Skip to main content

Use of Alien Diversity to Combat Some Major Biotic Stresses in Triticum aestivum L.

  • Chapter
Crop Production and Global Environmental Issues
  • 2509 Accesses

Abstract

Crop plants experience a collection of environmental stresses that involve biotic (biological) and abiotic (physical) factors. The biotic factors include pathogens including viruses, bacteria, fungi and microbes, birds, pests, weeds, insects, and invasive species. These are crucial for sessile organisms such as plants because plants cannot enhance production and even survive unless they show resistance towards undesirable changes in the surrounding environment. Both biotic and abiotic stresses negatively affect plant survival, production, and ultimately yield. Biotic stresses can deteriorate biomass at any stage of plant development by adversely affecting crop yield. Therefore, biological factors limit crop production and food security globally. The ability to adapt or tolerate these stresses by effectively countering these constraints is a very complex phenomenon. The most important biological stresses of wheat that significantly reduce yield are fungal diseases and among these the most damaging are rusts (leaf, stem, and stripe) and the emergence of new races of the pathogen that gradually cause a decline in the prevalent disease resistance of wheat cultivars. One option to combat this is the introgression of alien genes from wild and related progenitor species into common wheat. This underutilized genetic diversity can be exploited through conventional plant breeding modes utilizing diverse genetic resources across landraces, close and distant progenitor species of the recipient cultivars. Different methodologies to access alleles from the species have been practiced after first developing all the important hybrids that generate chromosome translocations, substitutions, or additions. For the identification of the chromosomal introgression, C-banding technique and genomic in situ hybridization (GISH) are ideally aided diagnostically by new molecular inputs. Although the merits of concentrating on primary and secondary gene pool genera are high, the practical contribution of Thinopyrum curvifolium, Th. distichum, and Secale cereale also adds credence to the continued use of a tertiary pool resource. The genetic diversity using a tertiary gene pool also is an added valuable resource. In order to encounter the overall wheat production challenge magnificently, plant scientists need to be cognizant of the various aspects of these stresses in view of the current development from genetic molecules to adaptive ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adonina IG, Petrash NV, Timonova EM, Khristov YA, Salina EA (2012) Construction and study of leaf rust resistant common wheat lines with translocations of Aegilops speltoides Tausch. Genetic material. Russ J Genet 48(4):404–409

    Article  CAS  Google Scholar 

  • Ahmad F, Comeau A, Chen Q, Colin J, St-Pierre CA (2000) Radiation-induced wheat–rye translocation in triticale: optimizing the does using fluorescence in situ hybridization. Cytologia 65:1–6

    Article  Google Scholar 

  • Barclay IR (1975) High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature 256:410–411

    Article  Google Scholar 

  • BartoÅ¡ P, Ovesná J, Hanzalová A, Chrpová J, Dumalasová V, Å korpík M, Šíp V (2004) Presence of a translocation from Aegilops ventricosa in wheat cultivars registered in the Czech Republic. Czech J Genet Plant Breed 40(2):31–35

    Google Scholar 

  • Blanco A, Simeone R, Resta P (1996) Genomic relationships between Dasypyrum villosum L. Candargy and D. Hordeaceum (Cosson et Durieu) Candargy. Genome 39:83–92

    Article  CAS  PubMed  Google Scholar 

  • Bux H, Ashraf M, Hussain F, Rattu AUR, Fayyaz M (2012) Characterization of wheat germplasm for stripe rust (Puccinia striiformis f. sp. tritici) resistance. Aust J Crop Sci 6(1):116–120

    Google Scholar 

  • Carmona S, Alvarez J, Caballero L (2010) Genetic diversity for morphological traits and seed storage proteins in Spanish rivet wheat. Biol Plant 54:69–75

    Article  Google Scholar 

  • Ceoloni C, Forte P, Gennaro A, Micali S, Carozza R, Bitti A (2005) Recent developments in durum wheat chromosome engineering. Cytogenet Genome Res 109:328–334

    Article  CAS  PubMed  Google Scholar 

  • Chen PD, Tsujimoto H, Gill BS (1994) Transfer of PhI gene promoting homoeologous pairing from Triticum speltoides into common wheat and their utilization in alien genetic introgression. Theor Appl Genet 88:97–101

    Google Scholar 

  • Chen Q, Conner RL, Laroche A (1996) Molecular characterization of Haynaldia villosa chromatin in wheat lines carrying resistance to wheat curl mite colonization. Theor Appl Genet 93:679–684

    Article  CAS  PubMed  Google Scholar 

  • Chen PD, Zhang SZ, Wang XE, Wang SL, Zhou B, Feng WG, Liu DJ (2002) New wheat variety Nannong 9918 with high yield and powdery mildew resistance. J Nanjing Agric Univ 25:105–106

    Google Scholar 

  • Cheng P (2008) Molecular mapping of a gene for resistance to stripe rust in spring wheat cultivar IDO377s and identification of a new race of Puccinia striiformis f. sp. tritici virulent on IDO377s. MSc thesis, Washington State University, Washington, p 87

    Google Scholar 

  • Chhuneja P, Kaur S, Goel RK, Aghaee-Sarbarzeh M, Prashar M, Dhaliwal HS (2007) Transfer of leaf rust and stripe rust resistance from Aegilops umbellulata Zhuk to bread wheat (Triticum aestivum L.). Genet Res Crop Evol. doi:10.1007/s10722-007-9289-3

    Google Scholar 

  • Chhuneja P, Kaur S, Garg T, Ghai M, Kaur S, Prashar M, Bains NS, Goel RK, Keller B, Dhaliwal HS, Singh K (2008) Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat. Theor Appl Genet 116:313–324

    Article  CAS  PubMed  Google Scholar 

  • Coriton O, Barloy D, Huteau V, Lemoine J, Tanguy AM, Jahier J (2009) Assignment of Aegilops variabilis Eig chromosomes and translocations carrying resistance to nematodes in wheat. Genome 52:338–346

    Article  CAS  PubMed  Google Scholar 

  • Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafsson JP (ed) Gene manipulation in plant improvement. 16th Stadler genetics symposium. Plenum Press, New York, pp 209–279

    Chapter  Google Scholar 

  • Dhaliwal HS, Singh H, Gill KS, Randhawa HS (1993) Evaluation and cataloguing of wheat germplasm for resistance and quality. In: Damanaia AB (ed) Biodiversity and wheat improvement. Wiley-Sayce Publications, Amsterdam, pp 123–140

    Google Scholar 

  • Dong YS, Zheng DS (2000) Chinese wheat genetic resources. In: Preface. China Agriculture Press, Beijing, p 1

    Google Scholar 

  • Dundas IS, Anugrahwati DR, Verlin DC, Park RF, Bariana HS, Mago R, Islam AKMR (2007) New sources of rust resistance from alien species: meliorating linked defects and discovery. Aust J Agric Res 58:545–549

    Article  CAS  Google Scholar 

  • Dzhenin SV, Lapochkina IF, Zhemchuzhina AI, Kovalenko ED (2009) Donors of Spring common wheat resistance to leaf rust and powdery mildew with genetic material of the species Aegilops speltoides L, Aegilops triuncialis L, and Triticum kiharae Dorof. et Migusch. Dokl Ross Akad Skh Nauk 5:3–7

    Google Scholar 

  • Ejaz M, Iqbal M, Shahzad A, Ahmed I, Ali GM (2012) Genetic variation for markers linked to stem rust resistance genes in Pakistani wheat varieties. Crop Sci 52:3638–2648

    Google Scholar 

  • Endo TR (2007) The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosom Res 15:67–75

    Article  CAS  Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2007) Cereal breeding takes a walk on the wild side. Trends Genet 24(1):24–32

    Article  PubMed  CAS  Google Scholar 

  • Francis A, Leitch AR, Koebner RMD (1995) Conversion of a RAPD generated PCR product, containing novel dispersed repetitive element, into a fast and robust assay for the presence of rye chromatin in wheat. Theor Appl Genet 90:636–642

    Article  PubMed  Google Scholar 

  • Friebe B, Zeller FJ, Mukai Y, Forster BP, Bartos P, McIntosh RA (1992) Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C banding, in situ hybridization and isozyme analysis. Theor Appl Genet 83:775–782

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Qi LL, Nasuda A, Zhang P, Tuleen NA, Gill BS (2000) Development of a complete set of Triticum aestivum–Aegilops speltoides chromosome addition lines. Theor Appl Genet 101:51–58

    Article  Google Scholar 

  • Fu S, Sun C, Yang M, Fei Y, Tan F et al (2013) Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines. PLoS One 8:e54057. doi:10.1371/journal.pone.0054057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • German S, Barcellos A, Chaves M, Kohli M, Campos P, Viedma L (2007) The situation of common wheat rusts in the southern Cone of America and perspectives for control. Aust J Agric Res 58:620–630

    Article  Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome band and structural aberrations in wheat (Triticum aestivum L.). Genome 34:830–839

    Article  Google Scholar 

  • Gill BS, Huang L, Kuraparthy V, Raupp WJ, Wilson DL, Friebe B (2008) Alien genetic resources for wheat leaf rust resistance, cytogenetic transfer, and molecular analysis. Aust J Agric Res 59:197–205

    Article  CAS  Google Scholar 

  • Graybosch RA (2006) Database for the hard winter wheat nurseries program. Available at http://www.ars.usda.gov/Research/docs.htmdocid11932

  • Griffiths S et al (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439:749–752

    Article  CAS  PubMed  Google Scholar 

  • Harlan JR (1975) Crops and man. American Society of Agronomy/Crop Science Society of America, Madison, WI, pp 1–295

    Google Scholar 

  • Hou L, Song XH, Lu YM, Hu ML, He MM, Jing JX (2009) Genetic analysis and SSR molecular mapping of translocation line V9128-3 derived from Triticum aestivum–Haynaldia villosa resistance to stripe rust. Acta Phytophylacica Sin 39:67–75

    Google Scholar 

  • http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi

  • Huang HY, Tang J, Zhang CC, Rong FX, Li ZX, Wang SL (2007) Wheat breeding and cultivation techniques of Neimai 9 with high yield and quality. Bull Agric Sci Technol 10:66

    Google Scholar 

  • Hysing SC, HsamSai LK, Singh Ravi P, Huerta-Espino J, Byod LA (2007) Agronomic performance and multiple disease resistance in T2BS.2RL wheat-rye translocation lines. Crop Sci 47:254–260

    Article  Google Scholar 

  • Islam AKMR, Shepherd KW (1992) Production of wheat-barley recombinant chromosomes through induced homoeologous pairing. 1. Isolation of recombinants involving barley arms 3HL and 6HL. Theor Appl Genet 83:489–494

    Article  CAS  PubMed  Google Scholar 

  • Islam S et al (2007) Salt tolerance in a Hordeum marinum-Triticum aestivum amphiploid, and its parents. J Exp Bot 58:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Jaradat AA (2011) Ecogeography, genetic diversity, and breeding value of wild emmer wheat (Triticum dicoccoides Körn ex Asch. & Graebn.) Thell. AJCS 5(9):1072–1086

    CAS  Google Scholar 

  • Ji WQ, Wang QY, Wang CY, Ren ZL, Zhang H, Cai DM, Wang YJ (2006) High-yield and high-quality disease-resistant wheat variety-Yuanfeng175. J Triticeae Crops 3:175

    Google Scholar 

  • Jiang J, Friebe B, Dhaliwal HS, Martin TJ, Gill BS (1993) Molecular cytogenetic analysis of Agropyron elongatum chromatin in wheat germplasm specifying resistance to wheat streak mosaic virus. Theor Appl Genet 86:41–48

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Singh RP, Ward RW, Wangyera R, Kinyua M, Njau P, Fetch T, Pretorius ZA, Yahyaoui A (2007) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 91:1096–1099

    Article  Google Scholar 

  • Jin Y, Szabo LJ, Rouse MN, Fetch T Jr, Pretorius ZA, Wanyera R, Njau P (2009) Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. tritici. Plant Dis 93:367–370

    Article  CAS  Google Scholar 

  • Kassem M, El-Ahmed A, Hakim MS, El-Khaliefa M, Nachit M (2011) Identification of prevalent races of Puccinia triticina Eriks. in Syria and Lebanon. Arab J Plant Prot 29(1):7–13

    Google Scholar 

  • Kazi AG (2011) Utilization of Triticeae gene pool diversity for wheat improvement. PhD dissertation, Quaid-i-Azam University, Islamabad, pp 1–240

    Google Scholar 

  • Kim W, Johnson JW, Baenziger PS, Lukaszewski AJ, Gaines CS (2004) Agronomic effect of wheat-rye translocation carrying rye chromatin (1R) from different sources. Crop Sci 44:1254–1258

    Article  Google Scholar 

  • Kim A, Hena A, Kamal M, Seo YM, Park CS, Nam J, Kim S, Choi JS, Woo SH (2011) Leaf proteome analysis of wheat-rye translocation lines. AJCS 5(12):1670–1677

    CAS  Google Scholar 

  • Knott DR (1980) Mutation of a gene for yellow pigment linked to Lr19 in wheat. Can J Genet Cytol 22:651–654

    Article  CAS  Google Scholar 

  • Ko JM, Seo BB, Suh DY, Do GS, Park DS, Kwack YH (2002) Production of a new wheat line possessing the 1BL.1RS wheat-rye translocation derived from Korean rye cultivar Paldanghomil. Theor Appl Genet 104:171–176

    Article  PubMed  Google Scholar 

  • Koebner RMD, Shepherd KW (1985) Induction of recombination between rye chromosome 1RL and wheat chromosomes. Theor Appl Genet 71:208–215

    CAS  PubMed  Google Scholar 

  • Koebner RMD, Shepherd KW, Appels R (1986) Controlled introgression to wheat of genes from rye chromosome arm 1RS by induction of allosyndesis: 2. Characterisation of recombinants. Theor Appl Genet 73:209–217

    Article  CAS  PubMed  Google Scholar 

  • Kruse A (1973) Hordeum X Triticum hybrids. Hereditas 73:157–161

    Article  Google Scholar 

  • Landjeva S, Korzun V, Tsanev V, Vladova R, Ganeva G (2006) Distribution of the wheat-rye translocation 1RS.1BL among bread wheat varieties of Bulgaria. Plant Breed 125:102–104

    Article  CAS  Google Scholar 

  • Larkin PJ, Banks PM, Lagudah ES, Apple R, Chen X, Xin ZY, Ohm HW, McIntosh RA (1995) Disomic Thinopyrum intermedium addition lines in wheat with barley yellow dwarf virus resistance and with rust resistances. Genome 38:385–394

    Article  CAS  PubMed  Google Scholar 

  • Li HJ, Conner RL, McCallum BD, Chen XM, Su H, Wen ZY, Chen Q, Jia X (2004) Resistance of Tangmai 4 wheat to powdery mildew, stem rust, leaf rust, and stripe rust and its chromosomal composition. Can J Plant Sci 84:1015–1023

    Article  Google Scholar 

  • Li Q, Huang J, Hou L, Liu P, Jing JX, Wang BT, Kang ZS (2012) Genetic and molecular mapping of stripe rust resistance gene in wheat-Psathyrostachys huashanica translocation line H9020-1-6-8-3. Plant Dis 96:1482–1487

    Article  CAS  Google Scholar 

  • Ling H, Qiu J, Singh RP, Keller B (2004) Identification and genetic characterization of an Aegilops tauschii ortholog of the wheat leaf rust disease resistance gene Lr1. Theor Appl Genet 109:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Luan Y, Wang X, Liu W, Li C, Zhang J et al (2010) Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta 232:501–510

    Article  CAS  PubMed  Google Scholar 

  • Lukaszewski AJ (2006) Cytogenetically engineered rye chromosomes 1R to improve bread-making quality of hexaploid triticale. Crop Sci 46:2183–2194

    Article  CAS  Google Scholar 

  • Mago R, Spielmeyer W, Lawrence GJ, Lagudah ES, Ellis JG, Pryor A (2002) Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RSof rye using wheat-rye translocation lines. Theor Appl Genet 104:1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Malysheva L, Sjakste T, Matzk F, Röder M, Ganal M (2003) Molecular cytogenetic analysis of wheat–barley hybrids using genomic in situ hybridization and barley microsatellite markers. Genome 46:314–322

    Article  CAS  PubMed  Google Scholar 

  • Marais GF, McCallum B, Marais AS (2008) Wheat leaf rust resistance gene Lr59 derived from Aegilops peregrina. Plant Breed 127:340–345

    Article  Google Scholar 

  • Martin RH (1971) Eagle-a new wheat variety. Agric Gaz NSW 82:206–207

    Google Scholar 

  • Martin A, Cabrera A, Hernandez P, Ramirez MC, Rubiales D (2000) Prospects for the use of Hordeum chilense in durum wheat breeding. Options Méditérr 40:111–115

    Google Scholar 

  • Masoudi-Nejad A, Nasuda S, McIntosh RA, Endo TR (2002) Transfer of rye chromosome segments to wheat by a gametocidal system. Chromosom Res 10:349–357

    Article  CAS  Google Scholar 

  • Mater Y, Baenziger S, Gill K, Graybosch R, Whitcher L, Baker C, Specht J, Dweikat I (2004) Linkage mapping of powdery mildew and greenbug resistance genes on recombinant 1RS from ‘Amigo’ and ‘Kavkaz’ wheat-rye translocations of chromosome 1RS.1AL. Genome 47:292–298

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publishing, Melbourne

    Book  Google Scholar 

  • McIntosh RA, Yamazaki Y, Devos KM et al (2007) Catalogue of gene symbols for wheat, supplement: KOMUGI integrated wheat science database. http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers WJ, Morris CF, Somers DJ et al (2008) Catalogue of gene symbols for wheat. In: Proceedings of the 11th international wheat genetics symposium, Brisbane

    Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2009) Catalogue of gene symbols for wheat: supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2009

  • McIntosh RA, Yamazaki Y, Rogers WJ, Morris CF, Devos KM (2010) Catalogue of gene symbols for wheat. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp

  • McIntosh RA, Dubcovsky J, Rogers J, Morris C, Appels R, Xia XC (2011) Catalogue of gene symbols for wheat: supplement. Annu Wheat Newsl 56:273–282

    Google Scholar 

  • Miller TE, Reader SM, Purdie KA, King IP (1996) Fluorescent in situ hybridization – a useful aid to the introduction of alien genetic variation into wheat. Euphytica 89:113–119

    Article  Google Scholar 

  • Mujeeb-Kazi A (2003) New genetic stocks for durum and bread wheat improvement. In: 10th international wheat genetics symposium, Paestum, pp 772–774

    Google Scholar 

  • Mujeeb-Kazi A (2006) Utilization of genetic resources for bread wheat improvement. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering and crop improvement. CRC, Boca Raton, FL, pp 61–97

    Chapter  Google Scholar 

  • Mujeeb-Kazi A, Hettel GP (1995) Utilizing wild grass biodiversity in wheat improvement: 15 years of wide cross research at CIMMYT. CIMMYT report 2, pp 1–140

    Google Scholar 

  • Mujeeb-Kazi A, Kimber G (1985) The production, cytology and practicality of wide hybrids in the Triticeae. Cereal Res Commun 13:111–124

    Google Scholar 

  • Mujeeb-Kazi A, Miranda JL (1985) Enhanced resolution of somatic chromosome constrictions as an aid to identifying intergeneric hybrids among some Triticeae. Cytologia 50:701–709

    Article  Google Scholar 

  • Mujeeb-Kazi A, Rodriguez R (1984) Hordeum vulgare x Triticum aestivum hybrids. Cytologia 49:557–565

    Article  Google Scholar 

  • Mujeeb-Kazi A, Kazi AG, Dundas I, Rasheed A, Ogbonnaya F, Kishii M, Bonnett D, Wang RRC, Xu S, Chen P, Mahmood T, Bux H, Farrakh S (2013) Genetic diversity for wheat improvement as a conduit to food security. In: Sparks DL (ed) Advances in agronomy, vol 122. Academic, Burlington, pp 179–257

    Google Scholar 

  • Mumtaz S, Khan IA, Ali S, Zeb B, Iqbal A, Shah Z, Swati ZA (2007) Development of RAPD based markers for wheat rust resistance gene cluster (Lr37-Sr38-Yr17) derived from Triticum ventricosum L. Afr J Biotechnol 8(7):1188–1192

    Google Scholar 

  • Nagy ED, Lelley T (2003) Genetic and physical mapping of sequence-specific amplified polymorphic (SSAP) makers on the 1RS chromosome arm of rye in a wheat background. Theor Appl Genet 107:1271–1277

    Article  CAS  PubMed  Google Scholar 

  • Ogbonnaya FC, Abdalla O, Mujeeb-Kazi A, Kazi AG, Xu SS, Gosman N, Lagudah ES, Bonnett D, Sorrells ME (2013) Synthetic hexaploid in wheat improvement. In: Janick J (ed) Plant breeding reviews, vol 37, 1st edn. Wiley, New York, pp 35–122

    Chapter  Google Scholar 

  • Olson EL, Brown-Guedira G, Marshall DS, Jin Y, Mergoum M, Lowe I, Dubcovsky J (2010) Genotyping of U.S. wheat germplasm for presence of stem rust resistance genes Sr24, Sr36 and Sr1RS Amigo. Crop Sci 50:1–8

    Article  Google Scholar 

  • Porter DR, Webster JA, Friebe B (1994) Inheritance of greenbug biotype G resistance in wheat. Crop Sci 34:625–628

    Article  Google Scholar 

  • Qi L et al (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosom Res 15:3–19

    Article  CAS  Google Scholar 

  • Rajaram S, Mann CE, Ortiz-Ferrara G, Mujeeb-Kazi A (1983) Adaptation stability high yield potential certain 1B/1R CIMMYT wheats. In: Proceedings of the 6th international wheat genetics symposium, Kyoto, pp 613–621

    Google Scholar 

  • Reece JD, Haribabu E (2007) Genes to feed the world: the weakest link. Food Policy 32:459–479

    Article  Google Scholar 

  • Ren RS, Wang MN, Chen XM, Zhang ZJ (2012) Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theor Appl Genet 125:847–857

    Article  CAS  PubMed  Google Scholar 

  • Riar AK, Kaur S, Dhaliwal HS, Singh K, Chhuneja P (2012) Introgression of a leaf rust resistance gene from Aegilops caudata to bread wheat. J Genet 91:155–161

    Article  CAS  PubMed  Google Scholar 

  • Riley R, Unrau J, Chapman V (1958) Evidence of the origin of the B genome of wheat. J Hered 49:91–98

    Google Scholar 

  • Riley R, Chapman V, Johnson R (1968) Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217:383–384

    Article  Google Scholar 

  • Rubiales D, Niks RE, Carver TLW, Ballesteros J, Martin A (2001) Prospects for exploitation of disease resistance from Hordeurn chilense in cultivated cereals. Hereditas 135:161–169

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Linc G, Molnar I, Molnar-Lang M (2005) Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of five derived wheat/Aegilops biuncialis disomic addition lines. Genome 48:1070–1082

    Article  PubMed  Google Scholar 

  • Schneider A, Molnár I, Molnár-Láng M (2008) Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica 163:1–19

    Article  CAS  Google Scholar 

  • Sears ER (1972) Chromosome engineering in wheat. In: Stadler symposia, vol 4, University of Missouri, Columbia, pp 23–38

    Google Scholar 

  • Sears ER, Miller TE (1985) The history of Chinese spring wheat. Cereal Res Commun 13:261–263

    Google Scholar 

  • Sharma HC (1995) How wide can a wide cross be? Euphytica 82:43–64

    Article  Google Scholar 

  • Singh H, Tsujimoto H, Sakhuja PK, Singh T, Dhaliwal HS (2000) Transfer of resistance to wheat pathogens from Aegilops triuncialis into bread wheat. Wheat Info Serv 91:5–10

    Google Scholar 

  • Singh K, Chhuneja P, Ghai M, Kaur S, Goel RK, Bains NS, Keller B, Dhaliwal HS (2007) Molecular mapping of leaf and stripe rust resistance genes in Triticum monococcum and their transfer to hexaploid wheat. In: Buck H, Nisi JE, Solomon N (eds) Wheat production in stressed environments, vol 12, Developments in plant breeding. Springer, Dordrecht, pp 779–786

    Chapter  Google Scholar 

  • Singh RP, Hodson DP, Espino JH, Jin Y, Njau P, Wanyera R, Herrera-Foessel SA, Ward RW (2008) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309. doi:10.1016/S0065-2113(08)00205-8

    Article  CAS  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    Article  CAS  PubMed  Google Scholar 

  • Song L, Jiang L, Han H, Gao A, Yang X, Li L, Liu W (2013) Efficient induction of wheat-Agropyron cristatum 6P translocation lines and GISH detection. PLoS One 8(7):e69501. doi:10.1371/journal.pone.0069501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spetsov P, Mingeot D, Jacquemin JM, Samardjieva K, Marinova E (1997) Transfer of powdery mildew resistance from Aegilops variabilis into bread wheat. Euphytica 93:49–54

    Article  Google Scholar 

  • Tang S, Li Z, Jia X, Larkin PJ (2000) Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat. Theor Appl Genet 100:344–352

    Article  CAS  Google Scholar 

  • Todorovska E, Christov N, Slavov S et al (2009) Biotic stress resistance in wheat breeding and genomic selection implications. Biotechnol Biotechnol Equip 23:1417–1426

    Article  CAS  Google Scholar 

  • Wan AM, Chen XM, He ZH (2007) Wheat stripe rust in China. Aust J Agric Res 58:605–619

    Article  Google Scholar 

  • Wang RRC (2011) Agropyron and Psathyrostachys. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals. Springer, Berlin, pp 77–108

    Chapter  Google Scholar 

  • Wang CM, Zhang YP, Han DJ, Kang ZS, Li GP, Cao AZ, Chen PD (2008) SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica 159:359–366

    Article  CAS  Google Scholar 

  • Wang R, Zhang SY, Xu ZQ, Chen J, Li Q, Hou L, Jing JX (2011) Genetic analysis and SSR molecular mapping of new stripe-rust resistance gene YrWV derived from Triticum aestivum–Haynaldia villosa translocation line V9125-2. Sci Agric Sin 44:9–19

    Google Scholar 

  • Wang L, Ge H, Hao C, Dong Y, Zhang X (2012) Identifying loci influencing 1,000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS One 7:e29432. doi:10.1371/journal.pone.0029432, PubMed: 22328917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei FS, Gobelman-Werner K, Moroll SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P, Wise RP (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929–1948

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141

    Article  Google Scholar 

  • Williams MDH, Mujeeb-Kazi A (1996) Development of genetic stocks and biochemical markers to facilitate utilization of Aegilops variabilis in wheat improvement. Cytologia 61:7–13

    Article  Google Scholar 

  • Xu LS, Wang MN, Cheng P, Kang ZS, Hulbert SH, Chen XM (2013) Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. Theor Appl Genet 126:523–533

    Article  CAS  PubMed  Google Scholar 

  • Yang ZP, Gilbert J, Somers DJ, Fedak J, Procunier JD, McKenzie IH (2003) Marker-assisted selection of Fusarium head blight resistance genes in two doubled haploid populations of wheat. Mol Breed 12:309–317

    Article  CAS  Google Scholar 

  • Zarco-Hernandez JA et al (2005) Durum wheat (Triticum turgidum L.) carrying the 1BL/1RS chromosomal translocation: agronomic performance and quality characteristics under Mediterranean conditions. Eur J Agric 22:33–43

    Article  CAS  Google Scholar 

  • Zeller FJ (1973) 1B/1R wheat-rye chromosome substitutions and translocations. In: Sears ER, Sears LMS (eds) Proceedings of the 4th international wheat genetic symposium, Columbia, MO, pp 209–221

    Google Scholar 

  • Zeng J, Cao W, Fedak G, Sun S, Mccallum B, Fetch T, Xue A, Zhou Y (2013) Molecular cytological characterization of two novel durum – Thinopyrum intermedium partial amphiploids with resistance to leaf rust, stem rust and Fusarium head blight. Hereditas 150:10–16

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Dubcovsky J (2008) Association between allelic variation at the phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor Appl Genet 116:635–645

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Friebe B, Lukaszewski AJ, Gill BS (2001) The centromere structure of Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma 110:335–344

    Article  CAS  PubMed  Google Scholar 

  • Zhang QP, Li Q, Wang XE, Wang HY, Lang SP et al (2005a) Development and characterization of a Triticum aestivum–Haynaldia villosa translocation line T4VS_4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica 145:317–320

    Article  CAS  Google Scholar 

  • Zhang W, Lukaszewski AJ, Kolmer J, Soria MA, Goyal S, Dubcovsky J (2005b) Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor Appl Genet 111:573–582

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, He ZH, Zhang GS, Xia LQ, Chen XM, Gao YC, Jing ZB, Yu GJ (2004) Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin 30:531–535

    CAS  Google Scholar 

  • Zhou XL, Wu HJ, Zhang RJ, Liu P, Jing JX (2008) Microsatellite tagging of stripe-rust resistance gene YrV1 derived from Haynaldia villosa. Acta Phytopathol Sin 38:69–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvina Gul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Uzma, Kubra, G., Gul, A., Mujeeb-Kazi, A. (2015). Use of Alien Diversity to Combat Some Major Biotic Stresses in Triticum aestivum L.. In: Hakeem, K. (eds) Crop Production and Global Environmental Issues. Springer, Cham. https://doi.org/10.1007/978-3-319-23162-4_14

Download citation

Publish with us

Policies and ethics