Skip to main content

Infections Due to Non-Candidal Yeasts

  • Chapter
  • First Online:
Diagnosis and Treatment of Fungal Infections

Abstract

Invasive fungal infections have become an important cause of morbidity and mortality over the past two decades. More recently, uncommon fungi have been increasingly reported. The increased frequency may be due to an improved identification and reporting system, or an increase in the number of severely immunocompromised hosts. Diagnosing infections due to these rare or uncommon yeast are a challenge, since the majority of the time we rely on traditional microbiologic assays and not improved diagnostic assays. Evolving taxonomy has further contributed to the complexity of recognizing an isolate’s significance. In addition, the management of these types of fungal infections is difficult because of the lack of data, specifically, the lack of adequate in vitro susceptibility studies, and the paucity of any clinical treatment trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hospenthal DR. Uncommon fungi and related species. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 9th ed. Philadelphia, PA: Elsevier; 2020. p. 3222–37.

    Google Scholar 

  2. Vazquez JA. Rhodotorula, saccharomyces, Malassezia, Trichosporon, Blastoschizomyces, and Sporobolomyces. In: Kauffman CA, Pappas PG, Sobel JD, Dismukes WE, editors. Essentials of clinical mycology. New York, NY: Springer; 2011. p. 227–39.

    Chapter  Google Scholar 

  3. McCall MJ, Baddley JW. Epidemiology of emerging fungi and fungi-like organisms. Curr Fungal Infect Rep. 2010;4:203–9.

    Article  Google Scholar 

  4. Micelli MH, Diaz JA, Lee SA. Emerging opportunistic yeast infections. Lancet Infect Dis. 2011;11:142–51.

    Article  Google Scholar 

  5. Chitasombat MN, Kofteridis DP, Jiang Y, Tarrand J, Lewis RE, Kontoyiannis DP. Rare opportunistic (non-Candida, non-Cryptococcus) yeast bloodstream infections in patients with cancer. J Infect. 2012;64:68–75.

    Article  PubMed  Google Scholar 

  6. Yamamoto M, Takakura S, Hotta G, Matsumura Y, Matsushima A, Nagao M, Ito Y, Ichiyama S. Clinical characteristics and risk factors of non-Candida fungaemia. BMC Infect Dis. 2013;13:1–6.

    Article  Google Scholar 

  7. Beigel H. The human hair: its growth and structure (1865), as cited by Langenon M. In: Darier S, et al. Nouvelle Praqt Dermatol (Paris, Masson, Cie) 1936;2:377.

    Google Scholar 

  8. Watson KC, Kallichurum S. Brain abscess due to Trichosporon cutaneum. J Med Microbiol. 1970;3:191–3.

    Article  CAS  PubMed  Google Scholar 

  9. Behrend G. Ubertrichomycosis nodosa, vol. 27. Berlin: Lin Wochenschr; 1890. p. 464.

    Google Scholar 

  10. Gueho E, de Hoog GS, Smith MT, Meyer SA. DNA relatedness, taxonomy, and medical significance of Geotrichum capitatum. J Clin Microbiol. 1997;25:1191–4.

    Article  Google Scholar 

  11. Kemeker BJ, Lehman PF, Lee JW, Walsh TJ. Distinction of deep vs. superficial clinical and non-clinical environmental isolates of Trichosporon beigelii by isoenzymes and restriction fragment length polymorphisms of rDNA generated by the polymerase chain reaction. J Clin Microbiol. 1991;29:1677–83.

    Article  Google Scholar 

  12. Borman AM, Johnson EM. Name changes for fungi of medical importance, 2018 to 2019. J Clin Microbiol. 2021;59(2):e01811–20. https://doi.org/10.1128/JCM.01811-20.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Francisco EC, de Almeida Junior JN, Queiroz-Telles F, Aquino VR, Mendes AVA, de Oliveira SM, Castro PTOE, Guimarães T, Ponzio V, Hahn RC, Chaves GM, Colombo AL. Correlation of Trichosporon asahii genotypes with anatomical sites and antifungal susceptibility profiles: data analyses from 284 isolates collected in the last 22 years across 24 medical centers. Antimicrob Agents Chemother. 2021;65(3):e01104–20. https://doi.org/10.1128/AAC.01104-20. Print 2021 Feb 17. PMID: 33318016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu XZ, Wang QM, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY. Towards an integrated phylogenetic classification of the tremellomycetes. Stud Mycol. 2015;81:85–147. https://doi.org/10.1016/j.simyco.2015.12.001. Epub 2016 Jan 8. PMID: 26955199.

    Article  PubMed  Google Scholar 

  15. Ruan SY, Chien JY, Hsueh PR. Invasive trichosporonosis caused by Trichosporon asahii and other unusual Trichosporon species at a medical center in Taiwan. Clin Infect Dis. 2009;49:e11–7.

    Article  CAS  PubMed  Google Scholar 

  16. Colombo AL, Padovan AC, Chaves GM. Current knowledge of Trichosporon spp. and Trichosporonosis. Clin Microbiol Rev. 2011;24:682–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Alobaid K, Abdullah AA, Ahmad S, Joseph L, Khan Z. Magnusiomyces capitatus fungemia: the value of direct microscopy in early diagnosis. Med Mycol Case Rep. 2019;25:32–4. https://doi.org/10.1016/j.mmcr.2019.07.009.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kwon-Chung KJ, Bennett JE. Infections due to Trichosporon and other miscellaneous yeast-like fungi. In: Medical mycology. Philadelphia, PA: Lea & Febiger; 1992. p. 768–94.

    Google Scholar 

  19. Castano G, Yarrarapu SNS, Mada PK. Trichosporonosis. In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2021. PMID: 29494084.

    Google Scholar 

  20. de Almeida Júnior JN, Hennequin C. Invasive Trichosporon infection: a systematic review on a re-emerging Fungal Pathogen. Front Microbiol. 2016;7:1629. https://doi.org/10.3389/fmicb.2016.01629. eCollection 2016.PMID: 27799926.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen YT, Yang WC, Chen TW, Lin CC. Trichosporon mucoides peritonitis in a continuous ambulatory peritoneal dialysis patient. Perit Dial Int. 2013;33(3):341–2. https://doi.org/10.3747/pdi.2012.00146. PMID: 23660618; PMCID: PMC3649913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim J, Kim MJ, Chong YP, Kim SH, Choi SH, Lee SO, Woo JH, Kim YS, Jung J. Comparison of the characteristics of patients with invasive infections and noninvasive infections caused by Trichosporon asahii. Med Mycol. 2021;59(3):296–300. https://doi.org/10.1093/mmy/myaa076. PMID: 32876327.

    Article  CAS  PubMed  Google Scholar 

  23. Ebright JR, Fairfax MR, Vazquez JA. Trichosporon asahii, a non-Candida yeast that caused fatal septic shock in a patient without cancer or neutropenia. Clin Infect Dis. 2001;33:28–30.

    Article  Google Scholar 

  24. Keay S, Denning D, Stevens DA. Endocarditis due to Trichosporon beigelii: in vitro susceptibility of isolates and review. Rev Infect Dis. 1991;13:383–6.

    Article  CAS  PubMed  Google Scholar 

  25. Sheikh HA, Mahgoub S, Badi K. Postoperative endophthalmitis due to Trichosporon cutaneum. Brit J Ophthalmol. 1986;58:591–4.

    Article  Google Scholar 

  26. Sun W, Su J, Xu S, Yan D. Trichosporon asahii causing nosocomial urinary tract infections in intensive care unit patients: genotypes, virulence factors and antifungal susceptibility testing. J Med Microbiol. 2012;61:1750–7.

    Article  CAS  PubMed  Google Scholar 

  27. Walsh TJ, Lee JW, Melcher GP, et al. Experimental Trichosporon infection in persistently granulocytopenia rabbits: implications for pathogenesis, diagnosis, and treatment of an emerging opportunistic mycosis. J Infect Dis. 1992;166:121–33.

    Article  CAS  PubMed  Google Scholar 

  28. Chagas-Neto TC, Chaves GM, Melo ASA, Colombo AL. Bloodstream infections due to Trichosporon spp.: species distribution, Trichosporon asahii genotypes determined on the basis of ribosomal DNA intergenic spacer 1 sequencing and antifungal susceptibility testing. J Clin Microbiol. 2009;47:1074–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Challapilla M, Patel K, Patel B, Soman R, Rodrigues C, Shetty A. Trichosporon blood stream infection. J Assoc Physicians India. 2019;67(3):19–21. PMID: 31304699.

    PubMed  Google Scholar 

  30. Li H, Guo M, Wang C, Li Y, Fernandez AM, Ferraro TN, Yang R, Chen Y. Epidemiological study of Trichosporon asahii infections over the past 23 years. Epidemiol Infect. 2020;148:e169. https://doi.org/10.1017/S0950268820001624. PMID: 32703332; PMCID: PMC7439294.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Francisco EC, de Almeida Junior JN, Queiroz-Telles F, Aquino VR, AVA M, de Oliveira Silva M, PTOE C, Guimarães T, Ponzio V, Hahn RC, Chaves GM, Colombo AL. Correlation of Trichosporon asahii genotypes with anatomical sites and antifungal susceptibility profiles: data analyses from 284 isolates collected in the last 22 years across 24 medical centers. Antimicrob Agents Chemother. 2021;65(3):e01104–20. https://doi.org/10.1128/AAC.01104-20. Print 2021 Feb 17. PMID: 33318016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arendrup MC, Boekhout T, Akova M, Meis JF, Cornely OA, Lortholary O, European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group, European Confederation of Medical Mycology. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin Microbiol Infect. 2014;20(Suppl 3):76–98. https://doi.org/10.1111/1469-0691.12360. PMID: 24102785.

    Article  CAS  PubMed  Google Scholar 

  33. Seeliger HPR, Schroter R. A serologic study on the antigenic relationships of the form genus Trichosporon. Sabouraudia. 1963;2:248–63.

    Article  Google Scholar 

  34. Campbell CK, Payne AL, Teall AJ, Brownell A, Mackenzie DW. Cryptococcal latex antigen test positive in a patient with Trichosporon beigelii. Lancet. 1985;2:43–4.

    Article  CAS  PubMed  Google Scholar 

  35. Guo LN, Yu SY, Hsueh PR, Al-Hatmi AMS, Meis JF, Hagen F, Xiao M, Wang H, Barresi C, Zhou ML, de Hoog GS, Xu YC. Invasive infections due to Trichosporon: species distribution, genotyping, and antifungal susceptibilities from a multicenter study in China. J Clin Microbiol. 2019;57(2):e01505–18. https://doi.org/10.1128/JCM.01505-18. PMID: 30463892; PMCID: PMC6355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Desnos-Ollivier M, Bretagne S, Boullié A, Gautier C, Dromer F, Lortholary O, et al. Isavuconazole MIC distribution of 29 yeast species responsible for invasive infections (2015-2017). Clin Microbiol Infect. 2019;25(5):634.e1–4. https://doi.org/10.1016/j.cmi.2019.02.007. Epub 2019 Feb 14. PMID: 30771532.

    Article  CAS  PubMed  Google Scholar 

  37. Souza Goebel C, de Mattos OF, Severo LC. Infección por Saccharomyces cerevisiae [Saccharomyces cerevisiae infections]. Rev Iberoam Micol. 2013;30(3):205–8. https://doi.org/10.1016/j.riam.2013.03.001. Epub 2013 Apr 11. PMID: 23583718.

    Article  PubMed  Google Scholar 

  38. Capoor MR, Aggarwal S, Raghvan C, Gupta DK, Jain AK, Chaudhary R. Clinical and microbiological characteristics of Rhodotorula mucilaginosa infections in a tertiary-care facility. Indian J Med Microbiol. 2014;32(3):304–9. https://doi.org/10.4103/0255-0857.136576. PMID: 25008826.

    Article  CAS  PubMed  Google Scholar 

  39. Xiao M, Chen SC, Kong F, Fan X, Cheng JW, Hou X, Zhou ML, Wang H, Xu YC. China hospital invasive fungal surveillance net (CHIF-NET) study group. Five-year China hospital invasive fungal surveillance net (CHIF-NET) study of invasive fungal infections caused by noncandidal yeasts: species distribution and azole susceptibility. Infect Drug Resist. 2018;11:1659–67. https://doi.org/10.2147/IDR.S173805. PMID: 30349323; PMCID: PMC6183553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cafarchia C, Iatta R, Immediato D, Puttilli MR, Otranto D. Azole susceptibility of Malassezia pachydermatis and Malassezia furfur and tentative epidemiological cut-off values. Med Mycol. 2015;53(7):743–8. https://doi.org/10.1093/mmy/myv049. Epub 2015 Jul 10. PMID: 26162472.

    Article  CAS  PubMed  Google Scholar 

  41. Iatta R, Figueredo LA, Montagna MT, Otranto D, Cafarchia C. In vitro antifungal susceptibility of Malassezia furfur from bloodstream infections. J Med Microbiol. 2014;63(Pt 11):1467–73. https://doi.org/10.1099/jmm.0.078709-0. Epub 2014 Aug 28. PMID: 25168965.

    Article  CAS  PubMed  Google Scholar 

  42. Bretagne S, Renaudat C, Desnos-Ollivier M, Sitbon K, Lortholary O, Dromer F, French Mycosis Study Group. Predisposing factors and outcome of uncommon yeast species-related fungaemia based on an exhaustive surveillance programme (2002-14). J Antimicrob Chemother. 2017;72(6):1784–93. https://doi.org/10.1093/jac/dkx045. PMID: 28333259.

    Article  CAS  PubMed  Google Scholar 

  43. Favre S, Rougeron A, Levoir L, Pérard B, Milpied N, Accoceberry I, Gabriel F, Vigouroux S. Saprochaete clavata invasive infection in a patient with severe aplastic anemia: efficacy of voriconazole and liposomal amphotericin B with adjuvant granulocyte transfusions before neutrophil recovery following allogeneic bone marrow transplantation. Med Mycol Case Rep. 2016;11:21–3. https://doi.org/10.1016/j.mmcr.2016.03.001. PMID: 27069848; PMCID: PMC4811851.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Espinel-Ingroff A. Comparison of in vitro activities of the new triazole SCH56592 and the echinocandins MK-0991 (L-743,872) and LY303366 against opportunistic filamentous and dimorphic fungi and yeast. J Clin Microbiol. 1998;36:2950–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Paphitou NI, Ostrosky-Zeichner L, Paetznick VL, Rodriguez JR, Rex JH. In vitro antifungal susceptibilities of Trichosporon species. J Clin Microbiol. 2003;46:1144–6.

    Google Scholar 

  46. Serena C, Pastor FJ, Gilgado F, Mayayo E, Guarro J. Efficacy of micafungin in combination with other drugs in a murine model of disseminated Trichosporonosis. Antimicrob Agents Chemother. 2005;49:497–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hizirolan G, Canton E, Sahin S, Arikan-Akdagli S. Head-to-head comparison of inhibitory and fungicidal activities of fluconazole, itraconazole, voriconazole, posaconazole, and isavuconazole against clinical isolates of Trichosporon asahii. Antimicrob Agents Chemother. 2013;57:4841–7.

    Article  Google Scholar 

  48. Guinea J, Recio S, Escribano P, Palaez T, Gama B, Bouza E. In vitro antifungal activities of isavuconazole and comparators against rare yeast pathogens. Antimicrob Agents Chemother. 2010;54:4012–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Padovan ACB, Rocha WPDS, Toti ACM, Freitas de Jesus DF, Chaves GM, Colombo AL. Exploring the resistance mechanisms in Trichosporon asahii: Triazoles as the last defense for invasive trichosporonosis. Fungal Genet Biol. 2019;133:103267. https://doi.org/10.1016/j.fgb.2019.103267. Epub 2019 Sep 9. PMID: 31513917.

    Article  CAS  PubMed  Google Scholar 

  50. Enache-Angoulvant A, Hennequin C. Invasive saccharomyces infection: a comprehensive review. Clin Infect Dis. 2005;41:1559–68.

    Article  PubMed  Google Scholar 

  51. Nielsen H, Stenderup J, Bruun B. Fungemia with Saccharomycetaceae. Report of four cases and review of the literature. Scand J Infect Dis. 1990;22:581–4.

    Article  CAS  PubMed  Google Scholar 

  52. Nyirjesy P, Vazquez JA, Ufberg DD, Sobel JD, Boikov DA, Buckley HR. Saccharomyces cerevisiae vaginitis: transmission from yeast used in baking. Obstet Gynecol. 1995;86:326–9.

    Article  CAS  PubMed  Google Scholar 

  53. Morrison VA, Haake RJ, Weisdorf DJ. The spectrum of non-Candida fungal infections following bone marrow transplantation. Medicine. 1993;72:78–89.

    Article  CAS  PubMed  Google Scholar 

  54. Holzschu DL, Chandler FW, Ajello L, Ahearn DG. Evaluation of industrial yeast for pathogenicity. Sabouradia. 1979;17:71–8.

    Article  CAS  Google Scholar 

  55. Clemons KV, McCusker JH, Davis RW, Stevens DA. Comparative pathogenesis of clinical and non-clinical isolates of Saccharomyces cerevisiae. J Infect Dis. 1994;169:859–67.

    Article  CAS  PubMed  Google Scholar 

  56. Eng RH, Drehmel R, Smith SM, Goldstein EJ. Saccharomyces cerevisiae infections in man. Sabouraudia. 1984;22:403–7.

    Article  CAS  PubMed  Google Scholar 

  57. McCullough MJ, Clemons KV, Farina C, McCusker JH, Stevens DA. Epidemiological investigation of vaginal Saccharomyces cerevisiae isolates by a genotypic method. J Clin Microbiol. 1998;36:557–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chakravarty S, Parashar A, Acharyya S. Saccharomyces cerevisiae sepsis following probiotic therapy in an infant. Indian Pediatr. 2019;56(11):971–2. PMID: 31729330.

    Article  PubMed  Google Scholar 

  59. Cimolai N, Gill MJ, Church D. Saccharomyces cerevisiae fungemia: case report and review of the literature. Diagn Microbiol Infect Dis. 1987;8:113–7.

    Article  CAS  PubMed  Google Scholar 

  60. Aucott JN, Fayen J, Grossnicklas H, Morrissey A, Lederman MM, Salata RA. Invasive infection with Saccharomyces cerevisiae: report of three cases and review. Rev Infect Dis. 1990;12:406–11.

    Article  CAS  PubMed  Google Scholar 

  61. Sethi N, Mandell W. Saccharomyces fungemia in a patient with AIDS. NY State J Med. 1988;88:278–9.

    CAS  Google Scholar 

  62. Seng P, Cerlier A, Cassagne C, Coulange M, Legré R, Stein A. Saccharomyces cerevisiae osteomyelitis in an immunocompetent baker. ID Cases. 2016;5:1–3. https://doi.org/10.1016/j.idcr.2016.05.002. PMID: 27347482; PMCID: PMC4909721.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rubinstein E, Noriega ER, Simberkoff MS, Holzman R, Rahal JJ Jr. Fungal endocarditis: analysis of 24 cases and review of the literature. Medicine. 1975;54:331–44.

    CAS  PubMed  Google Scholar 

  64. Canafax DM, Mann HJ, Dougherty SH. Postoperative peritonitis due to saccharomyces cervisiae treated with ketoconazole. Drug Intell Clin Pharm. 1982;16:698–9.

    CAS  PubMed  Google Scholar 

  65. Chertow GM, Marcantonio ER, Wells RG. Saccharomyces cerevisiae empyema in a patient with esophagopleural fistula complicating variceal sclerotherapy. Chest. 1991;99:1518–9.

    Article  CAS  PubMed  Google Scholar 

  66. Fell JW, Tallman AS, Ahearn DG. Genus Rhodotorula Harrison. In: Kreger-van Rij NJW, editor. The yeasts: a taxonomic study. 3rd ed. Amsterdam: Elsevier; 1984. p. 893–905.

    Google Scholar 

  67. Rippon JW. Medical mycology. The pathogenic fungi and pathogenic actinomycetes. 3rd ed. Philadelphia, PA: W. B. Saunders; 1988. p. 610–1.

    Google Scholar 

  68. Kiehn TE, Gorey E, Brown AE, Edwards FF, Armstrong D. Sepsis due to Rhodotorula related to use of indwelling central venous catheters. Clin Infect Dis. 1992;14:841–6.

    Article  CAS  PubMed  Google Scholar 

  69. Ahearn DG, Jannach JR, Roth FJ. Speciation and densities of yeasts in human urine specimens. Sabouraudia. 1966;5:110–9.

    Article  CAS  PubMed  Google Scholar 

  70. Saez H. Etude ecologique sur les Rhodotorula des homotherms. Rev Med Vet. 1979;130:903–8.

    Google Scholar 

  71. Anaissie E, Bodey GP, Kantarjian H, et al. New spectrum of fungal infections in patients with cancer. Rev Infect Dis. 1989;11:369–78.

    Article  CAS  PubMed  Google Scholar 

  72. Lin SY, Lu PL, Tan BH, Chakrabarti A, Wu UI, Yang JH, Patel AK, Li RY, Watcharananan SP, Liu Z, Chindamporn A, Tan AL, Sun PL, Hsu LY, Chen YC, Asia Fungal Working Group (AFWG). The epidemiology of non-Candida yeast isolated from blood: The Asia surveillance study. Mycoses. 2019;62(2):112–20. https://doi.org/10.1111/myc.12852. Epub 2018 Oct 17. PMID: 30230062; PMCID: PMC7379604.

    Article  CAS  PubMed  Google Scholar 

  73. Prigitano A, Cavanna C, Passera M, Gelmi M, Sala E, Ossi C, Grancini A, Calabrò M, Bramati S, Tejada M, Lallitto F, Farina C, Rognoni V, Fasano MA, Pini B, Romanò L, Cogliati M, Esposto MC, Tortorano AM. Evolution of fungemia in an Italian region. J Mycol Med. 2020;30(1):100906. https://doi.org/10.1016/j.mycmed.2019.100906. Epub 2019 Oct 15. PMID: 31708424.

    Article  CAS  PubMed  Google Scholar 

  74. Fernández-Ruiz M, Guinea J, Puig-Asensio M, Zaragoza Ó, Almirante B, Cuenca-Estrella M, Aguado JM, CANDIPOP Project, GEIH-GEMICOMED (SEIMC) and REIPI. Fungemia due to rare opportunistic yeasts: data from a population-based surveillance in Spain. Med Mycol. 2017;55(2):125–36. https://doi.org/10.1093/mmy/myw055. Epub 2016 Aug 4. PMID: 27495321.

    Article  PubMed  Google Scholar 

  75. Leeber DA, Scher I. Rhodotorula fungemia presenting as “endotoxic” shock. Arch Intern Med. 1969;123:78–81.

    Article  CAS  PubMed  Google Scholar 

  76. Rusthoven JJ, Feld R, Tuffnell PG. Systemic infection by Rhodotorula spp. in the immunocompromised host. J Infect. 1984;8:241–6.

    Article  CAS  PubMed  Google Scholar 

  77. Braun DK, Kauffman CA. Rhodotorula fungemia: a life-threatening complication of indwelling central venous catheters. Mycoses. 1992;35:305–8.

    Article  CAS  PubMed  Google Scholar 

  78. Louria DB, Greenberg SM, Molander DW. Fungemia caused by certain nonpathogenic strains of the family Cryptococcaceae. N Engl J Med. 1960;263:1281–4.

    Article  CAS  PubMed  Google Scholar 

  79. Pore RS, Chen J. Meningitis caused by Rhodotorula. Sabouraudia. 1976;14:331–5.

    Article  CAS  PubMed  Google Scholar 

  80. Tuon FF, Costa SF, Rhodutorula infection. A systematic review of 128 cases from literature. Rev Iberoam Micol. 2008;25:135–40.

    Article  PubMed  Google Scholar 

  81. Garcia Suarez J, Gomez Herruz P, Cuadros JA, Burgaleta C. Epideimiology and outcome of Rhodutorula infection in haematological patients. Mycoses. 2011;54:318–24.

    Article  CAS  PubMed  Google Scholar 

  82. Mori T, Nakamura Y, Kato J, Sugita K, Murata M, Kamei K. Fungemia due to Rhodutorula mucilaginosa after allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis. 2011;14:91–4.

    Article  PubMed  Google Scholar 

  83. Spiliopoulou A, Anastassiou ED, Christofidou M. Rhodutorula fungemia of an intensive care unit patient and review of published cases. Mycopathologia. 2012;174:301–9.

    Article  PubMed  Google Scholar 

  84. Gyaurgieva OH, Bogomolova TS, Gorshkova GI. Meningitis caused by Rhodotorula rubra in an HIV-infected patient. J Med Vet Mycol. 1996;34:357–9.

    Article  CAS  PubMed  Google Scholar 

  85. Diekema DJ, Petroelje B, Messer SA, Hollis RJ, Pfaller MA. Activities of available and investigational agents against Rhodotorula species. J Clin Microbiol. 2005;43:476–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. de St Maurice A, Frangoul H, Coogan A, Williams JV. Prolonged fever and splenic lesions caused by Malassezia restricta in an immunocompromised patient. Pediatr Transplant. 2014;18(8):E283–6. https://doi.org/10.1111/petr.12351. Epub 2014 Sep 3. PMID: 25187171; PMCID: PMC4644127.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Marcon MJ, Powell DA. Human infections due to Malassezia spp. Clin Microbiol Rev. 1992;5:101–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gaitanis G, Magiatis P, Hantscheke M, Bassukas ID, Velegraki A. The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev. 2012;25:106–41.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Theelen B, Cafarchia C, Gaitanis G, Bassukas ID, Boekhout T, Dawson TL Jr. Malassezia ecology, pathophysiology, and treatment. Med Mycol. 2018;56(suppl_1):S10–25. https://doi.org/10.1093/mmy/myx134.

    Article  CAS  PubMed  Google Scholar 

  90. Rhimi W, Theelen B, Boekhout T, Otranto D, Cafarchia C. Malassezia spp. yeasts of emerging concern in fungemia. Front Cell Infect Microbiol. 2020;10:370. https://doi.org/10.3389/fcimb.2020.00370. PMID: 32850475; PMCID: PMC7399178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ingham E, Cunningham AC. Malassezia furfur. J Med Vet Mycol. 1993;31:265–88.

    Article  Google Scholar 

  92. Marcon MJ, Powell DA. Epidemiology, diagnosis and management of M. furfur systemic infection. Diagn Microbiol Infect Dis. 1987;10:161–75.

    Article  Google Scholar 

  93. Barber GR, Brown AE, Kiehn TE, Edwards FF, Armstrong D. Catheter-related Malassezia furfur fungemia in immunocompromised patients. Am J Med. 1993;95:365–70.

    Article  CAS  PubMed  Google Scholar 

  94. Weiss SJ, Schoch PE, Cunha BA. Malassezia furfur fungemia associated with central venous catheter lipid emulsion infusion. Heart Lung. 1991;20:87–90.

    CAS  PubMed  Google Scholar 

  95. van Belkum A, Boekhout T, Bosboom R. Monitoring spread of Malassezia infections in a neonatal intensive care unit by PCR-medicated genetic typing. J Clin Microbiol. 1994;32:2528–32.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Nelson SC, Yau YC, Richardson SE, Matlow AG. Improved detection of Malassezia species in lipid-supplemented peds plus blood culture bottles. J Clin Microbiol. 1995;33:1005–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Denis J, Machouart M, Morio F, Sabou M, Kauffmann-LaCroix C, Contet-Audonneau N, Candolfi E, Letscher-Bru V. Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identifying clinical Malassezia isolates. J Clin Microbiol. 2016;55(1):90–6. https://doi.org/10.1128/JCM.01763-16. PMID: 27795342; PMCID: PMC5228266.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kolecka A, Khayhan K, Arabatzis M, Velegraki A, Kostrzewa M, Andersson A, Scheynius A, Cafarchia C, Iatta R, Montagna MT, Youngchim S, Cabañes FJ, Hoopman P, Kraak B, Groenewald M, Boekhout T. Efficient identification of Malassezia yeasts by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Br J Dermatol. 2014;170(2):332–41. https://doi.org/10.1111/bjd.12680. PMID: 24125026.

    Article  CAS  PubMed  Google Scholar 

  99. Velegraki A, Cafarchia C, Gaitanis G, Iatta R, Boekhout T. Malassezia infections in humans and animals: pathophysiology, detection, and treatment. PLoS Pathog. 2015;11(1):e1004523. https://doi.org/10.1371/journal.ppat.1004523. PMID: 25569140; PMCID: PMC4287564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim JY, Hahn HJ, Choe YB, Lee YW, Ahn KJ, Moon KC. Molecular biological identification of Malassezia yeasts using pyrosequencing. Ann Dermatol. 2013;25(1):73–9. https://doi.org/10.5021/ad.2013.25.1.73. Epub 2013 Feb 14. PMID: 23467187; PMCID: PMC3582932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rojas FD, Córdoba SB, de Los Ángeles Sosa M, Zalazar LC, Fernández MS, Cattana ME, Alegre LR, Carrillo-Muñoz AJ, Giusiano GE. Antifungal susceptibility testing of Malassezia yeast: comparison of two different methodologies. Mycoses. 2017;60(2):104–11. https://doi.org/10.1111/myc.12556. Epub 2016 Sep 14. PMID: 27625339.

    Article  CAS  PubMed  Google Scholar 

  102. Gemeinhardt H. Lungenpathogenitat von Trichosporon capitatum beim menschen. Zentrablatt fur Bakteriolgie (Series A). 1965;196:121–33.

    CAS  Google Scholar 

  103. Martino P, Venditti M, Micozzi A, et al. Blastoschizomyces capitatus: an emerging cause of invasive fungal disease in leukemia patients. Rev Infect Dis. 1990;12:570–82.

    Article  CAS  PubMed  Google Scholar 

  104. Aslani N, Janbabaei G, Abastabar M, Meis JF, Babaeian M, Khodavaisy S, Boekhout T, Badali H. Identification of uncommon oral yeasts from cancer patients by MALDI-TOF mass spectrometry. BMC Infect Dis. 2018;18(1):24. https://doi.org/10.1186/s12879-017-2916-5. PMID: 29310582; PMCID: PMC5759378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tanabe MB, Patel SA. Blastoschizomyces capitatus pulmonary infections in immunocompetent patients: case report, case series and literature review. Epidemiol Infect. 2018;146(1):58–64. https://doi.org/10.1017/S0950268817002643. Epub 2017 Dec 4. PMID: 29198203.

    Article  CAS  PubMed  Google Scholar 

  106. Morris JT, Beckius M, McAllister CK. Sporobolomyces infection in an AIDS patient. J Infect Dis. 1991;164:623–4.

    Article  CAS  PubMed  Google Scholar 

  107. Sharma V, Shankar J, Kotamarthi V. Endogeneous endophthalmitis caused by Sporobolomyces salmonicolor. Eye (Lond). 2006;20(8):945–6. https://doi.org/10.1038/sj.eye.6702051. Epub 2005 Aug 12. PMID: 16096659.

    Article  CAS  PubMed  Google Scholar 

  108. Tang HJ, Lai CC, Chao CM. Central-line-associated bloodstream infection caused by Sporobolomyces salmonicolor. Infect Control Hosp Epidemiol. 2015;36(9):1111–2. https://doi.org/10.1017/ice.2015.158. Epub 2015 Jun 19. PMID: 26088061.

    Article  PubMed  Google Scholar 

  109. Morrow JD. Prosthetic cranioplasty infection due to Sporobolomyces. J Tenn Med Assoc. 1994;87(11):466–7. PMID: 7983860

    CAS  PubMed  Google Scholar 

  110. Espinel-Ingroff A, Stockman L, Roberts G, Pincus D, Pollack J, Marler J. Comparison of RapID yeast plus system with API 20C system for identification of common, new, and emerging yeast pathogens. J Clin Microbiol. 1998;36(4):883–6. https://doi.org/10.1128/JCM.36.4.883-886.1998. PMID: 9542903; PMCID: PMC104655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chao QT, Lee TF, Teng SH, Peng LY, Chen PH, Teng LJ, Hsueh PR. Comparison of the accuracy of two conventional phenotypic methods and two MALDI-TOF MS systems with that of DNA sequencing analysis for correctly identifying clinically encountered yeasts. PLoS One. 2014;9(10):e109376. https://doi.org/10.1371/journal.pone.0109376. PMID: 25330370; PMCID: PMC4199611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Marcellino N, Beuvier E, Grappin R, Guéguen M, Benson DR. Diversity of Geotrichum candidum strains isolated from traditional cheesemaking fabrications in France. Appl Environ Microbiol. 2001;67(10):4752–9. https://doi.org/10.1128/aem.67.10.4752-4759.2001. PMID: 11571181; PMCID: PMC93228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Durán Graeff L, Seidel D, Vehreschild MJ, Hamprecht A, Kindo A, Racil Z, Demeter J, De Hoog S, Aurbach U, Ziegler M, Wisplinghoff H. Cornely OA; FungiScope group. Invasive infections due to Saprochaete and Geotrichum species: report of 23 cases from the FungiScope registry. Mycoses. 2017;60(4):273–9. https://doi.org/10.1111/myc.12595. Epub 2017 Feb 2. PMID: 28150341.

    Article  CAS  PubMed  Google Scholar 

  114. Henrich TJ, Marty FM, Milner DA Jr, Thorner AR. Disseminated Geotrichum candidum infection in a patient with relapsed acute myelogenous leukemia following allogeneic stem cell transplantation and review of the literature. Transpl Infect Dis. 2009;11(5):458–62. https://doi.org/10.1111/j.1399-3062.2009.00418.x. PMID: 19804480.

    Article  CAS  PubMed  Google Scholar 

  115. Meena S, Singh G, Dabas Y, Rajshekhar P, Xess I. Geotrichum candidum in infective endocarditis. J Glob Infect Dis. 2017;9(3):127–8. https://doi.org/10.4103/jgid.jgid_112_16. PMID: 28878529; PMCID: PMC5572201

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ng KP, Soo-Hoo TS, Koh MT, Kwan PW. Disseminated Geotrichum infection. Med J Malaysia. 1994;49(4):424–6. PMID: 7674982.

    CAS  PubMed  Google Scholar 

  117. Ioannou P, Papakitsou I. Kodamaea ohmeri infections in humans: a systematic review. Mycoses. 2020;63(7):636–43. https://doi.org/10.1111/myc.13094. Epub 2020 May 6. PMID: 32323385.

    Article  PubMed  Google Scholar 

  118. Sundaram PS, Bijulal S, Tharakan JA, Antony M. Kodamaea ohmeri tricuspid valve endocarditis with right ventricular inflow obstruction in a neonate with structurally normal heart. Ann Pediatr Cardiol. 2011;4(1):77–80. https://doi.org/10.4103/0974-2069.79632. PMID: 21677814; PMCID: PMC3104542.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ni B, Gu W, Mei Y, Miao K, Zhang S, Shao Y. A Rare Life-threatening Kodamaea ohmeri endocarditis associated with hemophagocytic lymphohistiocytosis. Rev Esp Cardiol. 2018;71(1):51–3. https://doi.org/10.1016/j.rec.2016.12.035. Epub 2017 Jan 30. PMID: 28153549.

    Article  PubMed  Google Scholar 

  120. Al-Sweih N, Khan ZU, Ahmad S, Devarajan L, Khan S, Joseph L, Chandy R. Kodamaea ohmeri as an emerging pathogen: a case report and review of the literature. Med Mycol. 2011;49(7):766–70. https://doi.org/10.3109/13693786.2011.572300. Epub 2011 Mar 28. PMID: 21438792.

    Article  PubMed  Google Scholar 

  121. Kanno Y, Wakabayashi Y, Ikeda M, Tatsuno K, Misawa Y, Sato T, Yanagimoto S, Okugawa S, Moriya K, Yotsuyanagi H. Catheter-related bloodstream infection caused by Kodamaea ohmeri: a case report and literature review. J Infect Chemother. 2017;23(6):410–4. https://doi.org/10.1016/j.jiac.2017.01.003. Epub 2017 Feb 7. PMID: 28188094.

    Article  PubMed  Google Scholar 

  122. Tashiro A, Nei T, Sugimoto R, Watanabe A, Hagiwara J, Takiguchi T, Yokota H, Kamei K. Kodamaea ohmeri fungemia in severe burn: case study and literature review. Med Mycol Case Rep. 2018;22:21–3. https://doi.org/10.1016/j.mmcr.2018.07.005. PMID: 30094134; PMCID: PMC6073081.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Vivas R, Beltran C, Munera MI, Trujillo M, Restrepo A, Garcés C. Fungemia due to Kodamaea ohmeri in a young infant and review of the literature. Med Mycol Case Rep. 2016;13:5–8. https://doi.org/10.1016/j.mmcr.2016.06.001. PMID: 27630816; PMCID: PMC5013248.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Chakrabarti A, Rudramurthy SM, Kale P, Hariprasath P, Dhaliwal M, Singhi S, Rao KL. Epidemiological study of a large cluster of fungaemia cases due to Kodamaea ohmeri in an Indian tertiary care Centre. Clin Microbiol Infect. 2014;20(2):O83–9. https://doi.org/10.1111/1469-0691.12337. Epub 2013 Sep 4. PMID: 24004250.

    Article  CAS  PubMed  Google Scholar 

  125. Santino I, Bono S, Borruso L, Bove M, Cialdi E, Martinelli D, Alari A. Kodamaea ohmeri isolate from two immunocompromised patients: first report in Italy. Mycoses. 2013;56(2):179–81. https://doi.org/10.1111/j.1439-0507.2012.02232.x. Epub 2012 Aug 12. PMID: 22882303.

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • de Almeida Júnior JN, Hennequin C. Invasive Trichosporon infection: a systematic review on a re-emerging fungal pathogen. Front Microbiol. 2016;7:1629. https://doi.org/10.3389/fmicb.2016.01629. eCollection 2016.PMID: 27799926.

    Article  PubMed  PubMed Central  Google Scholar 

  • Durán Graeff L, Seidel D, Vehreschild MJ, Hamprecht A, Kindo A, Racil Z, Demeter J, De Hoog S, Aurbach U, Ziegler M, Wisplinghoff H, Cornely OA, FungiScope Group. Invasive infections due to Saprochaete and Geotrichum species: report of 23 cases from the FungiScope registry. Mycoses. 2017;60(4):273–9. https://doi.org/10.1111/myc.12595. Epub 2017 Feb 2. PMID: 28150341.

    Article  CAS  PubMed  Google Scholar 

  • Enache-Angoulvant A, Hennequin C. Invasive saccharomyces infection: a comprehensive review. Clin Infect Dis. 2005;41:1559–68.

    Article  PubMed  Google Scholar 

  • Fernández-Ruiz M, Guinea J, Puig-Asensio M, Zaragoza Ó, Almirante B, Cuenca-Estrella M, Aguado JM, CANDIPOP Project, GEIH-GEMICOMED (SEIMC) and REIPI. Fungemia due to rare opportunistic yeasts: data from a population-based surveillance in Spain. Med Mycol. 2017;55(2):125–36. https://doi.org/10.1093/mmy/myw055. Epub 2016 Aug 4. PMID: 27495321.

    Article  PubMed  Google Scholar 

  • Francisco EC, de Almeida Junior JN, Queiroz-Telles F, Aquino VR, Mendes AVA, de Oliveira SM, Castro PTOE, Guimarães T, Ponzio V, Hahn RC, Chaves GM, Colombo AL. Correlation of Trichosporon asahii Genotypes with anatomical sites and antifungal susceptibility profiles: data analyses from 284 Isolates collected in the last 22 years across 24 medical centers. Antimicrob Agents Chemother. 2021;65(3):e01104–20. https://doi.org/10.1128/AAC.01104-20. Print 2021 Feb 17.PMID: 33318016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia Suarez J, Gomez Herruz P, Cuadros JA, Burgaleta C. Epideimiology and outcome of Rhodutorula infection in haematological patients. Mycoses. 2011;54:318–24.

    Article  CAS  PubMed  Google Scholar 

  • Guinea J, Recio S, Escribano P, Palaez T, Gama B, Bouza E. In vitro antifungal activities of isavuconazole and comparators against rare yeast pathogens. Antimicrob Agents Chemother. 2010;54:4012–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hospenthal DR. Uncommon fungi and related species. In: Bennett JE, Dolin R, Blaser MJ, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 9th ed. Philadelphia, PA: Elsevier; 2020. p. 3222–37.

    Google Scholar 

  • Ioannou P, Papakitsou I. Kodamaea ohmeri infections in humans: a systematic review. Mycoses. 2020;63(7):636–43. https://doi.org/10.1111/myc.13094. Epub 2020 May 6. PMID: 32323385.

    Article  PubMed  Google Scholar 

  • Lin SY, Lu PL, Tan BH, Chakrabarti A, Wu UI, Yang JH, Patel AK, Li RY, Watcharananan SP, Liu Z, Chindamporn A, Tan AL, Sun PL, Hsu LY, Chen YC. Asia Fungal Working Group (AFWG). The epidemiology of non-Candida yeast isolated from blood: the Asia surveillance study. Mycoses. 2019;62(2):112–20. https://doi.org/10.1111/myc.12852. Epub 2018 Oct 17. PMID: 30230062; PMCID: PMC7379604.

    Article  CAS  PubMed  Google Scholar 

  • Martino P, Venditti M, Micozzi A, et al. Blastoschizomyces capitatus: an emerging cause of invasive fungal disease in leukemia patients. Rev Infect Dis. 1990;12:570–82.

    Article  CAS  PubMed  Google Scholar 

  • Theelen B, Cafarchia C, Gaitanis G, Bassukas ID, Boekhout T, Dawson TL Jr. Malassezia ecology, pathophysiology, and treatment. Med Mycol. 2018;56(suppl_1):S10–25. https://doi.org/10.1093/mmy/myx134.

    Article  CAS  PubMed  Google Scholar 

  • Vazquez JA. Rhodotorula, saccharomyces, Malassezia, Trichosporon, Blastoschizomyces, and Sporobolomyces. In: Kauffman CA, Pappas PG, Sobel JD, Dismukes WE, editors. Essentials of clinical mycology. New York, NY: Springer; 2011. p. 227–39.

    Chapter  Google Scholar 

  • Velegraki A, Cafarchia C, Gaitanis G, Iatta R, Boekhout T. Malassezia infections in humans and animals: pathophysiology, detection, and treatment. PLoS Pathog. 2015;11(1):e1004523. https://doi.org/10.1371/journal.ppat.1004523. PMID: 25569140; PMCID: PMC4287564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao M, Chen SC, Kong F, Fan X, Cheng JW, Hou X, Zhou ML, Wang H, Xu YC. China hospital invasive fungal surveillance net (CHIF-NET) study group. Five-year China hospital invasive fungal surveillance net (CHIF-NET) study of invasive fungal infections caused by noncandidal yeasts: species distribution and azole susceptibility. Infect Drug Resist. 2018;11:1659–67. https://doi.org/10.2147/IDR.S173805. PMID: 30349323; PMCID: PMC6183553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto M, Takakura S, Hotta G, Matsumura Y, Matsushima A, Nagao M, Ito Y, Ichiyama S. Clinical characteristics and risk factors of non-Candida fungaemia. BMC Infect Dis. 2013;13:1–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose A. Vazquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colombo, R.E., Vazquez, J.A. (2023). Infections Due to Non-Candidal Yeasts. In: Hospenthal, D.R., Rinaldi, M.G., Walsh, T.J. (eds) Diagnosis and Treatment of Fungal Infections. Springer, Cham. https://doi.org/10.1007/978-3-031-35803-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35803-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35802-9

  • Online ISBN: 978-3-031-35803-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics