Skip to main content

Established and Proposed Roles of Xanthine Oxidoreductase in Oxidative and Reductive Pathways in Plants

  • Chapter
  • First Online:
Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 23))

  • 1776 Accesses

Abstract

Xanthine oxidoreductase (XOR) is among the most-intensively studied enzymes known to participate in the consumption of oxygen in eukaryotic cells. However, it attracted the attention of researchers due its participation in free radical production in vivo, mainly through the production of superoxide radicals. In plants, XOR is a key enzyme involved in purine degradation where it catalyzes the oxidation of hypoxanthine to xanthine and of xanthine to uric acid. Both reactions are accompanied by electron transfer to either NAD+ with simultaneous formation of NADH or to molecular oxygen, which results in formation of superoxide radicals. Characterization of plant XOR mutants and isolated XOR proteins from various plant species provided evidence that the enzyme plays significant role in plant growth, leaf senescence, fruit size, synthesis of nitrogen storage compounds, and plant–pathogen interactions. Moreover, the ability of XOR to carry out redox reactions as NADH oxidase and to produce reactive oxygen species and nitric oxide, together with a possible complementary role in abscisic acid synthesis have raised further attention on the importance of this enzyme. Based on these established and proposed functions, XOR is discussed as regulator of different processes of interest in plant biology and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

AO:

Aldehyde oxidase

GOGAT cycle:

Glutamine oxoglutarate aminotransferase cycle

H2O2 :

Hydrogen peroxide

NO:

Nitric oxide

NR:

Nitrate reductase

O2 •− :

Superoxide radical

ONOO− :

Peroxynitrite

SOD:

Superoxide dismutase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SHAM:

Salicylhydroxamic acid

XDH:

Xanthine dehydrogenase

XO:

Xanthine oxidase

XOR:

Xanthine oxidoreductase

References

  • Adamakis IDS, Panteris E, Eleftheriou EP (2012) Tungsten toxicity in plants. Plants 1:82–99

    Google Scholar 

  • Agarwal A, Banerjee A, Banerjee UC (2011) Xanthine oxidoreductase: a journey from purine metabolism to cardiovascular excitation-contraction coupling. Crit Rev Biotechnol 31:264–280

    CAS  PubMed  Google Scholar 

  • Alesandrini F, Mathis R, Van de Sype G (2003) Possible roles for a cysteine protease and hydrogen peroxide in soybean nodule development and senescence. New Phytol 158:131–138

    CAS  Google Scholar 

  • Amaya Y, Yamazaki K, Sato M et al (1990) Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type. Amino acid sequence of rat liver xanthine dehydrogenase and identification of the cleavage sites of the enzyme protein during irreversible conversion by trypsin. J Biol Chem 265:14170–14175

    CAS  PubMed  Google Scholar 

  • Ariz I, Artola E, Cabrera Asensio A et al (2011) High irradiance increases NH4 + tolerance in Pisum sativum: higher carbon and energy availability improve ion balance but not N assimilation. J Plant Physiol 168:1009–1015

    CAS  PubMed  Google Scholar 

  • Arst HN Jr, Tollervey DW, Sealy-Lewis HM (1982) A possible regulatory gene for the molybdenum-containing cofactor in Aspergillus nidulans. J Gen Microbiol 128:1083–1093

    CAS  PubMed  Google Scholar 

  • Asensio AC, Marino D, James EK, Ariz I, Arrese-Igor C, Aparicio-Tejo PM, Arredondo-Peter R, Moran JF (2011) Expression and localization of a Rhizobium-derived cambialistic superoxide dismutase in pea (Pisum sativum) nodules subjected to oxidative stress. Mol Plant Microbe Interact 24:1247–1257

    CAS  PubMed  Google Scholar 

  • Atkins CA, Sanford PJ, Storer PJ, Pate JS (1988) Inhibition of nodule functioning in cowpea by a xanthine oxidoreductase inhibitor, allopurinol. Plant Physiol 88:1229–1234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barabás NK, Omarov RT, Erdei L, Lips SH (2000) Distribution of the Mo-enzymes aldehyde oxidase, xanthine dehydrogenase and nitrate reductase in maize (Zea mays L.) nodal roots as affected by nitrogen and salinity. Plant Sci 15:49–58

    Google Scholar 

  • Begara-Morales JC, Chaki M, Sánchez-Calvo B et al (2013) Protein tyrosine nitration in pea roots during development and senescence. J Exp Bot 64:1121–1134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bentley MM, Williamson JH, Oliver MJ (1981) The effects of molybdate, tungstate and lxd on aldehyde oxidase and xanthine dehydrogenase in Drosophila melanogaster. Can J Genet Cytol 23:597–609

    CAS  PubMed  Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signalling in plants. Annu Rev Plant Biol 59:21–39

    CAS  PubMed  Google Scholar 

  • Bittner F, Mendel RR (2010) Cell biology of molybdenum. Plant Cell Monogr 17:119–143

    CAS  Google Scholar 

  • Bittner F, Oreb M, Mendel RR (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem 276:40381–40384

    CAS  PubMed  Google Scholar 

  • Boland MJ (1981) NAD+: xanthine dehydrogenase from nodules of navy beans: partial purification and properties. Biochem Int 2:567–574

    CAS  Google Scholar 

  • Boland MJ, Schubert KR (1982) Purine biosynthesis and catabolism in soybean root nodules: incorporation of 14C from 14CO2 into xanthine. Arch Biochem Biophys 213:486–491

    CAS  PubMed  Google Scholar 

  • Boland MJ, Blevins DG, Randall DD (1983) Soybean nodule xanthine dehydrogenase: a kinetic study. Arch Biochem Biophys 222:435–441

    CAS  PubMed  Google Scholar 

  • Booth VH (1935) The identity of xanthine oxidase and the Schardinger enzyme. Biochem J 29:1732–1748

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brychkova G, Alikulov Z, Fluhr R, Sagi M (2008) A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the AtXDH1 Arabidopsis mutant. Plant J 54:496–509

    CAS  PubMed  Google Scholar 

  • Cantu-Medellin N, Kelley EE (2013) Xanthine oxidoreductase-catalyzed reduction of nitrite to nitric oxide: insights regarding where, when and how. Nitric Oxide 34:19–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coelho C, Mahro M, Trincão J et al (2012) The first mammalian aldehyde oxidase crystal structure: insights into substrate specificity. J Biol Chem 287:40690–40702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corpas FJ, Palma JM, Sandalio LM et al (2008) Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves. J Plant Physiol 165:1319–1330

    CAS  PubMed  Google Scholar 

  • Corpas FJ, Hayashi M, Mano S et al (2009) Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of arabidopsis plants. Plant Physiol 151:2083–2094

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cowan AK, Cripps RF, Richings EW, Taylor NJ (2001) Fruit size: towards an understanding of the metabolic control of fruit growth using avocado as a model system. Physiol Plant 111:127–136

    CAS  Google Scholar 

  • Crawford NM, Galli M, Tischner R et al (2006) Response to Zemojtel et al: plant nitric oxide synthase: back to square one. Trends Plant Sci 11:526

    CAS  Google Scholar 

  • Datta DB, Triplett EW, Newcomb EH (1991) Localization of xanthine dehydrogenase in cowpea root nodules: implications for the interaction between cellular compartments during ureide biogenesis. Proc Natl Acad Sci USA 88:4700–4702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Del Río LA, Fernández VM, Rupérez FL et al (1989) NADH induces the generation of superoxide radicals in leaf peroxisomes. Plant Physiol 89:728–731

    PubMed Central  PubMed  Google Scholar 

  • Del Río LA, Corpas FJ, Barroso JB (2004) Nitric oxide and nitric oxide synthase activity in plants. Phytochemistry 65:783–792

    PubMed  Google Scholar 

  • Della Corte E, Gozzetti G, Novello F, Stirpe F (1969) Properties of the xanthine oxidase from human liver. Biochim Biophys Acta 191:164–166

    CAS  PubMed  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Desikan R, Burnett EC, Hancock JT et al (1998) Harpin and hydrogen peroxide induce the expression of a homologue of gp91-phox in Arabidopsis thaliana suspension cultures. J Exp Bot 49:1767–1771

    CAS  Google Scholar 

  • Doke N, Ohashi Y (1988) Involvement of an O2 −-generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiol Mol Plant Pathol 32:163–175

    CAS  Google Scholar 

  • Dordas C, Rivoal J, Hill RD (2003) Plant haemoglobins, nitric oxide and hypoxic stress. Ann Bot 91:173–178

    CAS  PubMed Central  PubMed  Google Scholar 

  • Enroth C, Eger BT, Okamoto K et al (2000) Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc Natl Acad Sci USA 97:10723–10728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Escuredo PR, Minchin FR et al (1996) lnvolvement of activated oxygen in nitrate-induced senescence of pea root nodules. Plant Physiol 11:1187–1195

    Google Scholar 

  • Evans PJ, Gallesi D, Mathieu C et al (1999) Oxidative stress occurs during soybean nodule senescence. Planta 208:73–79

    CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    CAS  PubMed  Google Scholar 

  • Fridovich I (1998) The trail to superoxide dismutase. Protein Sci 7:2688–2690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fridovich I, Handler P (1958) Xanthine oxidase. III. Sulfite oxidation as an ultra sensitive assay. J Biol Chem 233:1578–1580

    CAS  PubMed  Google Scholar 

  • Fujihara S, Yamaguchi M (1978) Effects of allopurinol [4-hydroxypyrazolo(3,4-d)pyrimidine] on the metabolism of allantoin in soybean plants. Plant Physiol 62:134–138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Godber BLJ, Doel JJ, Sapkota GP et al (2000) Reduction of nitrite to nitric oxide catalysed by xanthine oxidoreductase. J Biol Chem 275:7757–7763

    CAS  PubMed  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gremer L, Meyer O (1996) Characterization of xanthine dehydrogenase from the anaerobic bacterium Veillonella atypica and identification of a molybdopterin-cytosine-dinucleotide containing molybdenum cofactor. Eur J Biochem 238:862–866

    CAS  PubMed  Google Scholar 

  • Grimaldi S, Schoepp-Cothenet B, Ceccaldi P et al (2013) The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. Biochim Biophys Acta 1827:1048–1085

    CAS  PubMed  Google Scholar 

  • Guo FQ, Crawford NM (2005) Arabidopsis nitric oxide synthase1 is targeted to mitochondria and protects against oxidative damage and dark-induced senescence. Plant Cell 17:3436–3450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta KJ, Alisdair RF, Kaiser WM, van Dongen J (2011a) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    CAS  PubMed  Google Scholar 

  • Gupta KJ, Hincha DK, Mur LAJ (2011b) NO way to treat a cold. New Phytol 189:360–363

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (eds) (2007) Free radicals in biology and medicine. Clarendon, Oxford

    Google Scholar 

  • Harrison R (2002) Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 33:774–797

    CAS  PubMed  Google Scholar 

  • Hesberg C, Hänsch R, Mendel RR, Bittner F (2004) Tandem orientation of duplicated xanthine dehydrogenase genes from Arabidopsis thaliana. J Biol Chem 279:13547–13554

    CAS  PubMed  Google Scholar 

  • Hettrich D, Lingens F (1991) Microbial metabolism of quinoline and related compounds. VIII. Xanthine dehydrogenase from a quinoline utilizing Pseudomonas putida strain. Biol Chem Hoppe Seyler 372:203–211

    CAS  PubMed  Google Scholar 

  • Hille R, Nishino T (1995) Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. FASEB J 9:995–1003

    CAS  PubMed  Google Scholar 

  • Hille R, Sprecher H (1987) On the mechanism of action of xanthine oxidase. Evidence in support of an oxo transfer mechanism in the molybdenum-containing hydroxylases. J Biol Chem 262:10914–10917

    CAS  PubMed  Google Scholar 

  • Hille R, Nishino T, Bittner F (2011) Molybdenum enzymes in higher organisms. Coord Chem Rev 255:1179–1205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hopkins FG (1921) On an autoxidisable constituent of the cell. Biochem J 15:286–305

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS et al (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ivanov NV, Trani M, Edmondson DE (2004) High-level expression and characterization of a highly functional Comamonas acidovorans xanthine dehydrogenase in Pseudomonas aeruginosa. Protein Expr Purif 37:72–82

    CAS  PubMed  Google Scholar 

  • Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856

    CAS  PubMed  Google Scholar 

  • Jeong J, Lisinski I, Kadegowda AK et al (2013) A test of current models for the mechanism of milk-lipid droplet secretion. Traffic 14:974–986

    CAS  PubMed  Google Scholar 

  • Jiang X, Wang C (2007) Cadmium distribution and its effects on molybdate-containing hydroxylases in Phragmites australis. Aquat Bot 86:353–360

    CAS  Google Scholar 

  • Kawada J, Shirakawa Y, Yoshimura Y, Nishida M (1982) Thyroid xanthine oxidase and its role in thyroid iodine metabolism in the rat: difference between effects of allopurinol and tungstate. J Endocrinol 95:117–241

    CAS  PubMed  Google Scholar 

  • Kitamura S, Sugihara K, Ohta S (2006) Drug-metabolizing ability of molybdenum hydroxylases. Drug Metab Pharmacokinet 21:83–98

    CAS  PubMed  Google Scholar 

  • Komoto N, Yukuhiro K, Tamura T (1999) Structure and expression of tandemly duplicated xanthine dehydrogenase genes of the silkworm (Bombyx mori). Insect Mol Biol 8:73–83

    CAS  PubMed  Google Scholar 

  • Konishi M, Yanagisawa S (2013) Arabidopsis NIN-like transcription factors have a central role in nitrate signalling. Nat Commun 4:1617

    PubMed  Google Scholar 

  • Kumar R, Taneja VA (1977) Xanthine oxidase in lentil (Lens esculenta) seedlings. Biochim Biophys Acta 485:489–491

    CAS  PubMed  Google Scholar 

  • Leimkühler S, Kern M, Solomon PZ et al (1998) Xanthine dehydrogenase from the phototrophic purple bacterium Rhodobacter capsulatus is more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes. Mol Microbiol 27:853–869

    PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    CAS  PubMed  Google Scholar 

  • Li H, Cui H, Kundu TK et al (2008) Nitric oxide production from nitrite occurs primarily in tissues not in the blood: critical role of xanthine oxidase and aldehyde oxidase. J Biol Chem 283:17855–17863

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Kundu TK, Zweier JL (2009) Characterization of the magnitude and mechanism of aldehyde oxidase-mediated nitric oxide production from nitrite. J Biol Chem 284:33850–33858

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maia L, Duarte RO, Ponces-Freire A et al (2007) NADH oxidase activity of rat and human liver xanthine oxidoreductase: potential role in superoxide production. J Biol Inorg Chem 12:777–787

    CAS  PubMed  Google Scholar 

  • McCord JM, Fridovich I (1968) The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem 243:5753–5760

    CAS  PubMed  Google Scholar 

  • McCord JM, Fridovich I (1969) An enzymic function for erythrocuprein (Hemocuprein). J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  • Mendel RR (2011) Cell biology of molybdenum in plants. Plant Cell Rep 30:1787–1797

    CAS  PubMed  Google Scholar 

  • Meyer C, Lea US, Provan F et al (2005) Is nitrate reductase a major player in the plant NO (nitric oxide) game? Photosynth Res 83:181–189

    CAS  PubMed  Google Scholar 

  • Mittler R, Herr EH, Orvar BL et al (1999) Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proc Natl Acad Sci USA 96:14165–14170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Montalbini P (1992a) Inhibition of hypersensitive response by allopurinol applied to the host in the incompatible relationship between Phaseolus vulgaris and Uromyces phaseoli. J Phytopathol 134:218–228

    CAS  Google Scholar 

  • Montalbini P (1992b) Ureides and enzymes of ureide synthesis in wheat seeds and leaves and effect of allopurinol on Puccinia recondita f. sp. tritici infection. Plant Sci 87:225–231

    CAS  Google Scholar 

  • Montalbini P (1995) Effect of rust infection on purine catabolism enzyme levels in wheat leaves. Physiol Mol Plant Pathol 46:275–292

    CAS  Google Scholar 

  • Montalbini P (1998) Purification and some properties of xanthine dehydrogenase from wheat leaves. Plant Sci 134:89–102

    CAS  Google Scholar 

  • Montalbini P (2000) Xanthine dehydrogenase from leaves of leguminous plants: purification, characterization and properties of the enzyme. J Plant Physiol 156:3–16

    CAS  Google Scholar 

  • Montalbini P, Della Torre G (1996) Evidence of a two-fold mechanism responsible for the inhibition by allopurinol of the hypersensitive response induced in tobacco by tobacco necrosis virus. Physiol Mol Plant Pathol 48:273–287

    CAS  Google Scholar 

  • Morgan EJ, Stewart CP, Hopkins FG (1922) On the anaerobic and aerobic oxidation of xanthine and hypoxanthine by tissues and by milk. Proc R Soc Lond B 94:109–131

    CAS  Google Scholar 

  • Murray KN, Watson JG, Chaykin S (1966) Catalysis of the direct transfer of oxygen from nicotinamide N-oxide to xanthine by xanthine oxidase. J Biol Chem 241:4798–4801

    CAS  PubMed  Google Scholar 

  • Nakagawa A, Sakamoto S, Takahashi M et al (2007) The RNAi-mediated silencing of xanthine dehydrogenase impairs growth and fertility and accelerates leaf senescence in transgenic Arabidopsis plants. Plant Cell Physiol 48:1484–1495

    CAS  PubMed  Google Scholar 

  • Nguyen J (1986) Plant xanthine dehydrogenase: its distribution, properties and function. Physiol Végétale 24:263–281

    CAS  Google Scholar 

  • Nguyen J, Feierabend J (1978) Some properties and sub cellular localization of xanthine dehydrogenase in pea leaves. Plant Sci Lett 13:125–132

    CAS  Google Scholar 

  • Nguyen J, Machal L, Vidal J et al (1986) Immunochemical studies on xanthine dehydrogenase of soybean root nodules: ontogenic changes in the level of enzyme and immunocytochemical localization. Planta 167:190–195

    CAS  PubMed  Google Scholar 

  • Nielsen VG, Tan S, Weinbroum A et al (1996) Lung injury after hepatoenteric ischemia-reperfusion: role of xanthine oxidase. Am J Respir Crit Care Med 154:1364–1369

    CAS  PubMed  Google Scholar 

  • Nishino T, Nishino T (1989) The nicotinamide adenine dinucleotide-binding site of chicken liver xanthine dehydrogenase. Evidence for alteration of the redox potential of the flavin by NAD binding or modification of the NAD-binding site and isolation of a modified peptide. J Biol Chem 264:5468–5473

    CAS  PubMed  Google Scholar 

  • Nishino T, Nishino T (1997) The conversion from the dehydrogenase type to the oxidase type of rat liver xanthine dehydrogenase by modification of cysteine residues with fluorodinitrobenzene. J Biol Chem 272:29859–29864

    CAS  PubMed  Google Scholar 

  • Nishino T, Okamoto K, Kawaguchi Y et al (2005) Mechanism of the conversion of xanthine dehydrogenase to xanthine oxidase: identification of the two cysteine disulfide bonds and crystal structure of a non-convertible rat liver xanthine dehydrogenase mutant. J Biol Chem 280:24888–24894

    CAS  PubMed  Google Scholar 

  • O’Donnell VB, Smith GCM, Jones OTG (1994) Involvement of phenyl radicals in lodonium compound inhibition of flavoenzymes. Mol Pharm 46:778–785

    Google Scholar 

  • Okamoto K, Nishino T (2008) Crystal structures of mammalian xanthine oxidoreductase bound with various inhibitors: allopurinol, febuxostat, and FYX-051. J Nippon Med Sch 75:2–3

    PubMed  Google Scholar 

  • Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191

    PubMed Central  PubMed  Google Scholar 

  • Pastori GM, Del Río LA (1997) Natural senescence of pea leaves: an activated oxygen-mediated function of peroxisomes. Plant Physiol 113:411–418

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pei ZM, Mutrata Y, Benning G et al (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cell. Nature 406:731–734

    CAS  PubMed  Google Scholar 

  • Planchet E, Kaiser WM (2006) Nitric oxide production in plants: facts and fictions. Plant Signal Behav 1:46–51

    PubMed Central  PubMed  Google Scholar 

  • Quiles FA, Raso MJ, Pineda M, Piedras P (2009) Ureide metabolism during seedling development in French bean (Phaseolus vulgaris). Physiol Plant 135:19–28

    CAS  PubMed  Google Scholar 

  • Rodríguez-Trelles F, Tarrío R, Ayala FJ (2003) Convergent neofunctionalization by positive Darwinian selection after ancient recurrent duplications of the xanthine dehydrogenase gene. Proc Natl Acad Sci USA 100:13413–13417

    PubMed Central  PubMed  Google Scholar 

  • Romero-Puertas MC, McCarthy I, Sandalio LM et al (1999) Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes. Free Radic Res 31:S25–S31

    CAS  PubMed  Google Scholar 

  • Rubio MC, James EK, Clemente MR et al (2004) Localization of superoxide dismutases and hydrogen peroxide in legume root nodules. Mol Plant Microbe Interact 17:1294–1305

    CAS  PubMed  Google Scholar 

  • Rubio MC, Becana M, Kanematsu S et al (2009) Immunolocalization of antioxidant enzymes in high-pressure frozen root and stem nodules of Sesbania rostrata. New Phytol 183:395–407

    CAS  PubMed  Google Scholar 

  • Rümer S, Gupta KJ, Kaiser WM (2009) Plant cells oxidize hydroxylamines to NO. J Exp Bot 60:2065–2072

    PubMed Central  PubMed  Google Scholar 

  • Sagi M, Omarov RT, Lips SH (1998) The Mo-hydroxylases xanthine dehydrogenase and aldehyde oxidase in ryegrass as affected by nitrogen and salinity. Plant Sci 135:125–135

    CAS  Google Scholar 

  • Sagi M, Fluhr R, Lips SH (1999) Aldehyde oxidase and xanthine dehydrogenase in a flacca tomato mutant with deficient abscisic acid and wilty phenotype. Plant Physiol 120:571–578

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sagi M, Scazzocchio C, Fluhr R (2002) The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants. Plant J 31:305–317

    CAS  PubMed  Google Scholar 

  • Sandalio LM, Fernández VM, Rupérez FL, Del Río LA (1988) Superoxide free radicals are produced in glyoxysomes. Plant Physiol 87:1–4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santos R, Herouart D, Puppo A, Touati D (2000) Critical protective role of bacterial superoxide dismutase in Rhizobium-legume symbiosis. Mol Microbiol 38:750–759

    CAS  PubMed  Google Scholar 

  • Santos R, Hérouart D, Sigaud S et al (2001) Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. Mol Plant Microbe Interact 14:86–89

    CAS  PubMed  Google Scholar 

  • Sarsenbaev KN, Abiyev SA, Kozhamzharova LS et al (2013) Effect of leaf rust on the molybdenum-containing enzymes activity in spring wheat varieties differing in resistance to infection. World Appl Sci J 25:1308–1313

    CAS  Google Scholar 

  • Sauer P, Frébortová J, Sebela M et al (2002) Xanthine dehydrogenase of pea seedlings: a member of the plant molybdenum oxidoreductase family. Plant Physiol Biochem 40:393–400

    CAS  Google Scholar 

  • Schardinger F (1902) Ãœber das Verhalten der Kuhmilch gegen Methylenblau und seine Verwendung zur Unterscheidung von ungekochter und gekochter Milch. Zeitschrift für Untersuchung der Nahrungs- und Genussmittel 5:1113–1121

    CAS  Google Scholar 

  • Scheible W-R, González-Fontes A, Lauerer M et al (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783–798

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schieber A, Edmondson DE (1993) Studies on the induction and phosphorylation of xanthine dehydrogenase in cultured chick embryo hepatocytes. Eur J Biochem 215:307–314

    CAS  PubMed  Google Scholar 

  • Schräder T, Rienhöfer A, Andreesen JR (1999) Selenium-containing xanthine dehydrogenase from Eubacterium barkeri. Eur J Biochem 264:862–871

    PubMed  Google Scholar 

  • Schwartz SH, Léon-Kloosterziel KM, Koornneef M, Zeevaart JA (1997) Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol 114:161–166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Self WT (2002) Regulation of purine hydroxylase and xanthine dehydrogenase from Clostridium purinolyticum in response to purines, selenium, and molybdenum. J Bacteriol 184:2039–2044

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serrano I, Romero-Puertas MC, Rodríguez Serrano M et al (2012) Role of peroxynitrite in programmed cell death induced in self-incompatible pollen. Plant Signal Behav 7:779–781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shakirov ZS, Khakimov SA, Shomurodov KF (2012) Effect of salinity and drought on symbiotical and biochemical properties of Onobrychis and alfalfa. Agric Sci 3:444–454

    CAS  Google Scholar 

  • Smith PMC, Atkins CA (2002) Purine biosynthesis. Big in cell division, even bigger in nitrogen assimilation. Plant Physiol 128:793–802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sparacino-Watkins CE, Tejero J, Sun B et al (2014) Nitrite reductase and NO synthase activity of the mitochondrial molybdopterin enzymes mARC1 and mARC2. J Biol Chem. doi:10.1074/jbc.M114.555177

    PubMed  Google Scholar 

  • Stirpe F, Ravaioli M, Battelli MG et al (2002) Xanthine oxidoreductase activity in human liver disease. Am J Gastroenterol 97:2079–2085

    CAS  PubMed  Google Scholar 

  • Suzuki T, Takahashi E (1975) Metabolism of xanthine and hypoxanthine in the tea plant (Thea sinensis L.). Biochem J 146:79–85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tajima S, Yamamoto Y (1975) Enzymes of purine catabolism in soybean plants. Plant Cell Physiol 16:271–282

    CAS  Google Scholar 

  • Taylor N, Cowan K (2001) Plant hormone homeostasis and the control of avocado fruit size. Plant Growth Regul 35:247–255

    CAS  Google Scholar 

  • Taylor NJ, Cowan AK (2004) Xanthine dehydrogenase and aldehyde oxidase impact plant hormone homeostasis and affect fruit size in ‘Hass’ avocado. J Plant Res 117:121–130

    CAS  PubMed  Google Scholar 

  • Tewari RK, Kumar P, Kim S et al (2009) Nitric oxide retards xanthine oxidase-mediated superoxide anion generation in Phalaenopsis flower: an implication of NO in the senescence and oxidative stress regulation. Plant Cell Rep 28:267–279

    CAS  PubMed  Google Scholar 

  • Travis J (2004) NO-making enzyme no more: cell, PNAS papers retracted. Science 306:960

    CAS  PubMed  Google Scholar 

  • Triplett EW (1986) Two indirect methods for detecting ureide synthesis by nodulated legumes. Plant Physiol 81:566–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Triplett EW, Blevins DG, Randall DD (1980) Allantoic acid synthesis in soybean root nodule cytosol via xanthine dehydrogenase. Plant Physiol 65:1203–1206

    CAS  PubMed Central  PubMed  Google Scholar 

  • Triplett EW, Blevins DG, Randall DD (1982) Purification and properties of soybean nodule xanthine dehydrogenase. Arch Biochem Biophys 219:39–46

    CAS  PubMed  Google Scholar 

  • Truglio JJ, Theis K, Leimkühler S et al (2002) Crystal structures of the active and alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus. Structure 10:115–125

    CAS  PubMed  Google Scholar 

  • Vitória AP, Mazzafera P (1999) Xanthine degradation and related enzyme activities in leaves and fruits of two coffea species differing in caffeine catabolism. J Agric Food Chem 47:1851–1855

    PubMed  Google Scholar 

  • Vorbach C, Scriven A, Capecchi MR (2002) The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev 16:3223–3235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wahl RC, Rajagopalan KV (1982) Evidence for the inorganic nature of the cyanolyzable sulfur of molybdenum hydroxylases. J Biol Chem 257:1354–1359

    CAS  PubMed  Google Scholar 

  • Wang BL, Tang XY, Cheng LY et al (2010) Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin. New Phytol 187:1112–1123

    CAS  PubMed  Google Scholar 

  • Watanabe S, Nakagawa A, Izumi S et al (2010) RNA interference-mediated suppression of xanthine dehydrogenase reveals the role of purine metabolism in drought tolerance in Arabidopsis. FEBS Lett 584:1181–1186

    CAS  PubMed  Google Scholar 

  • Werner AK, Witte CP (2011) The biochemistry of nitrogen mobilization: purine ring catabolism. Trends Plant Sci 16:381–387

    CAS  PubMed  Google Scholar 

  • Werner AK, Medina-Escobar N, Zulawski M et al (2013) The ureide-degrading reactions of purine ring catabolism employ three amidohydrolases and one aminohydrolase in Arabidopsis, soybean, and rice. Plant Physiol 163:672–681

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willems L, Garnham B, Headrick JP (2003) Aging-related changes in myocardial purine metabolism and ischemic tolerance. Exp Gerontol 38:1169–1177

    CAS  PubMed  Google Scholar 

  • Wollers S, Heidenreich T, Zarepour M et al (2008) Binding of sulfurated molybdenum cofactor to the C-terminal domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J Biol Chem 283:9642–9650

    CAS  PubMed  Google Scholar 

  • Woo KC, Atkins CA, Pate JS (1980) Biosynthesis of ureides from purines in a cell-free system from nodule extracts of cowpea [Vigna unguiculata (L) Walp.]. Plant Physiol 66:735–739

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woolfolk CA (1985) Purification and properties of a novel ferricyanide-linked xanthine dehydrogenase from Pseudomonas putida 40. J Bacteriol 163:600–609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xi H, Schneider BL, Reitzer L (2000) Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. J Bacteriol 182:5332–5341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xiang Q, Edmondson DE (1996) Purification and characterization of a prokaryotic xanthine dehydrogenase from Comamonas acidovorans. Biochemistry 35:5441–5450

    CAS  PubMed  Google Scholar 

  • Xiong L, Gong Z, Rock CD et al (2001) Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell 1:771–781

    CAS  PubMed  Google Scholar 

  • Xu H, Zhai J, Liu Y et al (2012) The response of Mo-hydroxylases and abscisic acid to salinity in wheat genotypes with differing salt tolerances. Acta Physiol Plant 34:1767–1778

    CAS  Google Scholar 

  • Yamaguchi Y, Matsumura T, Ichida K et al (2007) Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate. J Biochem 141:513–524

    CAS  PubMed  Google Scholar 

  • Yesbergenova Z, Yang G, Oron E et al (2005) The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J 42:862–876

    CAS  PubMed  Google Scholar 

  • Yoda H, Yamaguchi Y, Sano H (2003) Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiol 132:1973–1981

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zarepour M, Kaspari K, Stagge S et al (2010) Xanthine dehydrogenase AtXDH1 from Arabidopsis thaliana is a potent producer of superoxide anions via its NADH oxidase activity. Plant Mol Biol 72:301–310

    CAS  PubMed  Google Scholar 

  • Zdunek-Zastocka E, Lips HS (2003) Is xanthine dehydrogenase involved in response of pea plants (Pisum sativum L.) to salinity or ammonium treatment? Acta Physiol Plant 25:395–401

    CAS  Google Scholar 

  • Zemojtel T, Fröhlich A, Palmieri MC et al (2006) Plant nitric oxide synthase: a never-ending story? Trends Plant Sci 11:524–525

    CAS  PubMed  Google Scholar 

  • Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51:51–59

    CAS  PubMed  Google Scholar 

  • Zhang Y, Rump S, Gladyshev VN (2011) Comparative genomics and evolution of molybdenum utilization. Coord Chem Rev 255:1206–1217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57:805–836

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments and Funding

The authors acknowledge the support of the research grants AGL2010-16167 to J.F.M. from the Spanish Ministry of Science and Innovation and Bi 1075/5-1 to F.B. by the Deutsche Forschungsgemeinschaft. R.E. received a JAE-Doctor grant from the Spanish Research Council (CSIC). We are greatly thankful to all the researchers who worked and have been involved in the XOR enzyme study, for advancing knowledge in this field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Bittner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Urarte, E., Esteban, R., Moran, J.F., Bittner, F. (2015). Established and Proposed Roles of Xanthine Oxidoreductase in Oxidative and Reductive Pathways in Plants. In: Gupta, K., Igamberdiev, A. (eds) Reactive Oxygen and Nitrogen Species Signaling and Communication in Plants. Signaling and Communication in Plants, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-10079-1_2

Download citation

Publish with us

Policies and ethics