n1.80559

    Google Scholar 

  • Sanín A, Navia D, Serna-Jiménez J (2020) Functional foods from crops on the northern region of the South American Andes: the importance of blackberry, yacon, açai, yellow pitahaya and the application of its biocompounds. Int J Fruit Sci 20:S1784–S1804. https://doi.org/10.1080/15538362.2020.1834894

    Google Scholar 

  • Seeram NP (2008) Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 56:627–629. https://doi.org/10.1021/jf071988k

    CAS  PubMed  Google Scholar 

  • Thompson MM (1997) Survey of chromosome numbers in Rubus (Rosaceae: Rosoideae). Ann Missouri Bot Gard 84:128–164

    Google Scholar 

  • Thompson A (2015) Fruits and vegetables: harvesting, handling and storage, vol I, 3rd edn. Wiley, Oxford

    Google Scholar 

  • Viteri P, Vásquez W, Martínez A et al (2016) Características generales de la planta, variedades cultivadas y clones promisorios de mora. In: Galarza D, Garcés S, Velásquez J et al (eds) El cultivo de la mora en el Ecuador. Instituto Nacional de Investigaciones Agropecuarias (INIAP)-Programa Nacional de Fruticultura, Quito, pp 39–57

    Google Scholar 

  • Yang JY, Chiang YC, Hsu TW et al (2021) Characterization and comparative analysis among plastome sequences of eight endemic Rubus (Rosaceae) species in Taiwan. Sci Rep 11:1152. https://doi.org/10.1038/s41598-020-80143-1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young AM, Gómez-Ruiz PA, Peña JA et al (2018) Wind speed affects pollination success in blackberries. Sociobiology 65:225–231. https://doi.org/10.13102/sociobiology.v65i2.1620

    Google Scholar 

  • Zhang C, Xiong Z, Yang H, Wu W (2019) Changes in pericarp morphology, physiology and cell wall composition account for flesh firmness during the ripening of blackberry (Rubus spp.) fruit. Sci Hortic 250:59–68. https://doi.org/10.1016/j.scienta.2019.02.015

    CAS  Google Scholar 

  • Zuluaga J, Aguilar M, Cure J (2009) Evaluación de la actividad polinizadora de Bombus atratus (Hymenoptera: Apidae) en un cultivo de mora (Rubus glaucus Benth) bajo invernadero. In: III Congreso Colombiano de Horticultura y Simposio Internacional de Cebolla y Ajo en el Trópico. Sociedad Colombiana de Ciencias Hortícolas, Paipa, p 72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramírez, F. (2023). Introduction. In: Latin American Blackberries Biology . Springer, Cham. https://doi.org/10.1007/978-3-031-31750-7_1

Download citation

Publish with us

Policies and ethics