Skip to main content

Acidophilic Microbes: Biology and Applications

  • Chapter
  • First Online:
Biotechnology of Extremophiles:

Part of the book series: Grand Challenges in Biology and Biotechnology ((GCBB,volume 1))

Abstract

Acidophilic microorganisms are an ecologically and economically important group, which occur in acidic natural (solfataric fields, sulphuric pools) and man-made (eg. Acid mine drainage) environments. Acidophiles possess networked cellular adaptations for regulating intracellular pH. Several extracellular enzymes from acidophilic microbes are known to be functional at much lower pH than that inside the cells. Acid stable enzymes have applications in several industries such as starch, baking, fruit juice processing, animal feed and pharmaceuticals, and some of them have already been commercialized. Acidophiles are widely used in bioleaching of metals from low grade ores. This review focuses on the biology of acidophiles, acidstable enzymes and their potential applications, utility of acidophiles in bioconversion and bioremediation, and in microbial fuel cells to generate electricity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuna-Arguelles ME, Gutierrez-Rajas M, Viniegra-Gonzalez G, Favela-Toress E (1995) Production and properties of three pectinolytic activities produced by A. niger in submerged and solid state fermentation. Appl Microbiol Biotechnol 43:808–814

    Article  CAS  PubMed  Google Scholar 

  • Alexander B, Leach S, Ingledew WJ (1987) The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans. J Gen Microbiol 133:1171–1179

    CAS  Google Scholar 

  • Allard AS, Neilson AH (1997) Bioremediation of organic waste sites: a critical review of microbiological aspects. Int Biodeter Biodegr 39:253–285

    Article  CAS  Google Scholar 

  • Al-Obaidi ZS, Aziz GM, Al-Bakir AY (1987) Screening of fungal strains for polygalacturonase production. J Agric Water Resour Res 6:125–182

    CAS  Google Scholar 

  • Amaral-Zettler LA, Gómez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s river of fire: this ancient and hostile ecosystem hosts a surprising variety of microbial organisms. Nature 417:37

    Article  CAS  Google Scholar 

  • Bai Y, Huang H, Meng K, Shi P, Yang P, Luo H, Luo C, Feng Y, Zhang W, Yao B (2012) Identification of an acidic α-amylase from Alicyclobacillus sp. A4 and assessment of its application in the starch industry. Food Chem 131:1473–1478

    Article  CAS  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15(4):165–171

    Article  CAS  PubMed  Google Scholar 

  • Bampton KF, Bologiannis F, Canterford JH, Smith AN (1983) Development of experimental in-situ leaching at the Mutooroo copper mine, South Australia. In: Australasian IMM Annual Conference, Broken Hill, NSW, pp 371–379

    Google Scholar 

  • Batrakov SG, Pivovarova TA, Esipov SE, Sheichenko VI, Karavaiko GI (2002) Beta-d-glycopyranosyl caldarchaetidylglycerol is the main lipid of the acidophilic, mesophilic, ferrous iron-oxidizing archaeon Ferroplasm acidiphilum. Biochim Biophys Acta 1581:29–35

    Article  CAS  PubMed  Google Scholar 

  • Berthelot D, Leduc LG, Ferroni GD (1994) The absence of psychrophilic Thiobacillus ferrooxidans and acidophilic heterotrophic bacteria in cold, tailings effluents from a uranium mine. Can J Microbiol 40:60–63

    Article  Google Scholar 

  • Bertoldo C, Dock C, Antranikian G (2004) Thermoacidophilic microorganisms and their novel biocatalysts. Eng Life Sci 4:521–531

    Article  CAS  Google Scholar 

  • Biffinger JC, Pietron J, Bretschger O, Nadeau LJ, Johnson GR, Williams CC, Nealson KH, Ringeisen BR (2008) The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosens Bioelectron 24:900–905

    Article  CAS  Google Scholar 

  • Borin MDF, Said S, Fonseca MJV (1996) Purification and biochemical characterization of an extracellular endopolygalacturonase from Penicillium frequentans. J Agric Food Chem 44:1616–1620

    Article  CAS  Google Scholar 

  • Borole AP, Neill HO, Tsouris C, Cesar S (2008) A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum. Biotechnol Lett 30:1367–1372

    Article  CAS  PubMed  Google Scholar 

  • Brierley CL, Brierley JA (2000) Bioheap processes: operational requirements and techniques. In: Proceedings of Randol Copper Hydromet Roundtable, Tucson, Ariz. pp 95–103

    Google Scholar 

  • Chandel AK, Rudravaram R, Rao LV, Ravindra P, Narasu ML (2007) Industrial enzymes in bio-industrial sector development: An Indian perspective. J Commer Biotechnol 13:283–291

    Article  Google Scholar 

  • Channe PS, Shewal JG (1995) Pectinase production by Sclerotium rolfsii: Effect of culture conditions. Folia Microbiol 40:111–117

    Article  CAS  Google Scholar 

  • Chen L-X, Hu M, Huang L-N, Hua Z-S, Kuang J-L, Li S-J, Shu W-S (2014) Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. Int Soc Microb Ecol 9:1–14

    Google Scholar 

  • Cheng SA, Logan BE (2011) Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Biores Technol 102:4468–4473

    Article  CAS  Google Scholar 

  • Christen P, Vega A, Casalot L, Simon G, Auria R (2012) Kinetics of aerobic phenol biodegradation by the acidophilic and hyperthermophilic archaeon Sulfolobus solfataricus 98/2. Biochem Eng J 62:56–61

    Article  CAS  Google Scholar 

  • Ciaramella M, Napoli A, Rossi M (2005) Another extreme genome: how to live at pH 0. Trends Microbiol 13:49–51

    Article  CAS  PubMed  Google Scholar 

  • Crossman L, Holden M, Pain A, Parkhill J (2004) Genomes beyond compare. Nat Rev Microbiol 2:616–617

    Article  CAS  PubMed  Google Scholar 

  • Daniel DK, Mankidy BD, Ambarish K, Manogari R (2009) Construction and operation of a microbial fuel cell for electricity generation from wastewater. Int J Hydrogen Energy 34:7555–7560

    Article  CAS  Google Scholar 

  • Davies DR (1990) The structure and function of the aspartic proteinases. Annu Rev Biophys Chem 19:189–215

    Article  CAS  Google Scholar 

  • Dew DW, Lawson EN, Broadhurst JL (1997) The Biox® process for biooxidation of gold-bearing ores or concentrates. In: Rawlings DE (ed) Biomining: theory microbes and Industrial processes. Springer, Berlin, pp 45–80

    Chapter  Google Scholar 

  • Do TT, Quyen DT, Dam TH (2012) Purification and characterization of an acid-stable and organic solvent-tolerant xylanase from Aspergillus awamori VTCC-F312. Sci Asia 38:157–165

    Article  CAS  Google Scholar 

  • Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970

    Article  CAS  PubMed  Google Scholar 

  • Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL (2004) Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert K, Schneider E (2003) A thermoacidophilic endoglucanase (CelB) from Alicyclobacillusacidocaldarius displays high sequence similarity to arabinofuranosidases belonging to family 51 of glycoside hydrolases. Eur J Biochem 270:3593–3602

    Article  CAS  PubMed  Google Scholar 

  • Erable B, Etcheverry L, Bergel A (2009) Increased power from a two chamber microbial fuel cell with a low pH air-cathode compartment. Electrochem Commun 11:619–622

    Article  CAS  Google Scholar 

  • Fan Y, Sharbrough E, Liu H (2008) Quantification of the internal resistance distribution of microbial fuel cells. Environ Sci Technol 42:8101–8107

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Wang X, Logan BE, Lee H (2008) Brewery wastewater treatment using air cathode microbial fuel cells. Appl Microbiol Biotechnol 78:873–880

    Article  CAS  PubMed  Google Scholar 

  • Franke S, Rensing C (2007) Acidophiles. Mechanisms to tolerate metal and acid toxicity. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 271–278

    Chapter  Google Scholar 

  • Fusek M, Lin XL, Tang J (1990) Enzymic properties of thermopsin. J Biol Chem 265:1496–1501

    CAS  PubMed  Google Scholar 

  • Futterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B, Dock C, Antranikian G, Liebl W (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci USA 101:9091–9096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaffney PJ, Edgell TA, Dawson PA, Ford AW, Stocker E (1996) A pig collagen peptide fraction. A unique material for maintaining biological activity during lyophilization and during storage in the liquid state. J Pharm Pharmacol 48:896–898

    Article  CAS  PubMed  Google Scholar 

  • García-Muñoz J, Amils R, Fernández VM, Lacey ALD, Malki M (2011) Electricity generation by microorganisms in the sediment-water interface of an extreme acidic microorganism. Int Microbiol 14:73–81

    PubMed  Google Scholar 

  • Geisler RA, Pudington IE (1996) Treatment of lead sulfide bearing minerals. US Patent 5:523-066

    Google Scholar 

  • Gemmell RT, Knowles CJ (2000) Utilisation of aliphatic compounds by acidophilic heterotrophic bacteria: the potential for bioremediation of acidic wastewaters contaminated with toxic organic compounds and heavy metals. FEMS Microbiol Lett 192:185–190

    Article  CAS  PubMed  Google Scholar 

  • Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7:1277–1288

    Article  CAS  PubMed  Google Scholar 

  • Golyshina OV, Pivovarova TA, Karavaiko GI, Moore ER, Abracham WR, Lunsdorf H, Timmis KN, Yakimov MM, Golyshin PN (2000) Ferroplasma acidiphilum gen. Nov., sp. Nov., an acidophilic autotrophic, ferrous-iron oxidizing, cell wall lacking, mesophilic member of the Ferroplasmaceae fam. Nov., comprising distinct lineage of Archaea. Int J Syst Evol Microbiol 50:997–1006

    Google Scholar 

  • González-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylase: a biotechnological perspective. Process Biochem 38:1599–1616

    Article  CAS  Google Scholar 

  • Habermann W, Pommer EH (1991) Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol 35:128–133

    Article  CAS  Google Scholar 

  • Hallberg KB (2010) New perspectives in acid mine drainage microbiology. Hydrometallurgy 104:448–453

    Article  CAS  Google Scholar 

  • Hamamura N, Olson SH, Ward DM, Inskeep WP (2005) Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park. Appl Environ Microbiol 71:5943–5950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda S (1998) Dietary use of collagen and collagen peptides for cosmetics. Food Style 21:54–60

    Google Scholar 

  • Huang Y, Krauss G, Cottaz S, Driguez H, Lipps G (2005) A highly acid-stable and thermostable endo-b-glucanase from the thermoacidophilic archaeon Sulfolobus solfataricus. Biochem J 385:581–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ieropoulos IA, Greenman J, Melhuish C, Hart J (2005) Comparative study of three types of microbial fuel cell. Enzyme Microb Tech 37:238–245

    Article  CAS  Google Scholar 

  • Inagaki K, Nakahira K, Mukai K, Tamura T, Tanaka H (1998) Gene cloning and characterization of an acidic xylanase from Acidobacterium capsulatum. Biosci Biotechnol Biochem 62:1061–1067

    Article  CAS  PubMed  Google Scholar 

  • Jadhav GS, Ghangrekar MM (2009) Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Biores Technol 100:717–723

    Article  CAS  Google Scholar 

  • Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, Vander Oost J (2001) The complete genome of the Crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson DB (1995) Acidophilic microbial communities: candidates for bioremediation of acidic mine effluents. Int Biodeter Biodegrad 35:41–58

    Article  CAS  Google Scholar 

  • Johnson D (1998) Biodiversity and ecology of acidophilic microorganism. FEMS Microbiol Ecol 27:307

    Article  CAS  Google Scholar 

  • Johnson D (2008) Biodiversity and interactions of acidophiles: Key to understanding and optimizing microbial processing of ores and concentrates. Trans of Nonferr Metal Soc China 18:1367–1373

    Article  CAS  Google Scholar 

  • Johnson D, Hallberg K (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    Article  CAS  PubMed  Google Scholar 

  • Kim HW, Kim YO, Lee JH, Kim KK, Kim YJ (2003) Isolation and characterization of a phytase with improved properties from Citrobacter braakii. Biotechnol Lett 25:1231–1234

    Article  CAS  PubMed  Google Scholar 

  • Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laksanalamai P, Robb FT (2004) Small heat shock proteins from extremophiles: a review. Extremophiles 8:1–11

    Article  CAS  PubMed  Google Scholar 

  • Leisola M, Jokela J, Pastinen O, Turunen O, Schoemaker H (2002) Industrial use of enzymes. In: Encyclopedia of life support systems (EOLSS), EOLSS Publishers, Oxford

    Google Scholar 

  • Liu XD, Xu Y (2008) A novel raw starch digesting a-amylase from a newly isolated Bacillus sp. YX-1: purification and characterization. Biores Technol 99:4315–4320

    Article  CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181

    Article  CAS  PubMed  Google Scholar 

  • Lu N, Zhou SG, Zhuang L, Zhnag JT, Ni JR (2009) Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem Eng J 43:246–251

    Article  CAS  Google Scholar 

  • Macalady JL, Vestling MM, Baumler D, Boekelheide N, Kaspar CW, Banfield JF (2004) Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid. Extremophiles 8:411–419

    Article  CAS  PubMed  Google Scholar 

  • Marcus L, Barash I, Sneh B, Koltin Y, Finker A (1986) Purification and characterization of pectolytic enzymes produced by virulent and hypovirulent isolates of Rhizoctonia solani Kuhn. Physiol Mol Plant Pathol 29:325–336

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  PubMed  Google Scholar 

  • Matzke J, Schwermann B, Baker EP (1997) Acidstable and acidophilic proteins: the example of the alpha amylase from Alicyclobacillus acidocaldarius. Comp Biochem Physiol A Mol Integr Physiol 118:411–419

    Article  Google Scholar 

  • Murao S, Okhuni K, Naganao M (1988) A novel thermostable S-PI (pepstatin Ac)-insensitive acid proteinase from thermophilic Bacillus novo sp. strain Mn-32. Agric Biol Chem 52:1029–1031

    Google Scholar 

  • Nakayama T, Tsuruoka N, Akai M, Nishino T (2000) Thermostable collagenolytic activity of a novel thermophilic isolate, Bacillus sp. Strain NTAP-1. J Biosci Bioeng 89:612–614

    Article  CAS  PubMed  Google Scholar 

  • Navarro CA, Orellana LH, Mauriaca C, Jerez CA (2009) Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper. Appl Environ Microbiol 75:6102–6109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oda K, Nakazima T, Terashita T, Suziki KA, Murao S (1987a) Purification and properties of an S-PI (Pepstatin Ac) insensitive carboxyl proteinase from a Xanthomonas sp. bacterium. Agric Biol Chem 51:3073–3080

    CAS  Google Scholar 

  • Oda K, Sugitani M, Fukuhara K, Murao S (1987b) Purification and properties of a pepstatin-insensitive carboxyl proteinase from a gram negative bacterium. Biochim Biophys Acta 923:463–469

    Article  CAS  PubMed  Google Scholar 

  • Oh JR, Kim GC, Premier TH, Lee C, Kim WT (2010) Sloan Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv 28:871–881

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    Article  CAS  PubMed  Google Scholar 

  • Patil SA, Surakasi VP, Koul S, Ijmulwar S, Vivek A, Shouche YS, Kapadnis BP (2009) Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Biores Technol 100:5132–5139

    Article  CAS  Google Scholar 

  • Pivovarova TA, Kondrateva TF, Batrakov SG, Esipov SE, Sheichenko VI, Bykova SA (2002) Phenotypic features of Ferroplasma acidiphilum strains Yt and Y-2. Microbiol (Moscow) 71:809–818

    Article  CAS  Google Scholar 

  • Plumb JJ, Haddad CM, Gibson JA, Franzmann PD (2007) Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description. Int J Syst Evol Microbiol 57:1418–1423

    Article  PubMed  Google Scholar 

  • Pothuluri JV, Cerniglia CE (1994) Microbial metabolism of polycyclic aromatic hydrocarbons. In: Chaundry GR (ed) Biological degradation and bioremediation of toxic chemicals. Dioscorides Press, Portland, OR, pp 92–124

    Google Scholar 

  • Pronk JT, Johnson DB (1992) Oxidation and reduction of iron by acidophilic bacteria. Geomicrobiol J 10(3–4):153–171

    Article  CAS  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    Article  CAS  PubMed  Google Scholar 

  • Raghavulu SV, Mohan SV, Goud RK, Sarma PN (2009) Effect of anodic pH microenvironment on microbial fuel cell (MFC) performance in concurrence with aerated and ferricyanide catholytes. Electrochem Commun 11:371–375

    Article  CAS  Google Scholar 

  • Ram RJ, VerBerkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC II, Shah M, Hettich RL, Banfield JF (2005) Community proteomics of a natural microbial biofilm. Science 308:1915–1999

    Article  CAS  PubMed  Google Scholar 

  • Rawlings DE (ed) (1997) Biomining: theory, microbes and industrial processes. Springer, Berlin

    Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    Article  CAS  PubMed  Google Scholar 

  • Rawlings DE, Johnson DB (2007) The microbiology of biomining: development and optimization of mineral–oxidizing microbial consortia. Microbiology 153:315–324

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez E, Han Y, Lei XG (1999) Cloning, sequencing and expression of an Escherichia coli acid phosphatase, phytase gene (app A2) isolated from pig colon. Biochem Biophys Res Commun 257:117–123

    Article  CAS  PubMed  Google Scholar 

  • Roling WFM, Ortega-Lucach S, Larter SR, Head IM (2006) Acidophilic microbial communities associated with a natural, biodegraded hydrocarbon seepage. J Appl Microbiol 101:290–299

    Article  CAS  PubMed  Google Scholar 

  • Satyanarayana T, Raghukumar C, Shivaji S (2005) Extremophilic microbes: diversity and perspectives. Curr Sci 89:78–90

    Google Scholar 

  • Schleper C, Püehler G, Kuhlmorgen B, Ziling W (1995) Life at extremely low pH. Nature 375:741–742

    Article  CAS  PubMed  Google Scholar 

  • Schleper C, Puehler G, Klenk HP, Zillig W (1996) Picrophilus oshimae Picrophilus torridus fam.nov., gen. nov., sp. nov., two species of hyperacidophilic, thermophilic, heterotrophic aerobic archaea. Int J Syst Bacteriol 46:814–816

    Google Scholar 

  • Schnell HA (1997) Bioleaching of copper. In: Rawlings DE (ed) Biomining: theory microbes and industrial processes. Springer-Verlag and Landes Bioscience, Berlin, Germany, pp 21–43

    Chapter  Google Scholar 

  • Schwermann B, Pfau K, Liliensiek B, Schleyer M, Fischer T, Bakker EP (1994) Purification, properties and structural aspects of the thermoacidophilic α-amylase from Alicyclobacillusacidocaldarius ATCC 27009. Insight into acidostability of proteins. Eur J Biochem 226:981–991

    Article  CAS  PubMed  Google Scholar 

  • Serour E, Antranikian G (2002) Novel thermoactive glucamylases from the thermoacidophilic archaea Thermoplasma acidophilum, Picrophilus torridus and Picrophilus oshimae. Antonie van Leewenhoek 81:73–83

    Article  CAS  Google Scholar 

  • Shah AR, Shah RK, Madamwar D (2006) Improvement of the quality of whole wheat bread by supplementation of xylanase from Aspergillus foetidus. Biores Technol 97:2047–2053

    Article  CAS  Google Scholar 

  • Sharma A, Satyanarayana T (2010) High maltose-forming, Ca2+- independent and acid stable α-amylase from a novel acidophilic bacterium Bacillus acidicola TSAS1. Biotechnol Lett 32:1503–1507

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Satyanarayana T (2012) Production of acid-stable and high-maltose-forming α-amylase of Bacillus acidicola by solid-state fermentation and immobilized cells and its applicability in baking. Appl Biochem Biotechnol 168:1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Kawarabayasi Y, Satyanarayana T (2012) Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles 16:1–19

    Article  CAS  PubMed  Google Scholar 

  • Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Miner Eng 19:105–116

    Article  CAS  Google Scholar 

  • Shimada H, Nemoto N, Shida Y, Oshima T, Yamagishi A (2002) Complete polar lipid composition of Thermoplasma acidophilum HO-62 determined by high performance liquid chromatography with evaporative light scattering detection. J Bacteriol 184:556–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A (2006) α-Amylases from microbial sources–an overview on recent developments. Food Technol Biotechnol 44:173–184

    Google Scholar 

  • Siddiqui MH, Kumar A, Kesari KK, Arif JM (2009) Biomining–A useful approach toward metal extraction. American-Eurasian J Agron 2:84–88

    Google Scholar 

  • Silva FVM, Gibbs P (2001) Alicyclobacillus acidoterrestris spores in fruit products and design of pasteurization processes. Trends Food Sci Technol 12:68–74

    Article  CAS  Google Scholar 

  • Soni SK, Magdum A, Khire JM (2010) Purification and characterization of two distinct acidic phytases with broad pH stability from Aspergillus niger NCIM 563. World J Microbiol Biotechnol 26:2009–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spijkerman E, Bissinger V, Meister A, Gaedke U (2007) Low potassium and inorganic carbon concentrations influence a possible phosphorus limitation in Chlamydomonas acidophila (Chlorophyceae). Eur J Phycol 42:327–339

    Article  CAS  Google Scholar 

  • Stapleton RD, Savage DC, Sayler GS, Stacey G (1998) Biodegradation of aromatic hydrocarbons in an extremely acidic environment. Appl Environ Microbiol 64:4180–4184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan PJ, Yelton JL (1988) An evaluation of trace element release associated with acid mine drainage. Environ Geol Water Sci 12:181–186

    Article  CAS  Google Scholar 

  • Sulonen ML, Kokko ME, Lakaniemi AM, Puhakka JA (2015) Electricity generation from tetrathionate in microbial fuel cells by acidophiles. J Hazard Mater 284:182–189

    Article  CAS  PubMed  Google Scholar 

  • Sutherland JB (1992) Detoxification of polycyclic aromatic hydrocarbons by fungi. J Ind Microbiol 9:53–62

    Article  CAS  PubMed  Google Scholar 

  • Takayanagi S, Kawasaki H, Sugimori K, Yamada T, Sugai A, Ito T, Yamasato K, Shioda M (1996) Sulfolobus hakonensis sp. nov., a novel species of acidothermophilic archaeon. Int J Syst Bacteriol 46:377–382

    Article  CAS  PubMed  Google Scholar 

  • Thiel V (2011) Extreme environments. Encyclopedia of Geobiology 362–366

    Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram JR, Richardson MP, Solovyev VV, Rubin ME, Rokhsar SD, Banfield FJ (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  PubMed  Google Scholar 

  • Van de Vossenberg JL, Driessen AJ, Konings WN (1998a) The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2:163–170

    Article  PubMed  Google Scholar 

  • Van de Vossenberg JL, Driessen AJ, Zillig W, Konings WN (1998b) Bioenergetics and cytoplasmic membrane stability of the extremely acidophilic, thermophilic archaeon Picrophilus oshimae. Extremophiles 2:67–74

    Article  PubMed  Google Scholar 

  • Walker M, Phillips CA (2008) Alicyclobacillus acidoterrestris: an increasing threat to the fruit juice industry. Int J Food Sci Technol 43:250–260

    Article  CAS  Google Scholar 

  • Wen Q, Wu Y, Cao D, Zhao L, Sun Q (2009) Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Biores Technol 100:4171–4175

    Article  CAS  Google Scholar 

  • Yim KJ, Cha IT, Rhee JK, Song HS, Hyun DW, Lee HW, Kim D, Kim KN, Nam YD, Seo MJ, Bae JW, Roh SW (2015) Vulcanisaeta thermophila sp. nov., a hyperthermophilic and acidophilic crenarchaeon isolated from solfataric soil. Int J Syst Evol Microbiol 65:201–205

    Article  CAS  PubMed  Google Scholar 

  • Zychlinsky E, Matin A (1983) Effect of starvation on cytoplasmic pH, proton motive force, and viability of an acidophilic bacterium Thiobacillus acidophilus. J Bacteriol 153:371–374

    CAS  PubMed  PubMed Central  Google Scholar 

Web addresses

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tulasi Satyanarayana .

Editor information

Editors and Affiliations

Ethics declarations

Archana Sharma, Deepak Parashar, and Tulasi Satyanarayana declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharma, A., Parashar, D., Satyanarayana, T. (2016). Acidophilic Microbes: Biology and Applications. In: Rampelotto, P. (eds) Biotechnology of Extremophiles:. Grand Challenges in Biology and Biotechnology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-13521-2_7

Download citation

Publish with us

Policies and ethics